def SingleParticleNewtonianForce(self, i, soi_radius, collision_radius): forces = np.zeros([self.Nparticles,2]) if self.collisions == {}: keynum = 0 else: keynum = max(self.collisions) x1 = self.state[i,0,0] y1 = self.state[i,0,1] newkey = (x1,y1) m1 = self.masses[i] for particle_num in xrange(self.Nparticles): if particle_num != i: m2 = self.masses[particle_num] x2 = self.state[particle_num,0,0] y2 = self.state[particle_num,0,1] distance2 = ((x2-x1)**2+(y2-y1)**2) if distance2 < soi_radius: jforce = m2/distance2 jforcedir = [x2-x1,y2-y1]/np.sqrt(distance2) forces[particle_num] = jforce*jforcedir if distance2 < collision_radius: for key in self.collisions: if i not in self.collisions[key][1] or particle_num not in self.collisions[key][1]: self.collisions[keynum] = [(x1,y1),[i,particle_num]] return(np.sum(forces,axis=0))
def plot_rd(self): r_arr = np.ndarray(self.nsteps) rd_arr = np.ndarray(self.nsteps) n=1 for fname in self.fname_list: wholedata = fits.open(fname) for i in xrange(1,len(wholedata)): data = wholedata[i].data r = np.mean(np.sqrt(data['X']**2+data['Y']**2)) r_arr[n] = r rd = (1/r)*(data['X']*data['Xd']+data['Y']*data['Yd']) rd_arr[n] = np.mean(rd) n+=1 print(fname) r_arr = r_arr/r_arr[0] plt.plot(r_arr,linewidth=2,color='black') plt.xlabel(r'Timestep') plt.ylabel(r'$\frac{<r>}{<r_0>}$',fontsize=16) plt.show() plt.plot(rd_arr,linewidth=2,color='black') plt.xlabel(r'Timestep') plt.ylabel(r'$<\dot{r}>$',fontsize=16) plt.show()
def get_event_horizon(self,t): return(self.M + np.sqrt(self.M**2 - self.a(t)**2))
def SingleParticleNewtonianForce(self, i, soi_radius, collision_radius): forces = np.zeros([self.Nparticles,2]) x1 = self.state[i,0,0] y1 = self.state[i,0,1] m1 = self.masses[i] collided1 = 0 if self.interaction=='ClassicalNBody': xmin = x1-soi_radius xmax = x1+soi_radius ymin = y1-soi_radius ymax = y1+soi_radius sliced_indices_x = np.where(np.logical_and(self.state[:,0,0]>xmin,self.state[:,0,0]<xmax)) sliced_indices_y = np.where(np.logical_and(self.state[:,0,1]>ymin,self.state[:,0,1]<ymax)) sliced_indices = np.intersect1d(sliced_indices_x,sliced_indices_y) sliced_arr = self.state[sliced_indices] no_i_indices = np.where(np.logical_and(sliced_arr[:,0,0] == x1,sliced_arr[:,0,1]==y1)) sliced_arr = np.delete(sliced_arr,no_i_indices,axis=0) sliced_masses = self.masses[sliced_indices] sliced_masses = np.delete(sliced_masses,no_i_indices,axis=0) distances2 = np.array(np.transpose(np.matrix((sliced_arr[:,0,0]-x1)**2+(sliced_arr[:,0,1]-y1)**2))) jforce = np.array(np.transpose(np.matrix(sliced_masses)))/distances2 jforcedir = np.array(np.transpose(np.matrix([sliced_arr[:,0,0]-x1,sliced_arr[:,0,1]-y1])))/np.sqrt(distances2) forces = jforce*jforcedir for particle_num in xrange(self.Nparticles): if particle_num != i: collided2 = 0 m2 = self.masses[particle_num] x2 = self.state[particle_num,0,0] y2 = self.state[particle_num,0,1] distance2 = ((x2-x1)**2+(y2-y1)**2) """ if the collision dict is empty, put in the two particles being evaluated. if it's not empty, first search to see if the main particle is in there if the main particle is in there, move on to the secondary if the secondary particle is not in there, put it in the entry with the main particle """ if self.Nparticles == 2: if distance2>500000: print('\n',distance2) print(self.state) raise ValueError("it f****d the duck") elif self.Nparticles == 1: raise ValueError("it shit the bed") if self.collisions != False and i not in self.cleanup and particle_num not in self.cleanup: if distance2 < collision_radius: if self.collision_dict == {}: self.collision_dict[0] = [(x1,y1),[i,particle_num]] else: i_val = farts.dict_check(self.collision_dict, i) keynum = max(self.collision_dict)+1 if i_val == -1: self.collision_dict[keynum] = [(x1,y1),[i]] i_val = keynum elif farts.dict_check(self.collision_dict, particle_num) == -1: self.collision_dict[i_val][1].append(particle_num) return(np.sum(forces,axis=0))