Exemple #1
0
    def evaluate(self, dataset):
        rows, cols, vals = dataset.find(self._app)
        
        u = self.U[:, rows]
        v = self.V[:, cols]
        predictions = u * v
        q = nps.sum(predictions, axis=0)

        return mean_squared_error(q.get(), vals.get(), squared=False)
Exemple #2
0
def example(max_iters, batch_size):

    app = am.instance()
    model = LogisticRegression(app=app,
                               cluster_shape=(1, 1),
                               fit_intercept=False)
    X, y = sample(app, sample_size=8)
    model.init(X)

    for i in range(max_iters):
        # Take a step.
        X, y = sample(app, batch_size)
        model.partial_fit(X, y)
        print("train accuracy",
              (nps.sum(y == model.predict(X)) / X.shape[0]).get())
import nums
import nums.numpy as nps
from nums.models.glms import LogisticRegression

nums.init()

# Make dataset.

X1 = nps.random.randn(500, 1) + 5.0
y1 = nps.zeros(shape=(500, ), dtype=bool)

X2 = nps.random.randn(500, 1) + 10.0
y2 = nps.ones(shape=(500, ), dtype=bool)

X = nps.concatenate([X1, X2], axis=0)
y = nps.concatenate([y1, y2], axis=0)

# Train Logistic Regression Model.

model = LogisticRegression(solver="newton", tol=1e-8, max_iter=1)

model.fit(X, y)
y_pred = model.predict(X)

print("accuracy", (nps.sum(y == y_pred) / X.shape[0]).get())