def test_diophantine_overflow():
    # Smoke test integer overflow detection
    max_intp = np.iinfo(np.intp).max
    max_int64 = np.iinfo(np.int64).max

    if max_int64 <= max_intp:
        # Check that the algorithm works internally in 128-bit;
        # solving this problem requires large intermediate numbers
        A = (max_int64//2, max_int64//2 - 10)
        U = (max_int64//2, max_int64//2 - 10)
        b = 2*(max_int64//2) - 10

        assert_equal(solve_diophantine(A, U, b), (1, 1))
Exemple #2
0
    def test_big_indices(self):
        # ravel_multi_index for big indices (issue #7546)
        if np.intp == np.int64:
            arr = ([1, 29], [3, 5], [3, 117], [19, 2],
                   [2379, 1284], [2, 2], [0, 1])
            assert_equal(
                np.ravel_multi_index(arr, (41, 7, 120, 36, 2706, 8, 6)),
                [5627771580, 117259570957])

        # test overflow checking for too big array (issue #7546)
        dummy_arr = ([0],[0])
        half_max = np.iinfo(np.intp).max // 2
        assert_equal(
            np.ravel_multi_index(dummy_arr, (half_max, 2)), [0])
        assert_raises(ValueError,
            np.ravel_multi_index, dummy_arr, (half_max+1, 2))
        assert_equal(
            np.ravel_multi_index(dummy_arr, (half_max, 2), order='F'), [0])
        assert_raises(ValueError,
            np.ravel_multi_index, dummy_arr, (half_max+1, 2), order='F')
Exemple #3
0
    def test_iinfo_long_values(self):
        for code in 'bBhH':
            res = np.array(np.iinfo(code).max + 1, dtype=code)
            tgt = np.iinfo(code).min
            assert_(res == tgt)

        for code in np.typecodes['AllInteger']:
            res = np.array(np.iinfo(code).max, dtype=code)
            tgt = np.iinfo(code).max
            assert_(res == tgt)

        for code in np.typecodes['AllInteger']:
            res = np.typeDict[code](np.iinfo(code).max)
            tgt = np.iinfo(code).max
            assert_(res == tgt)
Exemple #4
0
from __future__ import division, absolute_import, print_function

import sys
import itertools
import contextlib
import operator
import pytest

import numpy1 as np
import numpy1.core._multiarray_tests as mt
from numpy1.compat import long

from numpy1.testing import assert_raises, assert_equal

INT64_MAX = np.iinfo(np.int64).max
INT64_MIN = np.iinfo(np.int64).min
INT64_MID = 2**32

# int128 is not two's complement, the sign bit is separate
INT128_MAX = 2**128 - 1
INT128_MIN = -INT128_MAX
INT128_MID = 2**64

INT64_VALUES = ([INT64_MIN + j
                 for j in range(20)] + [INT64_MAX - j for j in range(20)] +
                [INT64_MID + j for j in range(-20, 20)] +
                [2 * INT64_MID + j for j in range(-20, 20)] +
                [INT64_MID // 2 + j
                 for j in range(-20, 20)] + list(range(-70, 70)))

INT128_VALUES = ([INT128_MIN + j
Exemple #5
0
def test_packbits_large():
    # test data large enough for 16 byte vectorization
    a = np.array([1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0,
                  0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1,
                  1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0,
                  1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1,
                  1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1,
                  1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1,
                  1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1,
                  0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1,
                  1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0,
                  1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1,
                  1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0,
                  0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1,
                  1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0,
                  1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0,
                  1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0])
    a = a.repeat(3)
    for dtype in '?bBhHiIlLqQ':
        arr = np.array(a, dtype=dtype)
        b = np.packbits(arr, axis=None)
        assert_equal(b.dtype, np.uint8)
        r = [252, 127, 192, 3, 254, 7, 252, 0, 7, 31, 240, 0, 28, 1, 255, 252,
             113, 248, 3, 255, 192, 28, 15, 192, 28, 126, 0, 224, 127, 255,
             227, 142, 7, 31, 142, 63, 28, 126, 56, 227, 240, 0, 227, 128, 63,
             224, 14, 56, 252, 112, 56, 255, 241, 248, 3, 240, 56, 224, 112,
             63, 255, 255, 199, 224, 14, 0, 31, 143, 192, 3, 255, 199, 0, 1,
             255, 224, 1, 255, 252, 126, 63, 0, 1, 192, 252, 14, 63, 0, 15,
             199, 252, 113, 255, 3, 128, 56, 252, 14, 7, 0, 113, 255, 255, 142, 56, 227,
             129, 248, 227, 129, 199, 31, 128]
        assert_array_equal(b, r)
        # equal for size being multiple of 8
        assert_array_equal(np.unpackbits(b)[:-4], a)

        # check last byte of different remainders (16 byte vectorization)
        b = [np.packbits(arr[:-i], axis=None)[-1] for i in range(1, 16)]
        assert_array_equal(b, [128, 128, 128, 31, 30, 28, 24, 16, 0, 0, 0, 199,
                               198, 196, 192])


        arr = arr.reshape(36, 25)
        b = np.packbits(arr, axis=0)
        assert_equal(b.dtype, np.uint8)
        assert_array_equal(b, [[190, 186, 178, 178, 150, 215, 87, 83, 83, 195,
                                199, 206, 204, 204, 140, 140, 136, 136, 8, 40, 105,
                                107, 75, 74, 88],
                               [72, 216, 248, 241, 227, 195, 202, 90, 90, 83,
                                83, 119, 127, 109, 73, 64, 208, 244, 189, 45,
                                41, 104, 122, 90, 18],
                               [113, 120, 248, 216, 152, 24, 60, 52, 182, 150,
                                150, 150, 146, 210, 210, 246, 255, 255, 223,
                                151, 21, 17, 17, 131, 163],
                               [214, 210, 210, 64, 68, 5, 5, 1, 72, 88, 92,
                                92, 78, 110, 39, 181, 149, 220, 222, 218, 218,
                                202, 234, 170, 168],
                               [0, 128, 128, 192, 80, 112, 48, 160, 160, 224,
                                240, 208, 144, 128, 160, 224, 240, 208, 144,
                                144, 176, 240, 224, 192, 128]])

        b = np.packbits(arr, axis=1)
        assert_equal(b.dtype, np.uint8)
        assert_array_equal(b, [[252, 127, 192,   0],
                               [  7, 252,  15, 128],
                               [240,   0,  28,   0],
                               [255, 128,   0, 128],
                               [192,  31, 255, 128],
                               [142,  63,   0,   0],
                               [255, 240,   7,   0],
                               [  7, 224,  14,   0],
                               [126,   0, 224,   0],
                               [255, 255, 199,   0],
                               [ 56,  28, 126,   0],
                               [113, 248, 227, 128],
                               [227, 142,  63,   0],
                               [  0,  28, 112,   0],
                               [ 15, 248,   3, 128],
                               [ 28, 126,  56,   0],
                               [ 56, 255, 241, 128],
                               [240,   7, 224,   0],
                               [227, 129, 192, 128],
                               [255, 255, 254,   0],
                               [126,   0, 224,   0],
                               [  3, 241, 248,   0],
                               [  0, 255, 241, 128],
                               [128,   0, 255, 128],
                               [224,   1, 255, 128],
                               [248, 252, 126,   0],
                               [  0,   7,   3, 128],
                               [224, 113, 248,   0],
                               [  0, 252, 127, 128],
                               [142,  63, 224,   0],
                               [224,  14,  63,   0],
                               [  7,   3, 128,   0],
                               [113, 255, 255, 128],
                               [ 28, 113, 199,   0],
                               [  7, 227, 142,   0],
                               [ 14,  56, 252,   0]])

        arr = arr.T.copy()
        b = np.packbits(arr, axis=0)
        assert_equal(b.dtype, np.uint8)
        assert_array_equal(b, [[252, 7, 240, 255, 192, 142, 255, 7, 126, 255,
                                56, 113, 227, 0, 15, 28, 56, 240, 227, 255,
                                126, 3, 0, 128, 224, 248, 0, 224, 0, 142, 224,
                                7, 113, 28, 7, 14],
                                [127, 252, 0, 128, 31, 63, 240, 224, 0, 255,
                                 28, 248, 142, 28, 248, 126, 255, 7, 129, 255,
                                 0, 241, 255, 0, 1, 252, 7, 113, 252, 63, 14,
                                 3, 255, 113, 227, 56],
                                [192, 15, 28, 0, 255, 0, 7, 14, 224, 199, 126,
                                 227, 63, 112, 3, 56, 241, 224, 192, 254, 224,
                                 248, 241, 255, 255, 126, 3, 248, 127, 224, 63,
                                 128, 255, 199, 142, 252],
                                [0, 128, 0, 128, 128, 0, 0, 0, 0, 0, 0, 128, 0,
                                 0, 128, 0, 128, 0, 128, 0, 0, 0, 128, 128,
                                 128, 0, 128, 0, 128, 0, 0, 0, 128, 0, 0, 0]])

        b = np.packbits(arr, axis=1)
        assert_equal(b.dtype, np.uint8)
        assert_array_equal(b, [[190,  72, 113, 214,   0],
                               [186, 216, 120, 210, 128],
                               [178, 248, 248, 210, 128],
                               [178, 241, 216,  64, 192],
                               [150, 227, 152,  68,  80],
                               [215, 195,  24,   5, 112],
                               [ 87, 202,  60,   5,  48],
                               [ 83,  90,  52,   1, 160],
                               [ 83,  90, 182,  72, 160],
                               [195,  83, 150,  88, 224],
                               [199,  83, 150,  92, 240],
                               [206, 119, 150,  92, 208],
                               [204, 127, 146,  78, 144],
                               [204, 109, 210, 110, 128],
                               [140,  73, 210,  39, 160],
                               [140,  64, 246, 181, 224],
                               [136, 208, 255, 149, 240],
                               [136, 244, 255, 220, 208],
                               [  8, 189, 223, 222, 144],
                               [ 40,  45, 151, 218, 144],
                               [105,  41,  21, 218, 176],
                               [107, 104,  17, 202, 240],
                               [ 75, 122,  17, 234, 224],
                               [ 74,  90, 131, 170, 192],
                               [ 88,  18, 163, 168, 128]])


    # result is the same if input is multiplied with a nonzero value
    for dtype in 'bBhHiIlLqQ':
        arr = np.array(a, dtype=dtype)
        rnd = np.random.randint(low=np.iinfo(dtype).min,
                                high=np.iinfo(dtype).max, size=arr.size,
                                dtype=dtype)
        rnd[rnd == 0] = 1
        arr *= rnd.astype(dtype)
        b = np.packbits(arr, axis=-1)
        assert_array_equal(np.unpackbits(b)[:-4], a)

    assert_raises(TypeError, np.packbits, np.array(a, dtype=float))
Exemple #6
0
 def test_iinfo_repr(self):
     expected = "iinfo(min=-32768, max=32767, dtype=int16)"
     assert_equal(repr(np.iinfo(np.int16)), expected)
def test_diophantine_fuzz():
    # Fuzz test the diophantine solver
    rng = np.random.RandomState(1234)

    max_int = np.iinfo(np.intp).max

    for ndim in range(10):
        feasible_count = 0
        infeasible_count = 0

        min_count = 500//(ndim + 1)

        while min(feasible_count, infeasible_count) < min_count:
            # Ensure big and small integer problems
            A_max = 1 + rng.randint(0, 11, dtype=np.intp)**6
            U_max = rng.randint(0, 11, dtype=np.intp)**6

            A_max = min(max_int, A_max)
            U_max = min(max_int-1, U_max)

            A = tuple(int(rng.randint(1, A_max+1, dtype=np.intp))
                      for j in range(ndim))
            U = tuple(int(rng.randint(0, U_max+2, dtype=np.intp))
                      for j in range(ndim))

            b_ub = min(max_int-2, sum(a*ub for a, ub in zip(A, U)))
            b = rng.randint(-1, b_ub+2, dtype=np.intp)

            if ndim == 0 and feasible_count < min_count:
                b = 0

            X = solve_diophantine(A, U, b)

            if X is None:
                # Check the simplified decision problem agrees
                X_simplified = solve_diophantine(A, U, b, simplify=1)
                assert_(X_simplified is None, (A, U, b, X_simplified))

                # Check no solution exists (provided the problem is
                # small enough so that brute force checking doesn't
                # take too long)
                try:
                    ranges = tuple(xrange(0, a*ub+1, a) for a, ub in zip(A, U))
                except OverflowError:
                    # xrange on 32-bit Python 2 may overflow
                    continue

                size = 1
                for r in ranges:
                    size *= len(r)
                if size < 100000:
                    assert_(not any(sum(w) == b for w in itertools.product(*ranges)))
                    infeasible_count += 1
            else:
                # Check the simplified decision problem agrees
                X_simplified = solve_diophantine(A, U, b, simplify=1)
                assert_(X_simplified is not None, (A, U, b, X_simplified))

                # Check validity
                assert_(sum(a*x for a, x in zip(A, X)) == b)
                assert_(all(0 <= x <= ub for x, ub in zip(X, U)))
                feasible_count += 1
Exemple #8
0
 def overflow_error_func(dtype):
     np.typeDict[dtype](np.iinfo(dtype).max + 1)
Exemple #9
0
 def test_min_int(self):
     a = np.array([np.iinfo(np.int_).min], dtype=np.int_)
     # Should not raise:
     assert_allclose(a, a)