def main(*args, **kwargs): """ NuPIC NLP main entry point. """ (options, args) = parser.parse_args() if options.max_terms.lower() == 'all': max_terms = sys.maxint else: max_terms = int(options.max_terms) min_sparsity = float(options.min_sparsity) prediction_start = int(options.prediction_start) verbosity = 0 if options.verbose: verbosity = 1 retina = options.retina # Create the cache directory if necessary. if not os.path.exists(cache_dir): os.mkdir(cache_dir) builder = SDR_Builder(cept_app_key, cache_dir, verbosity=verbosity, retina=retina) def size_to_thresholds(sdr_size): """ scale minThreshold and activationThreshold according to sdr_size """ factor = float(sdr_size) / (128*128) return 80*factor, 100*factor sdr_size = RETINA_SIZES[retina]['width'] * RETINA_SIZES[retina]['height'] minThreshold, activationThreshold = size_to_thresholds(sdr_size) if options.predict_triples: # Instantiate TP with parameters for Fox demo nupic = Nupic_Word_Client(numberOfCols=sdr_size, minThreshold=minThreshold, activationThreshold=activationThreshold, pamLength=10) else: nupic = Nupic_Word_Client(numberOfCols=sdr_size) if options.verbose: nupic.printParameters() runner = Association_Runner(builder, nupic, max_terms, min_sparsity, prediction_start, verbosity=verbosity) if len(args) is 0: print 'no input file provided!' exit(1) elif len(args) == 1: if options.predict_triples: if options.verbose: print "Predicting triples!" runner.direct_association_triples(args[0]) else: runner.direct_association(args[0]) else: if options.predict_triples: print "Please specify exactly one input file containing triples" else: runner.random_dual_association(args[0], args[1])
def main(*args, **kwargs): """ NuPIC NLP main entry point. """ (options, args) = parser.parse_args() if options.max_terms.lower() == 'all': max_terms = sys.maxint else: max_terms = int(options.max_terms) min_sparsity = float(options.min_sparsity) prediction_start = int(options.prediction_start) verbosity = 0 if options.verbose: verbosity = 5 # Create the cache directory if necessary. if not os.path.exists(cache_dir): os.mkdir(cache_dir) reader = NLTK_Reader(os.path.join(cache_dir, 'text'), verbosity=verbosity) builder = SDR_Builder(cept_app_key, cache_dir, verbosity=verbosity) nupic = Nupic_Word_Client() runner = Association_Runner(builder, nupic, max_terms, min_sparsity, prediction_start, verbosity=verbosity) noun_pairs = reader.get_noun_pairs_from_all_texts()[:max_terms] runner.associate(noun_pairs)
def main(*args, **kwargs): """ NuPIC NLP main entry point. """ (options, args) = parser.parse_args() if options.max_terms.lower() == 'all': max_terms = sys.maxint else: max_terms = int(options.max_terms) min_sparsity = float(options.min_sparsity) prediction_start = int(options.prediction_start) verbosity = 0 if options.verbose: verbosity = 1 # Create the cache directory if necessary. if not os.path.exists(cache_dir): os.mkdir(cache_dir) builder = SDR_Builder(cept_app_id, cept_app_key, cache_dir, verbosity=verbosity) if options.predict_triples: # Instantiate TP with parameters for Fox demo nupic = Nupic_Word_Client( minThreshold=80, activationThreshold=100, pamLength=10) else: nupic = Nupic_Word_Client() if options.verbose: nupic.printParameters() runner = Association_Runner(builder, nupic, max_terms, min_sparsity, prediction_start, verbosity=verbosity) if len(args) is 0: print 'no input file provided!' exit(1) elif len(args) == 1: if options.predict_triples: if options.verbose: print "Predicting triples!" runner.direct_association_triples(args[0]) else: runner.direct_association(args[0]) else: if options.predict_triples: print "Please specify exactly one input file containing triples" else: runner.random_dual_association(args[0], args[1])
def main(*args, **kwargs): """ NuPIC NLP main entry point. """ (options, args) = parser.parse_args() if options.max_terms.lower() == 'all': max_terms = sys.maxint else: max_terms = int(options.max_terms) min_sparsity = float(options.min_sparsity) prediction_start = int(options.prediction_start) verbosity = 0 if options.verbose: verbosity = 1 retina = options.retina # Create the cache directory if necessary. if not os.path.exists(cache_dir): os.mkdir(cache_dir) builder = SDR_Builder(cept_app_key, cache_dir, verbosity=verbosity, retina=retina) def size_to_thresholds(sdr_size): """ scale minThreshold and activationThreshold according to sdr_size """ factor = float(sdr_size) / (128 * 128) return 80 * factor, 100 * factor sdr_size = RETINA_SIZES[retina]['width'] * RETINA_SIZES[retina]['height'] minThreshold, activationThreshold = size_to_thresholds(sdr_size) if options.predict_triples: # Instantiate TP with parameters for Fox demo nupic = Nupic_Word_Client(numberOfCols=sdr_size, minThreshold=minThreshold, activationThreshold=activationThreshold, pamLength=10) else: nupic = Nupic_Word_Client(numberOfCols=sdr_size) if options.verbose: nupic.printParameters() runner = Association_Runner(builder, nupic, max_terms, min_sparsity, prediction_start, verbosity=verbosity) if len(args) is 0: print 'no input file provided!' exit(1) elif len(args) == 1: if options.predict_triples: if options.verbose: print "Predicting triples!" runner.direct_association_triples(args[0]) else: runner.direct_association(args[0]) else: if options.predict_triples: print "Please specify exactly one input file containing triples" else: runner.random_dual_association(args[0], args[1])