def main(*args, **kwargs): """ NuPIC NLP main entry point. """ (options, args) = parser.parse_args() if options.max_terms.lower() == 'all': max_terms = sys.maxint else: max_terms = int(options.max_terms) min_sparsity = float(options.min_sparsity) prediction_start = int(options.prediction_start) verbosity = 0 if options.verbose: verbosity = 5 # Create the cache directory if necessary. if not os.path.exists(cache_dir): os.mkdir(cache_dir) reader = NLTK_Reader(os.path.join(cache_dir, 'text'), verbosity=verbosity) builder = SDR_Builder(cept_app_key, cache_dir, verbosity=verbosity) nupic = Nupic_Word_Client() runner = Association_Runner(builder, nupic, max_terms, min_sparsity, prediction_start, verbosity=verbosity) noun_pairs = reader.get_noun_pairs_from_all_texts()[:max_terms] runner.associate(noun_pairs)
def main(*args, **kwargs): """POS Experiment main entry point.""" (options, args) = parser.parse_args() verbosity = NLTK_Reader.WARN if options.verbose: verbosity = NLTK_Reader.DEBUG reader = NLTK_Reader(input='./resources/text', cache_dir='./cache/text', verbosity=verbosity) simple_tags = not options.full_tagging if options.text_info: reader.text_report() if options.list_texts: print 'Available texts:' for t in reader.available_texts(): print '\t%s' % t if options.input_text: target_text = options.input_text else: target_text = None if target_text is not None: if options.pos_report: print 'Parts of Speech found in %s:' % target_text for pos in reader.get_parts_of_speech(target_text, simplify_tags=simple_tags): tag_description = reader.describe_tag(pos) print '\t%6s %s (%s)' % (pos, tag_description[0], tag_description[1]) else: output_dir = options.output_dir model = ModelFactory.create(run_pos_model_params.MODEL_PARAMS) model.enableInference({'predictedField': 'pos'}) if output_dir: if not os.path.exists(output_dir): os.mkdir(output_dir) output_file_path = os.path.join(output_dir, 'pos_out_' + target_text) # Clear the output file with a header. with open(output_file_path, 'w') as output_file: output_file.write('%10s%10s%20s\n' % ('input', 'pos', 'predicted_pos')) # Append each result to output file. with open(output_file_path, 'a') as output_file: run_pos_experiment(model, reader, target_text, simple_tags, output_file) else: run_pos_experiment(model, reader, target_text, simple_tags)
def main(*args, **kwargs): """POS Experiment main entry point.""" (options, args) = parser.parse_args() verbosity = NLTK_Reader.WARN if options.verbose: verbosity = NLTK_Reader.DEBUG reader = NLTK_Reader(input="./resources/text", cache_dir="./cache/text", verbosity=verbosity) simple_tags = not options.full_tagging if options.text_info: reader.text_report() if options.list_texts: print "Available texts:" for t in reader.available_texts(): print "\t%s" % t if options.input_text: target_text = options.input_text else: target_text = None if target_text is not None: if options.pos_report: print "Parts of Speech found in %s:" % target_text for pos in reader.get_parts_of_speech(target_text, simplify_tags=simple_tags): tag_description = reader.describe_tag(pos) print "\t%6s %s (%s)" % (pos, tag_description[0], tag_description[1]) else: output_dir = options.output_dir model = ModelFactory.create(run_pos_model_params.MODEL_PARAMS) model.enableInference({"predictedField": "pos"}) if output_dir: if not os.path.exists(output_dir): os.mkdir(output_dir) output_file_path = os.path.join(output_dir, "pos_out_" + target_text) # Clear the output file with a header. with open(output_file_path, "w") as output_file: output_file.write("%10s%10s%20s\n" % ("input", "pos", "predicted_pos")) # Append each result to output file. with open(output_file_path, "a") as output_file: run_pos_experiment(model, reader, target_text, simple_tags, output_file) else: run_pos_experiment(model, reader, target_text, simple_tags)