Exemple #1
0
def test_rsolve():
    random = RandomState(0)
    A = random.randn(1, 1)
    b = random.randn(1)

    assert_allclose(solve(A, b), npy_solve(A, b))

    A = random.randn(2, 2)
    b = random.randn(2)

    assert_allclose(solve(A, b), npy_solve(A, b))

    A = random.randn(3, 3)
    b = random.randn(3)

    assert_allclose(rsolve(A, b), npy_solve(A, b))

    A[:] = 1e-10
    assert_allclose(rsolve(A, b), zeros(A.shape[1]))

    A = zeros((0, 0))
    b = zeros((0, ))
    assert_(rsolve(A, b).ndim == 1)
    assert_(rsolve(A, b).shape[0] == 0)

    A = zeros((0, 1))
    b = zeros((0, ))
    assert_(rsolve(A, b).ndim == 1)
    assert_(rsolve(A, b).shape[0] == 1)
Exemple #2
0
def test_solve_raise():
    A = array([[2.05036632, 2.05036632], [2.05036632, 2.05036632]])

    b = array([0.11260227, 0.11260227])

    with pytest.raises(LinAlgError):
        solve(A, b)

    A = array([[0.0]])
    b = array([1.0])
    with pytest.raises(LinAlgError):
        solve(A, b)
Exemple #3
0
def test_solve():
    random = RandomState(0)
    A = random.randn(1, 1)
    b = random.randn(1)

    assert_allclose(solve(A, b), npy_solve(A, b))

    A = random.randn(2, 2)
    b = random.randn(2)

    assert_allclose(solve(A, b), npy_solve(A, b))

    A = random.randn(3, 3)
    b = random.randn(3)

    assert_allclose(solve(A, b), npy_solve(A, b))
Exemple #4
0
    def _optimal_tbeta(self):
        self._update()

        if all(abs(self._M) < 1e-15):
            return zeros_like(self._tbeta)

        u = dot(self._tM.T, self._optimal_beta_nom())
        Z = self._optimal_tbeta_denom()

        try:
            with errstate(all='raise'):
                self._tbeta = solve(Z, u)

        except (LinAlgError, FloatingPointError):
            self._logger.warning('Failed to compute the optimal beta.' +
                                 ' Zeroing it.')
            self.__tbeta[:] = 0.

        return self.__tbeta
Exemple #5
0
 def _update_fixed_effects(self):
     nominator = self._b1 - self._b0
     denominator = self._c1 - self._c0
     self._tbeta = solve(denominator, nominator)
Exemple #6
0
 def beta(self):
     r"""Returns :math:`\boldsymbol\beta`."""
     return solve(self._svd_V.T, self._tbeta / self._svd_S12)
Exemple #7
0
    def fast_scan(self, markers):
        r"""LMLs of markers by fitting scale and fixed-effect sizes parameters.

        The likelihood is given by

        .. math::

            \mathcal N\big(~\mathbf y ~|~ \boldsymbol\beta^{\intercal}
            [\mathrm M ~~ \tilde{\mathrm M}],  s \mathrm K~\big),

        where :math:`s` is the scale parameter and :math:`\boldsymbol\beta` is the
        fixed-effect sizes; :math:`\tilde{\mathrm M}` is a marker to be scanned.
        """

        assert markers.ndim == 2

        nc = self.M.shape[1]
        M = self.M

        MTQ0 = dot(M.T, self.Q0)
        mTQ0 = dot(markers.T, self.Q0)

        MTQ1 = dot(M.T, self.Q1)
        mTQ1 = dot(markers.T, self.Q1)

        yTQ0diag0 = self.yTQ0 / self.diag0
        yTQ1diag1 = self.yTQ1 / self.diag1

        b0 = yTQ0diag0.dot(MTQ0.T)
        b0m = yTQ0diag0.dot(mTQ0.T)

        MTQ0diag0 = MTQ0 / self.diag0
        MTQ1diag1 = MTQ1 / self.diag1

        c0_00 = MTQ0diag0.dot(MTQ0.T)
        c0_01 = MTQ0diag0.dot(mTQ0.T)
        c0_11 = sum((mTQ0 / self.diag0) * mTQ0, axis=1)

        b1 = yTQ1diag1.dot(MTQ1.T)
        b1m = yTQ1diag1.dot(mTQ1.T)

        c1_00 = MTQ1diag1.dot(MTQ1.T)
        c1_01 = MTQ1diag1.dot(mTQ1.T)
        c1_11 = sum((mTQ1 / self.diag1) * mTQ1, axis=1)

        C0 = empty((nc + 1, nc + 1))
        C0[:-1, :-1] = c0_00

        C1 = empty((nc + 1, nc + 1))
        C1[:-1, :-1] = c1_00

        n = markers.shape[0]
        lmls = empty(markers.shape[1])
        effect_sizes = empty(markers.shape[1])

        LOG2PI = 1.837877066409345339081937709124758839607238769531250
        lmls[:] = -n * LOG2PI - n
        lmls[:] += -sum(log(self.diag0)) - (n - len(self.diag0)) * log(
            self.diag1)

        for i in range(markers.shape[1]):

            b11m = append(b1, b1m[i])
            b00m = append(b0, b0m[i])

            nominator = b11m - b00m

            C0[:-1, -1] = c0_01[:, i]
            C1[:-1, -1] = c1_01[:, i]

            C0[-1, :-1] = C0[:-1, -1]
            C1[-1, :-1] = C1[:-1, -1]

            C0[-1, -1] = c0_11[i]
            C1[-1, -1] = c1_11[i]

            denominator = C1 - C0

            beta = solve(denominator, nominator)
            effect_sizes[i] = beta[-1]

            p0 = self.a1 - 2 * b11m.dot(beta) + beta.dot(C1.dot(beta))
            p1 = self.a0 - 2 * b00m.dot(beta) + beta.dot(C0).dot(beta)

            scale = (p0 + p1) / n

            lmls[i] -= n * log(scale)

        lmls /= 2
        return lmls, effect_sizes