def runTMtrainingPhase(experiment):

    # Train only the Temporal Memory on the generated sequences
    if trainingPasses > 0:

        print "\nTraining Temporal Memory..."
        if consoleVerbosity > 0:
            print "\nPass\tBursting Columns Mean\tStdDev\tMax"

        for i in xrange(trainingPasses):
            experiment.runNetworkOnSequences(
                generatedSequences,
                labeledSequences,
                tmLearn=True,
                upLearn=None,
                verbosity=consoleVerbosity,
                progressInterval=_SHOW_PROGRESS_INTERVAL)

            if consoleVerbosity > 0:
                stats = experiment.getBurstingColumnsStats()
                print "{0}\t{1}\t{2}\t{3}".format(i, stats[0], stats[1],
                                                  stats[2])

            # Reset the TM monitor mixin's records accrued during this training pass
            # experiment.tm.mmClearHistory()

        print
        print MonitorMixinBase.mmPrettyPrintMetrics(
            experiment.tm.mmGetDefaultMetrics())
        print
def runTMtrainingPhase(experiment):

  # Train only the Temporal Memory on the generated sequences
  if trainingPasses > 0:

    print "\nTraining Temporal Memory..."
    if consoleVerbosity > 0:
      print "\nPass\tBursting Columns Mean\tStdDev\tMax"

    for i in xrange(trainingPasses):
      experiment.runNetworkOnSequences(generatedSequences,
                                       labeledSequences,
                                       tmLearn=True,
                                       upLearn=None,
                                       verbosity=consoleVerbosity,
                                       progressInterval=_SHOW_PROGRESS_INTERVAL)

      if consoleVerbosity > 0:
        stats = experiment.getBurstingColumnsStats()
        print "{0}\t{1}\t{2}\t{3}".format(i, stats[0], stats[1], stats[2])

      # Reset the TM monitor mixin's records accrued during this training pass
      # experiment.tm.mmClearHistory()

    print
    print MonitorMixinBase.mmPrettyPrintMetrics(
      experiment.tm.mmGetDefaultMetrics())
    print
def trainTwoPass(runner, exhaustiveAgents, completeSequenceLength, verbosity):
    print "Training temporal memory..."
    sequences = runner.generateSequences(completeSequenceLength *
                                         TWOPASS_TM_TRAINING_REPS,
                                         exhaustiveAgents,
                                         verbosity=verbosity)
    runner.feedLayers(sequences,
                      tmLearn=True,
                      tpLearn=False,
                      verbosity=verbosity,
                      showProgressInterval=SHOW_PROGRESS_INTERVAL)
    print
    print MonitorMixinBase.mmPrettyPrintMetrics(
        runner.tp.mmGetDefaultMetrics() + runner.tm.mmGetDefaultMetrics())
    print
    print "Training temporal pooler..."

    runner.tm.mmClearHistory()
    runner.tp.mmClearHistory()
    sequences = runner.generateSequences(completeSequenceLength *
                                         TWOPASS_TP_TRAINING_REPS,
                                         exhaustiveAgents,
                                         verbosity=verbosity)
    runner.feedLayers(sequences,
                      tmLearn=False,
                      tpLearn=True,
                      verbosity=verbosity,
                      showProgressInterval=SHOW_PROGRESS_INTERVAL)
    print
    print MonitorMixinBase.mmPrettyPrintMetrics(
        runner.tp.mmGetDefaultMetrics() + runner.tm.mmGetDefaultMetrics())
    print
def runTestPhase(runner, randomAgents, numWorlds, numElements,
                 completeSequenceLength, verbosity):
    print "Testing (worlds: {0}, elements: {1})...".format(
        numWorlds, numElements)
    runner.tm.mmClearHistory()
    runner.tp.mmClearHistory()
    sequences = runner.generateSequences(completeSequenceLength /
                                         NUM_TEST_SEQUENCES,
                                         randomAgents,
                                         verbosity=verbosity,
                                         numSequences=NUM_TEST_SEQUENCES)
    runner.feedLayers(sequences,
                      tmLearn=False,
                      tpLearn=False,
                      verbosity=verbosity,
                      showProgressInterval=SHOW_PROGRESS_INTERVAL)
    print "Done testing.\n"
    if verbosity >= 2:
        print "Overlap:"
        print
        print runner.tp.mmPrettyPrintDataOverlap()
        print
    print MonitorMixinBase.mmPrettyPrintMetrics(
        runner.tp.mmGetDefaultMetrics() + runner.tm.mmGetDefaultMetrics())
    print
Exemple #5
0
def trainTwoPass(runner, exhaustiveAgents, completeSequenceLength, verbosity):
  print "Training temporal memory..."
  sequences = runner.generateSequences(completeSequenceLength *
                                       TWOPASS_TM_TRAINING_REPS,
                                       exhaustiveAgents,
                                       verbosity=verbosity)
  runner.feedLayers(sequences, tmLearn=True, tpLearn=False,
                    verbosity=verbosity,
                    showProgressInterval=SHOW_PROGRESS_INTERVAL)
  print
  print MonitorMixinBase.mmPrettyPrintMetrics(runner.tp.mmGetDefaultMetrics() +
                                              runner.tm.mmGetDefaultMetrics())
  print
  print "Training temporal pooler..."

  runner.tm.mmClearHistory()
  runner.tp.mmClearHistory()

  sequences = runner.generateSequences(completeSequenceLength *
                                       TWOPASS_TP_TRAINING_REPS,
                                       exhaustiveAgents,
                                       verbosity=verbosity)
  runner.feedLayers(sequences, tmLearn=False, tpLearn=True,
                    verbosity=verbosity,
                    showProgressInterval=SHOW_PROGRESS_INTERVAL)
  print
  print MonitorMixinBase.mmPrettyPrintMetrics(runner.tp.mmGetDefaultMetrics() +
                                              runner.tm.mmGetDefaultMetrics())
  print
Exemple #6
0
def trainTemporalMemory(experiment, inputSequences, inputCategories,
                        trainingPasses, consoleVerbosity):
    burstingColsString = ""
    for i in xrange(trainingPasses):
        experiment.runNetworkOnSequences(
            inputSequences,
            inputCategories,
            tmLearn=True,
            upLearn=None,
            classifierLearn=False,
            verbosity=consoleVerbosity,
            progressInterval=_SHOW_PROGRESS_INTERVAL)

        if consoleVerbosity > 1:
            print
            print MonitorMixinBase.mmPrettyPrintMetrics(
                experiment.tm.mmGetDefaultMetrics())
            print
        stats = experiment.getBurstingColumnsStats()
        burstingColsString += "{0}\t{1}\t{2}\t{3}\n".format(
            i, stats[0], stats[1], stats[2])

        experiment.tm.mmClearHistory()
        experiment.up.mmClearHistory()

    if consoleVerbosity > 0:
        print "\nTemporal Memory Bursting Columns stats..."
        print "Pass\tMean\t\tStdDev\t\tMax"
        print burstingColsString
def trainTemporalMemory(experiment, inputSequences, inputCategories,
                        trainingPasses, consoleVerbosity):
  burstingColsString = ""
  for i in xrange(trainingPasses):
    experiment.runNetworkOnSequences(inputSequences,
                                     inputCategories,
                                     tmLearn=True,
                                     upLearn=None,
                                     classifierLearn=False,
                                     verbosity=consoleVerbosity,
                                     progressInterval=_SHOW_PROGRESS_INTERVAL)

    if consoleVerbosity > 1:
      print
      print MonitorMixinBase.mmPrettyPrintMetrics(
        experiment.tm.mmGetDefaultMetrics())
      print
    stats = experiment.getBurstingColumnsStats()
    burstingColsString += "{0}\t{1}\t{2}\t{3}\n".format(i, stats[0], stats[1],
                                                        stats[2])

    experiment.tm.mmClearHistory()
    experiment.up.mmClearHistory()

  if consoleVerbosity > 0:
    print "\nTemporal Memory Bursting Columns stats..."
    print "Pass\tMean\t\tStdDev\t\tMax"
    print burstingColsString
    def _printInfo(self):
        if VERBOSITY >= 2:
            print MonitorMixinBase.mmPrettyPrintTraces(
                self.tp.mmGetDefaultTraces(verbosity=3) +
                self.tm.mmGetDefaultTraces(verbosity=3),
                breakOnResets=self.tm.mmGetTraceResets())
            print

        if VERBOSITY >= 1:
            print MonitorMixinBase.mmPrettyPrintMetrics(
                self.tp.mmGetDefaultMetrics() + self.tm.mmGetDefaultMetrics())
            print
Exemple #9
0
  def feedLayers(self, sequences, tmLearn=True, tpLearn=None, verbosity=0,
                 showProgressInterval=None):
    """
    Feed the given sequences to the HTM algorithms.

    @param tmLearn:   (bool)      Either False, or True
    @param tpLearn:   (None,bool) Either None, False, or True. If None,
                                  temporal pooler will be skipped.

    @param showProgressInterval: (int) Prints progress every N iterations,
                                       where N is the value of this param
    """
    (sensorSequence,
     motorSequence,
     sensorimotorSequence,
     sequenceLabels) = sequences

    currentTime = time.time()

    for i in xrange(len(sensorSequence)):
      sensorPattern = sensorSequence[i]
      motorPattern = motorSequence[i]
      sensorimotorPattern = sensorimotorSequence[i]
      sequenceLabel = sequenceLabels[i]

      self.feedTransition(sensorPattern, motorPattern, sensorimotorPattern,
                          tmLearn=tmLearn, tpLearn=tpLearn,
                          sequenceLabel=sequenceLabel)

      if (showProgressInterval is not None and
          i > 0 and
          i % showProgressInterval == 0):
        print ("Fed {0} / {1} elements of the sequence "
               "in {2:0.2f} seconds.".format(
                 i, len(sensorSequence), time.time() - currentTime))
        currentTime = time.time()

    if verbosity >= 2:
      # Print default TM traces
      traces = self.tm.mmGetDefaultTraces(verbosity=verbosity)
      print MonitorMixinBase.mmPrettyPrintTraces(traces,
                                                 breakOnResets=
                                                 self.tm.mmGetTraceResets())

      if tpLearn is not None:
        # Print default TP traces
        traces = self.tp.mmGetDefaultTraces(verbosity=verbosity)
        print MonitorMixinBase.mmPrettyPrintTraces(traces,
                                                   breakOnResets=
                                                   self.tp.mmGetTraceResets())
      print
Exemple #10
0
def trainOnline(runner, exhaustiveAgents, completeSequenceLength,
                trainingRepetitions, verbosity):
  print "Training temporal memory and temporal pooler..."
  sequences = runner.generateSequences(completeSequenceLength *
                                       trainingRepetitions,
                                       exhaustiveAgents,
                                       verbosity=verbosity)
  runner.feedLayers(sequences, tmLearn=True, tpLearn=True,
                    verbosity=verbosity,
                    showProgressInterval=SHOW_PROGRESS_INTERVAL)
  print
  print MonitorMixinBase.mmPrettyPrintMetrics(runner.tp.mmGetDefaultMetrics() +
                                              runner.tm.mmGetDefaultMetrics())
  print
def trainOnline(runner, exhaustiveAgents, completeSequenceLength, reps,
                verbosity):
    print "Training temporal memory and temporal pooler..."
    sequences = runner.generateSequences(completeSequenceLength * reps,
                                         exhaustiveAgents,
                                         verbosity=verbosity)
    runner.feedLayers(sequences,
                      tmLearn=True,
                      tpLearn=True,
                      verbosity=verbosity,
                      showProgressInterval=SHOW_PROGRESS_INTERVAL)
    print
    print MonitorMixinBase.mmPrettyPrintMetrics(
        runner.tp.mmGetDefaultMetrics() + runner.tm.mmGetDefaultMetrics())
    print
def runTestPhase(runner, randomAgents, numWorlds, numElements,
                 completeSequenceLength, verbosity):
  print "Testing (worlds: {0}, elements: {1})...".format(numWorlds, numElements)
  runner.tm.mmClearHistory()
  runner.tp.mmClearHistory()
  sequences = runner.generateSequences(completeSequenceLength /
                                       NUM_TEST_SEQUENCES,
                                       randomAgents, verbosity=verbosity,
                                       numSequences=NUM_TEST_SEQUENCES)
  runner.feedLayers(sequences, tmLearn=False, tpLearn=False,
                    verbosity=verbosity,
                    showProgressInterval=SHOW_PROGRESS_INTERVAL)
  print "Done testing.\n"
  if verbosity >= 2:
    print "Overlap:"
    print
    print runner.tp.mmPrettyPrintDataOverlap()
    print
  print MonitorMixinBase.mmPrettyPrintMetrics(
    runner.tp.mmGetDefaultMetrics() + runner.tm.mmGetDefaultMetrics())
  print
  def runNetworkOnSequences(self, inputSequences, inputCategories, tmLearn=True,
                            upLearn=None, classifierLearn=False, verbosity=0,
                            progressInterval=None):
    """
    Runs Union Temporal Pooler network on specified sequence.

    @param inputSequences           One or more sequences of input patterns.
                                    Each should be terminated with None.

    @param inputCategories          A sequence of category representations
                                    for each element in inputSequences
                                    Each should be terminated with None.

    @param tmLearn:   (bool)        Temporal Memory learning mode
    @param upLearn:   (None, bool)  Union Temporal Pooler learning mode. If None,
                                    Union Temporal Pooler will not be run.
    @param classifierLearn: (bool)  Classifier learning mode

    @param progressInterval: (int)  Interval of console progress updates
                                    in terms of timesteps.
    """

    currentTime = time.time()
    for i in xrange(len(inputSequences)):
      sensorPattern = inputSequences[i]
      inputCategory = inputCategories[i]

      self.runNetworkOnPattern(sensorPattern,
                               tmLearn=tmLearn,
                               upLearn=upLearn,
                               sequenceLabel=inputCategory)

      if classifierLearn and sensorPattern is not None:
        unionSDR = self.up.getUnionSDR()
        upCellCount = self.up.getColumnDimensions()
        self.classifier.learn(unionSDR, inputCategory, isSparse=upCellCount)
        if verbosity > 1:
          pprint.pprint("{0} is category {1}".format(unionSDR, inputCategory))

      if progressInterval is not None and i > 0 and i % progressInterval == 0:
        elapsed = (time.time() - currentTime) / 60.0
        print ("Ran {0} / {1} elements of sequence in "
               "{2:0.2f} minutes.".format(i, len(inputSequences), elapsed))
        currentTime = time.time()
        print MonitorMixinBase.mmPrettyPrintMetrics(
          self.tm.mmGetDefaultMetrics())

    if verbosity >= 2:
      traces = self.tm.mmGetDefaultTraces(verbosity=verbosity)
      print MonitorMixinBase.mmPrettyPrintTraces(traces,
                                                 breakOnResets=
                                                 self.tm.mmGetTraceResets())

      if upLearn is not None:
        traces = self.up.mmGetDefaultTraces(verbosity=verbosity)
        print MonitorMixinBase.mmPrettyPrintTraces(traces,
                                                   breakOnResets=
                                                   self.up.mmGetTraceResets())
      print
  def runNetworkOnSequences(self, inputSequences, inputCategories, tmLearn=True,
                            upLearn=None, classifierLearn=False, verbosity=0,
                            progressInterval=None):
    """
    Runs Union Temporal Pooler network on specified sequence.

    @param inputSequences           One or more sequences of input patterns.
                                    Each should be terminated with None.

    @param inputCategories          A sequence of category representations
                                    for each element in inputSequences
                                    Each should be terminated with None.

    @param tmLearn:   (bool)        Temporal Memory learning mode
    @param upLearn:   (None, bool)  Union Temporal Pooler learning mode. If None,
                                    Union Temporal Pooler will not be run.
    @param classifierLearn: (bool)  Classifier learning mode

    @param progressInterval: (int)  Interval of console progress updates
                                    in terms of timesteps.
    """

    currentTime = time.time()
    for i in xrange(len(inputSequences)):
      sensorPattern = inputSequences[i]
      inputCategory = inputCategories[i]

      self.runNetworkOnPattern(sensorPattern,
                               tmLearn=tmLearn,
                               upLearn=upLearn,
                               sequenceLabel=inputCategory)

      if classifierLearn and sensorPattern is not None:
        unionSDR = self.up.getUnionSDR()
        upCellCount = self.up.getColumnDimensions()
        self.classifier.learn(unionSDR, inputCategory, isSparse=upCellCount)
        if verbosity > 1:
          pprint.pprint("{0} is category {1}".format(unionSDR, inputCategory))

      if progressInterval is not None and i > 0 and i % progressInterval == 0:
        elapsed = (time.time() - currentTime) / 60.0
        print ("Ran {0} / {1} elements of sequence in "
               "{2:0.2f} minutes.".format(i, len(inputSequences), elapsed))
        currentTime = time.time()
        print MonitorMixinBase.mmPrettyPrintMetrics(
          self.tm.mmGetDefaultMetrics())

    if verbosity >= 2:
      traces = self.tm.mmGetDefaultTraces(verbosity=verbosity)
      print MonitorMixinBase.mmPrettyPrintTraces(traces,
                                                 breakOnResets=
                                                 self.tm.mmGetTraceResets())

      if upLearn is not None:
        traces = self.up.mmGetDefaultTraces(verbosity=verbosity)
        print MonitorMixinBase.mmPrettyPrintTraces(traces,
                                                   breakOnResets=
                                                   self.up.mmGetTraceResets())
      print
def experiment1():
  paramDir = 'params/1024_baseline/5_trainingPasses.yaml'
  outputDir = 'results/'
  params = yaml.safe_load(open(paramDir, 'r'))
  options = {'plotVerbosity': 2, 'consoleVerbosity': 2}
  plotVerbosity = 2
  consoleVerbosity = 1


  print "Running SDR overlap experiment...\n"
  print "Params dir: {0}".format(paramDir)
  print "Output dir: {0}\n".format(outputDir)

  # Dimensionality of sequence patterns
  patternDimensionality = params["patternDimensionality"]

  # Cardinality (ON / true bits) of sequence patterns
  patternCardinality = params["patternCardinality"]

  # TODO If this parameter is to be supported, the sequence generation code
  # below must change
  # Number of unique patterns from which sequences are built
  # patternAlphabetSize = params["patternAlphabetSize"]

  # Length of sequences shown to network
  sequenceLength = params["sequenceLength"]

  # Number of sequences used. Sequences may share common elements.
  numberOfSequences = params["numberOfSequences"]

  # Number of sequence passes for training the TM. Zero => no training.
  trainingPasses = params["trainingPasses"]

  tmParamOverrides = params["temporalMemoryParams"]
  upParamOverrides = params["unionPoolerParams"]

  # Generate a sequence list and an associated labeled list (both containing a
  # set of sequences separated by None)
  start = time.time()
  print "\nGenerating sequences..."
  patternAlphabetSize = sequenceLength * numberOfSequences
  patternMachine = PatternMachine(patternDimensionality, patternCardinality,
                                  patternAlphabetSize)
  sequenceMachine = SequenceMachine(patternMachine)

  numbers = sequenceMachine.generateNumbers(numberOfSequences, sequenceLength)
  generatedSequences = sequenceMachine.generateFromNumbers(numbers)
  sequenceLabels = [str(numbers[i + i*sequenceLength: i + (i+1)*sequenceLength])
                    for i in xrange(numberOfSequences)]
  labeledSequences = []
  for label in sequenceLabels:
    for _ in xrange(sequenceLength):
      labeledSequences.append(label)
    labeledSequences.append(None)

  # Set up the Temporal Memory and Union Pooler network
  print "\nCreating network..."
  experiment = UnionTemporalPoolerExperiment(tmParamOverrides, upParamOverrides)

  # Train only the Temporal Memory on the generated sequences
  if trainingPasses > 0:

    print "\nTraining Temporal Memory..."
    if consoleVerbosity > 0:
      print "\nPass\tBursting Columns Mean\tStdDev\tMax"

    for i in xrange(trainingPasses):
      experiment.runNetworkOnSequences(generatedSequences,
                                       labeledSequences,
                                       tmLearn=True,
                                       upLearn=None,
                                       verbosity=consoleVerbosity,
                                       progressInterval=_SHOW_PROGRESS_INTERVAL)

      if consoleVerbosity > 0:
        stats = experiment.getBurstingColumnsStats()
        print "{0}\t{1}\t{2}\t{3}".format(i, stats[0], stats[1], stats[2])

      # Reset the TM monitor mixin's records accrued during this training pass
      # experiment.tm.mmClearHistory()

    print
    print MonitorMixinBase.mmPrettyPrintMetrics(
      experiment.tm.mmGetDefaultMetrics())
    print


  experiment.tm.mmClearHistory()
  experiment.up.mmClearHistory()


  print "\nRunning test phase..."

  inputSequences = generatedSequences
  inputCategories = labeledSequences
  tmLearn = True
  upLearn = False
  classifierLearn = False
  currentTime = time.time()

  experiment.tm.reset()
  experiment.up.reset()

  poolingActivationTrace = numpy.zeros((experiment.up._numColumns, 1))
  activeCellsTrace = numpy.zeros((experiment.up._numColumns, 1))
  activeSPTrace = numpy.zeros((experiment.up._numColumns, 1))

  for _ in xrange(trainingPasses):
    experiment.tm.reset()
    for i in xrange(len(inputSequences)):
      sensorPattern = inputSequences[i]
      inputCategory = inputCategories[i]
      if sensorPattern is None:
        pass
      else:
        experiment.tm.compute(sensorPattern,
                        learn=tmLearn,
                        sequenceLabel=inputCategory)

        if upLearn is not None:
          activeCells, predActiveCells, burstingCols, = experiment.getUnionTemporalPoolerInput()
          experiment.up.compute(activeCells,
                          predActiveCells,
                          learn=upLearn,
                          sequenceLabel=inputCategory)

          currentPoolingActivation = experiment.up._poolingActivation

          currentPoolingActivation = experiment.up._poolingActivation.reshape((experiment.up._numColumns, 1))
          poolingActivationTrace = numpy.concatenate((poolingActivationTrace, currentPoolingActivation), 1)

          currentUnionSDR = numpy.zeros((experiment.up._numColumns, 1))
          currentUnionSDR[experiment.up._unionSDR] = 1
          activeCellsTrace = numpy.concatenate((activeCellsTrace, currentUnionSDR), 1)

          currentSPSDR = numpy.zeros((experiment.up._numColumns, 1))
          currentSPSDR[experiment.up._activeCells] = 1
          activeSPTrace = numpy.concatenate((activeSPTrace, currentSPSDR), 1)

    print "\nPass\tBursting Columns Mean\tStdDev\tMax"
    stats = experiment.getBurstingColumnsStats()
    print "{0}\t{1}\t{2}\t{3}".format(0, stats[0], stats[1], stats[2])
    print
    print MonitorMixinBase.mmPrettyPrintMetrics(\
        experiment.tm.mmGetDefaultMetrics() + experiment.up.mmGetDefaultMetrics())
    print
    experiment.tm.mmClearHistory()


  # estimate fraction of shared bits across adjacent time point
  unionSDRshared = experiment.up._mmComputeUnionSDRdiff()

  bitLifeList = experiment.up._mmComputeBitLifeStats()
  bitLife = numpy.array(bitLifeList)


  # Plot SP outputs, UP persistence and UP outputs in testing phase
  def showSequenceStartLine(ax, trainingPasses, sequenceLength):
    for i in xrange(trainingPasses):
      ax.vlines(i*sequenceLength, 0, 100, linestyles='--')

  plt.figure()
  ncolShow = 100
  f, (ax1, ax2, ax3) = plt.subplots(nrows=1,ncols=3)
  ax1.imshow(activeSPTrace[1:ncolShow,:], cmap=cm.Greys,interpolation="nearest",aspect='auto')
  showSequenceStartLine(ax1, trainingPasses, sequenceLength)
  ax1.set_title('SP SDR')
  ax1.set_ylabel('Columns')
  ax2.imshow(poolingActivationTrace[1:100,:], cmap=cm.Greys, interpolation="nearest",aspect='auto')
  showSequenceStartLine(ax2, trainingPasses, sequenceLength)
  ax2.set_title('Persistence')
  ax3.imshow(activeCellsTrace[1:ncolShow,:], cmap=cm.Greys, interpolation="nearest",aspect='auto')
  showSequenceStartLine(ax3, trainingPasses, sequenceLength)
  plt.title('Union SDR')

  ax2.set_xlabel('Time (steps)')

  pp = PdfPages('results/UnionPoolingOnLearnedTM_Experiment1.pdf')
  pp.savefig()
  pp.close()


  f, (ax1, ax2, ax3) = plt.subplots(nrows=3,ncols=1)
  ax1.plot((sum(activeCellsTrace))/experiment.up._numColumns*100)
  ax1.set_ylabel('Union SDR size (%)')
  ax1.set_xlabel('Time (steps)')
  ax1.set_ylim(0,25)

  ax2.plot(unionSDRshared)
  ax2.set_ylabel('Shared Bits')
  ax2.set_xlabel('Time (steps)')

  ax3.hist(bitLife)
  ax3.set_xlabel('Life duration for each bit')
  pp = PdfPages('results/UnionSDRproperty_Experiment1.pdf')
  pp.savefig()
  pp.close()
def run(params, paramDir, outputDir, plotVerbosity=0, consoleVerbosity=0):
  """
  Runs the union overlap experiment.

  :param params: A dict of experiment parameters
  :param paramDir: Path of parameter file
  :param outputDir: Output will be written to this path
  :param plotVerbosity: Plotting verbosity
  :param consoleVerbosity: Console output verbosity
  """
  print "Running SDR overlap experiment...\n"
  print "Params dir: {0}".format(paramDir)
  print "Output dir: {0}\n".format(outputDir)

  # Dimensionality of sequence patterns
  patternDimensionality = params["patternDimensionality"]

  # Cardinality (ON / true bits) of sequence patterns
  patternCardinality = params["patternCardinality"]

  # TODO If this parameter is to be supported, the sequence generation code
  # below must change
  # Number of unique patterns from which sequences are built
  # patternAlphabetSize = params["patternAlphabetSize"]

  # Length of sequences shown to network
  sequenceLength = params["sequenceLength"]

  # Number of sequences used. Sequences may share common elements.
  numberOfSequences = params["numberOfSequences"]

  # Number of sequence passes for training the TM. Zero => no training.
  trainingPasses = params["trainingPasses"]

  tmParamOverrides = params["temporalMemoryParams"]
  upParamOverrides = params["unionPoolerParams"]

  # Generate a sequence list and an associated labeled list (both containing a
  # set of sequences separated by None)
  start = time.time()
  print "\nGenerating sequences..."
  patternAlphabetSize = sequenceLength * numberOfSequences
  patternMachine = PatternMachine(patternDimensionality, patternCardinality,
                                  patternAlphabetSize)
  sequenceMachine = SequenceMachine(patternMachine)

  numbers = sequenceMachine.generateNumbers(numberOfSequences, sequenceLength)
  generatedSequences = sequenceMachine.generateFromNumbers(numbers)
  sequenceLabels = [str(numbers[i + i*sequenceLength: i + (i+1)*sequenceLength])
                    for i in xrange(numberOfSequences)]
  labeledSequences = []
  for label in sequenceLabels:
    for _ in xrange(sequenceLength):
      labeledSequences.append(label)
    labeledSequences.append(None)

  # Set up the Temporal Memory and Union Pooler network
  print "\nCreating network..."
  experiment = UnionTemporalPoolerExperiment(tmParamOverrides, upParamOverrides)

  # Train only the Temporal Memory on the generated sequences
  if trainingPasses > 0:

    print "\nTraining Temporal Memory..."
    if consoleVerbosity > 0:
      print "\nPass\tBursting Columns Mean\tStdDev\tMax"

    for i in xrange(trainingPasses):
      experiment.runNetworkOnSequences(generatedSequences,
                                       labeledSequences,
                                       tmLearn=True,
                                       upLearn=None,
                                       verbosity=consoleVerbosity,
                                       progressInterval=_SHOW_PROGRESS_INTERVAL)

      if consoleVerbosity > 0:
        stats = experiment.getBurstingColumnsStats()
        print "{0}\t{1}\t{2}\t{3}".format(i, stats[0], stats[1], stats[2])

      # Reset the TM monitor mixin's records accrued during this training pass
      experiment.tm.mmClearHistory()

    print
    print MonitorMixinBase.mmPrettyPrintMetrics(
      experiment.tm.mmGetDefaultMetrics())
    print
    if plotVerbosity >= 2:
      plotNetworkState(experiment, plotVerbosity, trainingPasses,
                       phase="Training")

  print "\nRunning test phase..."
  experiment.runNetworkOnSequences(generatedSequences,
                                   labeledSequences,
                                   tmLearn=False,
                                   upLearn=False,
                                   verbosity=consoleVerbosity,
                                   progressInterval=_SHOW_PROGRESS_INTERVAL)

  print "\nPass\tBursting Columns Mean\tStdDev\tMax"
  stats = experiment.getBurstingColumnsStats()
  print "{0}\t{1}\t{2}\t{3}".format(0, stats[0], stats[1], stats[2])
  if trainingPasses > 0 and stats[0] > 0:
    print "***WARNING! MEAN BURSTING COLUMNS IN TEST PHASE IS GREATER THAN 0***"

  print
  print MonitorMixinBase.mmPrettyPrintMetrics(
      experiment.tm.mmGetDefaultMetrics() + experiment.up.mmGetDefaultMetrics())
  print
  plotNetworkState(experiment, plotVerbosity, trainingPasses, phase="Testing")

  elapsed = int(time.time() - start)
  print "Total time: {0:2} seconds.".format(elapsed)

  # Write Union SDR trace
  metricName = "activeCells"
  outputFileName = "unionSdrTrace_{0}learningPasses.csv".format(trainingPasses)
  writeMetricTrace(experiment, metricName, outputDir, outputFileName)

  if plotVerbosity >= 1:
    raw_input("Press any key to exit...")
def runTestPhase(experiment,
                 tmLearn=False,
                 upLearn=True,
                 outputfileName='results/TemporalPoolingOutputs.pdf'):

    print "\nRunning test phase..."
    print "tmLearn: ", tmLearn
    print "upLearn: ", upLearn
    inputSequences = generatedSequences
    inputCategories = labeledSequences

    experiment.tm.mmClearHistory()
    experiment.up.mmClearHistory()
    experiment.tm.reset()
    experiment.up.reset()

    # Persistence levels across time
    poolingActivationTrace = numpy.zeros((experiment.up._numColumns, 0))
    # union SDR across time
    activeCellsTrace = numpy.zeros((experiment.up._numColumns, 0))
    # active cells in SP across time
    activeSPTrace = numpy.zeros((experiment.up._numColumns, 0))
    # number of connections for SP cells
    connectionCountTrace = numpy.zeros((experiment.up._numColumns, 0))
    # number of active inputs per SP cells
    activeOverlapsTrace = numpy.zeros((experiment.up._numColumns, 0))
    # number of predicted active inputs per SP cells
    predictedActiveOverlapsTrace = numpy.zeros((experiment.up._numColumns, 0))

    for _ in xrange(trainingPasses):
        experiment.tm.reset()
        experiment.up.reset()
        for i in xrange(len(inputSequences)):
            sensorPattern = inputSequences[i]
            inputCategory = inputCategories[i]
            if sensorPattern is None:
                pass
            else:
                experiment.tm.compute(sensorPattern,
                                      learn=tmLearn,
                                      sequenceLabel=inputCategory)

                activeCells, predActiveCells, burstingCols, = experiment.getUnionTemporalPoolerInput(
                )

                overlapsActive = experiment.up._calculateOverlap(activeCells)
                overlapsPredictedActive = experiment.up._calculateOverlap(
                    predActiveCells)
                activeOverlapsTrace = numpy.concatenate(
                    (activeOverlapsTrace,
                     overlapsActive.reshape(
                         (experiment.up._numColumns, 1))), 1)
                predictedActiveOverlapsTrace = numpy.concatenate(
                    (predictedActiveOverlapsTrace,
                     overlapsPredictedActive.reshape(
                         (experiment.up._numColumns, 1))), 1)

                experiment.up.compute(activeCells,
                                      predActiveCells,
                                      learn=upLearn,
                                      sequenceLabel=inputCategory)

                currentPoolingActivation = experiment.up._poolingActivation.reshape(
                    (experiment.up._numColumns, 1))
                poolingActivationTrace = numpy.concatenate(
                    (poolingActivationTrace, currentPoolingActivation), 1)

                currentUnionSDR = numpy.zeros((experiment.up._numColumns, 1))
                currentUnionSDR[experiment.up._unionSDR] = 1
                activeCellsTrace = numpy.concatenate(
                    (activeCellsTrace, currentUnionSDR), 1)

                currentSPSDR = numpy.zeros((experiment.up._numColumns, 1))
                currentSPSDR[experiment.up._activeCells] = 1
                activeSPTrace = numpy.concatenate(
                    (activeSPTrace, currentSPSDR), 1)

                connectionCountTrace = numpy.concatenate(
                    (connectionCountTrace,
                     experiment.up._connectedCounts.reshape(
                         (experiment.up._numColumns, 1))), 1)

        print "\nPass\tBursting Columns Mean\tStdDev\tMax"
        stats = experiment.getBurstingColumnsStats()
        print "{0}\t{1}\t{2}\t{3}".format(0, stats[0], stats[1], stats[2])
        print
        print MonitorMixinBase.mmPrettyPrintMetrics(\
            experiment.tm.mmGetDefaultMetrics() + experiment.up.mmGetDefaultMetrics())
        print
        experiment.tm.mmClearHistory()

    newConnectionCountTrace = numpy.zeros(connectionCountTrace.shape)
    n = newConnectionCountTrace.shape[1]
    newConnectionCountTrace[:, 0:n -
                            2] = connectionCountTrace[:, 1:n -
                                                      1] - connectionCountTrace[:,
                                                                                0:
                                                                                n
                                                                                -
                                                                                2]

    # estimate fraction of shared bits across adjacent time point
    unionSDRshared = experiment.up._mmComputeUnionSDRdiff()

    bitLifeList = experiment.up._mmComputeBitLifeStats()
    bitLife = numpy.array(bitLifeList)

    # Plot SP outputs, UP persistence and UP outputs in testing phase
    def showSequenceStartLine(ax, trainingPasses, sequenceLength):
        for i in xrange(trainingPasses):
            ax.vlines(i * sequenceLength,
                      0,
                      ax1.get_ylim()[0],
                      linestyles='--')

    ncolShow = 50
    f, (ax1, ax2, ax3, ax4) = plt.subplots(nrows=1, ncols=4)
    ax1.imshow(activeSPTrace[1:ncolShow, :],
               cmap=cm.Greys,
               interpolation="nearest",
               aspect='auto')
    showSequenceStartLine(ax1, trainingPasses, sequenceLength)
    ax1.set_title('SP SDR')
    ax1.set_ylabel('Columns')

    ax2.imshow(poolingActivationTrace[1:ncolShow, :],
               cmap=cm.Greys,
               interpolation="nearest",
               aspect='auto')
    showSequenceStartLine(ax2, trainingPasses, sequenceLength)
    ax2.set_title('Persistence')

    ax3.imshow(activeCellsTrace[1:ncolShow, :],
               cmap=cm.Greys,
               interpolation="nearest",
               aspect='auto')
    showSequenceStartLine(ax3, trainingPasses, sequenceLength)
    ax3.set_title('Union SDR')

    ax4.imshow(newConnectionCountTrace[1:ncolShow, :],
               cmap=cm.Greys,
               interpolation="nearest",
               aspect='auto')
    showSequenceStartLine(ax4, trainingPasses, sequenceLength)
    ax4.set_title('New Connection #')
    ax2.set_xlabel('Time (steps)')

    pp = PdfPages(outputfileName)
    pp.savefig()
    pp.close()
# Check if TM learning went ok

print "Testing TemporalMemory on novel sequences"
testSequenceLength = 10
sequences = smer.generateSequences(testSequenceLength, agents, verbosity=1)
smer.feedLayers(sequences, tmLearn=False, verbosity=2)

print smer.tm.mmPrettyPrintMetrics(smer.tm.mmGetDefaultMetrics())

unpredictedActiveColumnsMetric = smer.tm.mmGetMetricFromTrace(
    smer.tm.mmGetTraceUnpredictedActiveColumns())
predictedActiveColumnsMetric = smer.tm.mmGetMetricFromTrace(
    smer.tm.mmGetTracePredictedActiveColumns())
if (unpredictedActiveColumnsMetric.sum
        == 0) and (predictedActiveColumnsMetric.sum == universe.wSensor *
                   (testSequenceLength - 1) * len(agents)):
    print "TM training successful!!"
else:
    print "TM training unsuccessful"

############################################################
# Temporal pooler training

print "Training TemporalPooler on sequences"
sequences = smer.generateSequences(10, agents, verbosity=1)
smer.feedLayers(sequences, tmLearn=False, tpLearn=True, verbosity=2)

print MonitorMixinBase.mmPrettyPrintMetrics(smer.tm.mmGetDefaultMetrics() +
                                            smer.tp.mmGetDefaultMetrics())
# Check if TM learning went ok

print "Testing TemporalMemory on novel sequences"
testSequenceLength=10
sequences = smer.generateSequences(testSequenceLength, agents, verbosity=1)
smer.feedLayers(sequences, tmLearn=False, verbosity=2)

print smer.tm.mmPrettyPrintMetrics(smer.tm.mmGetDefaultMetrics())

unpredictedActiveColumnsMetric = smer.tm.mmGetMetricFromTrace(
  smer.tm.mmGetTraceUnpredictedActiveColumns())
predictedActiveColumnsMetric = smer.tm.mmGetMetricFromTrace(
  smer.tm.mmGetTracePredictedActiveColumns())
if (unpredictedActiveColumnsMetric.sum == 0) and (
      predictedActiveColumnsMetric.sum ==
            universe.wSensor*(testSequenceLength-1)*len(agents)):
  print "TM training successful!!"
else:
  print "TM training unsuccessful"


############################################################
# Temporal pooler training

print "Training TemporalPooler on sequences"
sequences = smer.generateSequences(10, agents, verbosity=1)
smer.feedLayers(sequences, tmLearn=False, tpLearn=True, verbosity=2)

print MonitorMixinBase.mmPrettyPrintMetrics(smer.tm.mmGetDefaultMetrics() +
                                            smer.tp.mmGetDefaultMetrics())
Exemple #20
0
def run(params, paramDir, outputDir, plotVerbosity=0, consoleVerbosity=0):
  """
  Runs the Union Temporal Pooler capacity experiment.

  :param params: A dict containing the following experiment parameters:

        patternDimensionality - Dimensionality of sequence patterns
        patternCardinality - Cardinality (# ON bits) of sequence patterns
        sequenceLength - Length of sequences shown to network
        sequenceCount - Number of unique sequences used
        trainingPasses - Number of times Temporal Memory is trained on each
        sequence
        temporalMemoryParams - A dict of Temporal Memory parameter overrides
        unionTemporalPoolerParams - A dict of Union Temporal Pooler parameter overrides

  :param paramDir: Path of parameter file
  :param outputDir: Output will be written to this path
  :param plotVerbosity: Plotting verbosity
  :param consoleVerbosity: Console output verbosity
  """
  start = time.time()
  print "Running Union Temporal Pooler Capacity Experiment...\n"
  print "Params dir: {0}".format(os.path.join(os.path.dirname(__file__),
                                              paramDir))
  print "Output dir: {0}\n".format(os.path.join(os.path.dirname(__file__),
                                                outputDir))

  patternDimensionality = params["patternDimensionality"]
  patternCardinality = params["patternCardinality"]
  sequenceLength = params["sequenceLength"]
  sequenceCount = params["numberOfSequences"]
  trainingPasses = params["trainingPasses"]
  tmParamOverrides = params["temporalMemoryParams"]
  upParamOverrides = params["unionTemporalPoolerParams"]

  # Generate input data
  inputSequences, seqLabels = generateSequences(patternDimensionality,
                                                patternCardinality,
                                                sequenceLength,
                                                sequenceCount)

  print "\nCreating Network..."
  experiment = UnionTemporalPoolerExperiment(tmParamOverrides, upParamOverrides)

  # Train the Temporal Memory on the generated sequences
  print "\nTraining Temporal Memory..."
  for i in xrange(trainingPasses):
    print "\nTraining pass {0} ...\n".format(i)
    experiment.runNetworkOnSequences(inputSequences,
                                     seqLabels,
                                     tmLearn=True,
                                     upLearn=None,
                                     verbosity=consoleVerbosity,
                                     progressInterval=_SHOW_PROGRESS_INTERVAL)

    if consoleVerbosity > 0:
      stats = experiment.getBurstingColumnsStats()
      print "\nPass\tMean\t\tStdDev\t\tMax\t\t(Bursting Columns)"
      print "{0}\t{1}\t{2}\t{3}".format(i, stats[0], stats[1], stats[2])

  print
  print MonitorMixinBase.mmPrettyPrintMetrics(
    experiment.tm.mmGetDefaultMetrics())
  print
  experiment.tm.mmClearHistory()

  # Run test phase recording Union SDRs
  unionSdrs = runTestPhase(experiment, inputSequences, seqLabels, sequenceCount,
                           sequenceLength, consoleVerbosity)

  # Output distinctness metric
  print "\nSequences\tDistinctness Ave\tStdDev\tMax"
  ave, stdDev, maxDist = getDistinctness(unionSdrs)
  print "{0}\t{1}\t{2}\t{3}".format(sequenceCount, ave, stdDev, maxDist)

  # Check bursting columns metric during test phase
  print "\nSequences\tBursting Columns Mean\tStdDev\tMax"
  stats = experiment.getBurstingColumnsStats()
  print "{0}\t{1}\t{2}\t{3}".format(sequenceCount, stats[0], stats[1], stats[2])
  if trainingPasses > 0 and stats[0] > 0:
    print "***Warning! Mean bursing columns > 0 in test phase***"

  print
  print MonitorMixinBase.mmPrettyPrintMetrics(
      experiment.tm.mmGetDefaultMetrics() + experiment.up.mmGetDefaultMetrics())
  print
  print "Total time: {0:2} seconds.".format(int(time.time() - start))
def runTestPhase(experiment, tmLearn=False, upLearn=True, outputfileName='results/TemporalPoolingOutputs.pdf'):

  print "\nRunning test phase..."
  print "tmLearn: ", tmLearn
  print "upLearn: ", upLearn
  inputSequences = generatedSequences
  inputCategories = labeledSequences

  experiment.tm.mmClearHistory()
  experiment.up.mmClearHistory()
  experiment.tm.reset()
  experiment.up.reset()

  # Persistence levels across time
  poolingActivationTrace = numpy.zeros((experiment.up._numColumns, 0))
  # union SDR across time
  activeCellsTrace = numpy.zeros((experiment.up._numColumns, 0))
  # active cells in SP across time
  activeSPTrace = numpy.zeros((experiment.up._numColumns, 0))
  # number of connections for SP cells
  connectionCountTrace = numpy.zeros((experiment.up._numColumns, 0))
  # number of active inputs per SP cells
  activeOverlapsTrace = numpy.zeros((experiment.up._numColumns, 0))
  # number of predicted active inputs per SP cells
  predictedActiveOverlapsTrace = numpy.zeros((experiment.up._numColumns, 0))

  for _ in xrange(trainingPasses):
    experiment.tm.reset()
    experiment.up.reset()
    for i in xrange(len(inputSequences)):
      sensorPattern = inputSequences[i]
      inputCategory = inputCategories[i]
      if sensorPattern is None:
        pass
      else:
        experiment.tm.compute(sensorPattern,
                              learn=tmLearn,
                              sequenceLabel=inputCategory)


        activeCells, predActiveCells, burstingCols, = experiment.getUnionTemporalPoolerInput()

        overlapsActive = experiment.up._calculateOverlap(activeCells)
        overlapsPredictedActive = experiment.up._calculateOverlap(predActiveCells)
        activeOverlapsTrace = numpy.concatenate((activeOverlapsTrace, overlapsActive.reshape((experiment.up._numColumns,1))), 1)
        predictedActiveOverlapsTrace = numpy.concatenate((predictedActiveOverlapsTrace, overlapsPredictedActive.reshape((experiment.up._numColumns,1))), 1)

        experiment.up.compute(activeCells,
                        predActiveCells,
                        learn=upLearn,
                        sequenceLabel=inputCategory)


        currentPoolingActivation = experiment.up._poolingActivation.reshape((experiment.up._numColumns, 1))
        poolingActivationTrace = numpy.concatenate((poolingActivationTrace, currentPoolingActivation), 1)

        currentUnionSDR = numpy.zeros((experiment.up._numColumns, 1))
        currentUnionSDR[experiment.up._unionSDR] = 1
        activeCellsTrace = numpy.concatenate((activeCellsTrace, currentUnionSDR), 1)

        currentSPSDR = numpy.zeros((experiment.up._numColumns, 1))
        currentSPSDR[experiment.up._activeCells] = 1
        activeSPTrace = numpy.concatenate((activeSPTrace, currentSPSDR), 1)

        connectionCountTrace = numpy.concatenate((connectionCountTrace,
                                                  experiment.up._connectedCounts.reshape((experiment.up._numColumns, 1))), 1)

    print "\nPass\tBursting Columns Mean\tStdDev\tMax"
    stats = experiment.getBurstingColumnsStats()
    print "{0}\t{1}\t{2}\t{3}".format(0, stats[0], stats[1], stats[2])
    print
    print MonitorMixinBase.mmPrettyPrintMetrics(\
        experiment.tm.mmGetDefaultMetrics() + experiment.up.mmGetDefaultMetrics())
    print
    experiment.tm.mmClearHistory()

  newConnectionCountTrace = numpy.zeros(connectionCountTrace.shape)
  n = newConnectionCountTrace.shape[1]
  newConnectionCountTrace[:,0:n-2] = connectionCountTrace[:,1:n-1] - connectionCountTrace[:,0:n-2]

  # estimate fraction of shared bits across adjacent time point
  unionSDRshared = experiment.up._mmComputeUnionSDRdiff()

  bitLifeList = experiment.up._mmComputeBitLifeStats()
  bitLife = numpy.array(bitLifeList)


  # Plot SP outputs, UP persistence and UP outputs in testing phase
  def showSequenceStartLine(ax, trainingPasses, sequenceLength):
    for i in xrange(trainingPasses):
      ax.vlines(i*sequenceLength, 0, ax1.get_ylim()[0], linestyles='--')

  ncolShow = 50
  f, (ax1, ax2, ax3, ax4) = plt.subplots(nrows=1,ncols=4)
  ax1.imshow(activeSPTrace[1:ncolShow,:], cmap=cm.Greys,interpolation="nearest",aspect='auto')
  showSequenceStartLine(ax1, trainingPasses, sequenceLength)
  ax1.set_title('SP SDR')
  ax1.set_ylabel('Columns')

  ax2.imshow(poolingActivationTrace[1:ncolShow,:], cmap=cm.Greys, interpolation="nearest",aspect='auto')
  showSequenceStartLine(ax2, trainingPasses, sequenceLength)
  ax2.set_title('Persistence')

  ax3.imshow(activeCellsTrace[1:ncolShow,:], cmap=cm.Greys, interpolation="nearest",aspect='auto')
  showSequenceStartLine(ax3, trainingPasses, sequenceLength)
  ax3.set_title('Union SDR')

  ax4.imshow(newConnectionCountTrace[1:ncolShow,:], cmap=cm.Greys, interpolation="nearest",aspect='auto')
  showSequenceStartLine(ax4, trainingPasses, sequenceLength)
  ax4.set_title('New Connection #')
  ax2.set_xlabel('Time (steps)')

  pp = PdfPages(outputfileName)
  pp.savefig()
  pp.close()
def experiment2():
    paramDir = 'params/1024_baseline/5_trainingPasses.yaml'
    outputDir = 'results/'
    params = yaml.safe_load(open(paramDir, 'r'))
    options = {'plotVerbosity': 2, 'consoleVerbosity': 2}
    plotVerbosity = 2
    consoleVerbosity = 1

    print "Running SDR overlap experiment...\n"
    print "Params dir: {0}".format(paramDir)
    print "Output dir: {0}\n".format(outputDir)

    # Dimensionality of sequence patterns
    patternDimensionality = params["patternDimensionality"]

    # Cardinality (ON / true bits) of sequence patterns
    patternCardinality = params["patternCardinality"]

    # TODO If this parameter is to be supported, the sequence generation code
    # below must change
    # Number of unique patterns from which sequences are built
    # patternAlphabetSize = params["patternAlphabetSize"]

    # Length of sequences shown to network
    sequenceLength = params["sequenceLength"]

    # Number of sequences used. Sequences may share common elements.
    numberOfSequences = params["numberOfSequences"]

    # Number of sequence passes for training the TM. Zero => no training.
    trainingPasses = params["trainingPasses"]

    tmParamOverrides = params["temporalMemoryParams"]
    upParamOverrides = params["unionPoolerParams"]

    # Generate a sequence list and an associated labeled list (both containing a
    # set of sequences separated by None)
    start = time.time()
    print "\nGenerating sequences..."
    patternAlphabetSize = sequenceLength * numberOfSequences
    patternMachine = PatternMachine(patternDimensionality, patternCardinality,
                                    patternAlphabetSize)
    sequenceMachine = SequenceMachine(patternMachine)

    numbers = sequenceMachine.generateNumbers(numberOfSequences,
                                              sequenceLength)
    generatedSequences = sequenceMachine.generateFromNumbers(numbers)
    sequenceLabels = [
        str(numbers[i + i * sequenceLength:i + (i + 1) * sequenceLength])
        for i in xrange(numberOfSequences)
    ]
    labeledSequences = []
    for label in sequenceLabels:
        for _ in xrange(sequenceLength):
            labeledSequences.append(label)
        labeledSequences.append(None)

    # Set up the Temporal Memory and Union Pooler network
    print "\nCreating network..."
    experiment = UnionTemporalPoolerExperiment(tmParamOverrides,
                                               upParamOverrides)

    # Train only the Temporal Memory on the generated sequences
    # if trainingPasses > 0:
    #
    #   print "\nTraining Temporal Memory..."
    #   if consoleVerbosity > 0:
    #     print "\nPass\tBursting Columns Mean\tStdDev\tMax"
    #
    #   for i in xrange(trainingPasses):
    #     experiment.runNetworkOnSequences(generatedSequences,
    #                                      labeledSequences,
    #                                      tmLearn=True,
    #                                      upLearn=None,
    #                                      verbosity=consoleVerbosity,
    #                                      progressInterval=_SHOW_PROGRESS_INTERVAL)
    #
    #     if consoleVerbosity > 0:
    #       stats = experiment.getBurstingColumnsStats()
    #       print "{0}\t{1}\t{2}\t{3}".format(i, stats[0], stats[1], stats[2])
    #
    #     # Reset the TM monitor mixin's records accrued during this training pass
    #     # experiment.tm.mmClearHistory()
    #
    #   print
    #   print MonitorMixinBase.mmPrettyPrintMetrics(
    #     experiment.tm.mmGetDefaultMetrics())
    #   print
    #
    #   if plotVerbosity >= 2:
    #     plotNetworkState(experiment, plotVerbosity, trainingPasses, phase="Training")
    #
    # experiment.tm.mmClearHistory()
    # experiment.up.mmClearHistory()

    print "\nRunning test phase..."

    inputSequences = generatedSequences
    inputCategories = labeledSequences
    tmLearn = True
    upLearn = False
    classifierLearn = False
    currentTime = time.time()

    experiment.tm.reset()
    experiment.up.reset()

    poolingActivationTrace = numpy.zeros((experiment.up._numColumns, 1))
    activeCellsTrace = numpy.zeros((experiment.up._numColumns, 1))
    activeSPTrace = numpy.zeros((experiment.up._numColumns, 1))

    for _ in xrange(trainingPasses):
        for i in xrange(len(inputSequences)):
            sensorPattern = inputSequences[i]
            inputCategory = inputCategories[i]
            if sensorPattern is None:
                pass
            else:
                experiment.tm.compute(sensorPattern,
                                      learn=tmLearn,
                                      sequenceLabel=inputCategory)

                if upLearn is not None:
                    activeCells, predActiveCells, burstingCols, = experiment.getUnionTemporalPoolerInput(
                    )
                    experiment.up.compute(activeCells,
                                          predActiveCells,
                                          learn=upLearn,
                                          sequenceLabel=inputCategory)

                    currentPoolingActivation = experiment.up._poolingActivation

                    currentPoolingActivation = experiment.up._poolingActivation.reshape(
                        (experiment.up._numColumns, 1))
                    poolingActivationTrace = numpy.concatenate(
                        (poolingActivationTrace, currentPoolingActivation), 1)

                    currentUnionSDR = numpy.zeros(
                        (experiment.up._numColumns, 1))
                    currentUnionSDR[experiment.up._unionSDR] = 1
                    activeCellsTrace = numpy.concatenate(
                        (activeCellsTrace, currentUnionSDR), 1)

                    currentSPSDR = numpy.zeros((experiment.up._numColumns, 1))
                    currentSPSDR[experiment.up._activeCells] = 1
                    activeSPTrace = numpy.concatenate(
                        (activeSPTrace, currentSPSDR), 1)

        print "\nPass\tBursting Columns Mean\tStdDev\tMax"
        stats = experiment.getBurstingColumnsStats()
        print "{0}\t{1}\t{2}\t{3}".format(0, stats[0], stats[1], stats[2])
        print
        print MonitorMixinBase.mmPrettyPrintMetrics(\
            experiment.tm.mmGetDefaultMetrics() + experiment.up.mmGetDefaultMetrics())
        print
        experiment.tm.mmClearHistory()

    # estimate fraction of shared bits across adjacent time point
    unionSDRshared = experiment.up._mmComputeUnionSDRdiff()

    bitLifeList = experiment.up._mmComputeBitLifeStats()
    bitLife = numpy.array(bitLifeList)

    # Plot SP outputs, UP persistence and UP outputs in testing phase
    def showSequenceStartLine(ax, trainingPasses, sequenceLength):
        for i in xrange(trainingPasses):
            ax.vlines(i * sequenceLength, 0, 100, linestyles='--')

    plt.figure()
    ncolShow = 100
    f, (ax1, ax2, ax3) = plt.subplots(nrows=1, ncols=3)
    ax1.imshow(activeSPTrace[1:ncolShow, :],
               cmap=cm.Greys,
               interpolation="nearest",
               aspect='auto')
    showSequenceStartLine(ax1, trainingPasses, sequenceLength)
    ax1.set_title('SP SDR')
    ax1.set_ylabel('Columns')
    ax2.imshow(poolingActivationTrace[1:100, :],
               cmap=cm.Greys,
               interpolation="nearest",
               aspect='auto')
    showSequenceStartLine(ax2, trainingPasses, sequenceLength)
    ax2.set_title('Persistence')
    ax3.imshow(activeCellsTrace[1:ncolShow, :],
               cmap=cm.Greys,
               interpolation="nearest",
               aspect='auto')
    showSequenceStartLine(ax3, trainingPasses, sequenceLength)
    plt.title('Union SDR')

    ax2.set_xlabel('Time (steps)')

    pp = PdfPages('results/UnionPoolingDuringTMlearning_Experiment2.pdf')
    pp.savefig()
    pp.close()

    f, (ax1, ax2, ax3) = plt.subplots(nrows=3, ncols=1)
    ax1.plot((sum(activeCellsTrace)) / experiment.up._numColumns * 100)
    ax1.set_ylabel('Union SDR size (%)')
    ax1.set_xlabel('Time (steps)')
    ax1.set_ylim(0, 25)

    ax2.plot(unionSDRshared)
    ax2.set_ylabel('Shared Bits')
    ax2.set_xlabel('Time (steps)')

    ax3.hist(bitLife)
    ax3.set_xlabel('Life duration for each bit')
    pp = PdfPages('results/UnionSDRproperty_Experiment2.pdf')
    pp.savefig()
    pp.close()