def main( nelems: 'number of elements' = 20, degree: 'polynomial degree' = 1, timescale: 'time scale (timestep=timescale/nelems)' = .5, tol: 'solver tolerance' = 1e-5, ndims: 'spatial dimension' = 1, endtime: 'end time, 0 for no end time' = 0, withplots: 'create plots' = True, ): # construct mesh, basis ns = function.Namespace() domain, ns.x = mesh.rectilinear([numpy.linspace(0, 1, nelems + 1)] * ndims, periodic=range(ndims)) ns.basis = domain.basis('discont', degree=degree) ns.u = 'basis_n ?lhs_n' # construct initial condition (centered gaussian) lhs0 = domain.project('exp(-?y_i ?y_i) | ?y_i = 5 (x_i - 0.5_i)' @ ns, onto=ns.basis, geometry=ns.x, degree=5) # prepare residual ns.f = '.5 u^2' ns.C = 1 res = domain.integral('-basis_n,0 f' @ ns, geometry=ns.x, degree=5) res += domain.interfaces.integral( '-[basis_n] n_0 ({f} - .5 C [u] n_0)' @ ns, geometry=ns.x, degree=5) inertia = domain.integral('basis_n u' @ ns, geometry=ns.x, degree=5) # prepare plotting makeplots = MakePlots(domain, video=withplots == 'video') if withplots else lambda ns: None # start time stepping timestep = timescale / nelems for itime, lhs in log.enumerate( 'timestep', solver.impliciteuler('lhs', res, inertia, timestep, lhs0, newtontol=tol)): makeplots(ns | dict(lhs=lhs)) if endtime and itime * timestep >= endtime: break return res.eval(arguments=dict(lhs=lhs)), lhs
def main( nelems: 'number of elements' = 20, degree: 'polynomial degree' = 1, timescale: 'time scale (timestep=timescale/nelems)' = .5, tol: 'solver tolerance' = 1e-5, ndims: 'spatial dimension' = 1, endtime: 'end time, 0 for no end time' = 0, withplots: 'create plots' = True, ): # construct mesh, basis ns = function.Namespace() domain, ns.x = mesh.rectilinear([numpy.linspace(0,1,nelems+1)]*ndims, periodic=range(ndims)) ns.basis = domain.basis('discont', degree=degree) ns.u = 'basis_n ?lhs_n' # construct initial condition (centered gaussian) lhs0 = domain.project('exp(-?y_i ?y_i) | ?y_i = 5 (x_i - 0.5_i)' @ ns, onto=ns.basis, geometry=ns.x, degree=5) # prepare residual ns.f = '.5 u^2' ns.C = 1 res = domain.integral('-basis_n,0 f' @ ns, geometry=ns.x, degree=5) res += domain.interfaces.integral('-[basis_n] n_0 ({f} - .5 C [u] n_0)' @ ns, geometry=ns.x, degree=5) inertia = domain.integral('basis_n u' @ ns, geometry=ns.x, degree=5) # prepare plotting makeplots = MakePlots(domain, video=withplots=='video') if withplots else lambda ns: None # start time stepping timestep = timescale/nelems for itime, lhs in log.enumerate('timestep', solver.impliciteuler('lhs', res, inertia, timestep, lhs0, newtontol=tol)): makeplots(ns | dict(lhs=lhs)) if endtime and itime * timestep >= endtime: break return res.eval(arguments=dict(lhs=lhs)), lhs
def main( nelems: 'number of elements' = 12, viscosity: 'fluid viscosity' = 1e-2, density: 'fluid density' = 1, tol: 'solver tolerance' = 1e-12, rotation: 'cylinder rotation speed' = 0, timestep: 'time step' = 1/24, maxradius: 'approximate domain size' = 25, tmax: 'end time' = numpy.inf, degree: 'polynomial degree' = 2, withplots: 'create plots' = True, ): log.user('reynolds number: {:.1f}'.format(density / viscosity)) # based on unit length and velocity # create namespace ns = function.Namespace() ns.uinf = 1, 0 ns.density = density ns.viscosity = viscosity # construct mesh rscale = numpy.pi / nelems melems = numpy.ceil(numpy.log(2*maxradius) / rscale).astype(int) log.info('creating {}x{} mesh, outer radius {:.2f}'.format(melems, 2*nelems, .5*numpy.exp(rscale*melems))) domain, x0 = mesh.rectilinear([range(melems+1),numpy.linspace(0,2*numpy.pi,2*nelems+1)], periodic=(1,)) rho, phi = x0 phi += 1e-3 # tiny nudge (0.057 deg) to break element symmetry radius = .5 * function.exp(rscale * rho) ns.x = radius * function.trigtangent(phi) domain = domain.withboundary(inner='left', inflow=domain.boundary['right'].select(-ns.uinf.dotnorm(ns.x), ischeme='gauss1')) # prepare bases (using piola transformation to maintain u/p compatibility) J = ns.x.grad(x0) detJ = function.determinant(J) ns.unbasis, ns.utbasis, ns.pbasis = function.chain([ # compatible spaces using piola transformation domain.basis('spline', degree=(degree+1,degree), removedofs=((0,),None))[:,_] * J[:,0] / detJ, domain.basis('spline', degree=(degree,degree+1))[:,_] * J[:,1] / detJ, domain.basis('spline', degree=degree) / detJ, ]) ns.ubasis_ni = 'unbasis_ni + utbasis_ni' # populate namespace ns.u_i = 'ubasis_ni ?lhs_n' ns.p = 'pbasis_n ?lhs_n' ns.sigma_ij = 'viscosity (u_i,j + u_j,i) - p δ_ij' ns.hinner = 2 * numpy.pi / nelems ns.c = 5 * (degree+1) / ns.hinner ns.nietzsche_ni = 'viscosity (c ubasis_ni - (ubasis_ni,j + ubasis_nj,i) n_j)' ns.ucyl = -.5 * rotation * function.trignormal(phi) # create residual vector components res = domain.integral('ubasis_ni,j sigma_ij + pbasis_n u_k,k' @ ns, geometry=ns.x, degree=2*(degree+1)) res += domain.boundary['inner'].integral('nietzsche_ni (u_i - ucyl_i)' @ ns, geometry=ns.x, degree=2*(degree+1)) oseen = domain.integral('density ubasis_ni u_i,j uinf_j' @ ns, geometry=ns.x, degree=2*(degree+1)) convec = domain.integral('density ubasis_ni u_i,j u_j' @ ns, geometry=ns.x, degree=3*(degree+1)) inertia = domain.integral('density ubasis_ni u_i' @ ns, geometry=ns.x, degree=2*(degree+1)) # constrain full velocity vector at inflow sqr = domain.boundary['inflow'].integral('(u_i - uinf_i) (u_i - uinf_i)' @ ns, geometry=ns.x, degree=9) cons = solver.optimize('lhs', sqr, droptol=1e-15) # solve unsteady navier-stokes equations, starting from stationary oseen flow lhs0 = solver.solve_linear('lhs', res+oseen, constrain=cons) makeplots = MakePlots(domain, ns, timestep=timestep, rotation=rotation) if withplots else lambda *args: None for istep, lhs in log.enumerate('timestep', solver.impliciteuler('lhs', residual=res+convec, inertia=inertia, lhs0=lhs0, timestep=timestep, constrain=cons, newtontol=1e-10)): makeplots(lhs) if istep * timestep >= tmax: break return lhs0, lhs
def main( nelems: 'number of elements' = 20, epsilon: 'epsilon, 0 for automatic (based on nelems)' = 0, timestep: 'time step' = .01, maxtime: 'end time' = 1., theta: 'contact angle (degrees)' = 90, init: 'initial condition (random/bubbles)' = 'random', figures: 'create figures' = True, ): mineps = 1. / nelems if not epsilon: log.info('setting epsilon={}'.format(mineps)) epsilon = mineps elif epsilon < mineps: log.warning('epsilon under crititical threshold: {} < {}'.format( epsilon, mineps)) # create namespace ns = function.Namespace() ns.epsilon = epsilon ns.ewall = .5 * numpy.cos(theta * numpy.pi / 180) # construct mesh xnodes = ynodes = numpy.linspace(0, 1, nelems + 1) domain, ns.x = mesh.rectilinear([xnodes, ynodes]) # prepare bases ns.cbasis, ns.mubasis = function.chain( [domain.basis('spline', degree=2), domain.basis('spline', degree=2)]) # polulate namespace ns.c = 'cbasis_n ?lhs_n' ns.c0 = 'cbasis_n ?lhs0_n' ns.mu = 'mubasis_n ?lhs_n' ns.f = '(6 c0 - 2 c0^3 - 4 c) / epsilon^2' # construct initial condition if init == 'random': numpy.random.seed(0) lhs0 = numpy.random.normal(0, .5, ns.cbasis.shape) elif init == 'bubbles': R1 = .25 R2 = numpy.sqrt(.5) * R1 # area2 = .5 * area1 ns.cbubble1 = function.tanh( (R1 - function.norm2(ns.x - (.5 + R2 / numpy.sqrt(2) + .8 * ns.epsilon))) / ns.epsilon) ns.cbubble2 = function.tanh( (R2 - function.norm2(ns.x - (.5 - R1 / numpy.sqrt(2) - .8 * ns.epsilon))) / ns.epsilon) sqr = domain.integral('(c - cbubble1 - cbubble2 - 1)^2 + mu^2' @ ns, geometry=ns.x, degree=4) lhs0 = solver.optimize('lhs', sqr) else: raise Exception('unknown init %r' % init) # construct residual res = domain.integral( 'epsilon^2 cbasis_n,k mu_,k + mubasis_n (mu + f) - mubasis_n,k c_,k' @ ns, geometry=ns.x, degree=4) res -= domain.boundary.integral('mubasis_n ewall' @ ns, geometry=ns.x, degree=4) inertia = domain.integral('cbasis_n c' @ ns, geometry=ns.x, degree=4) # solve time dependent problem nsteps = numeric.round(maxtime / timestep) makeplots = MakePlots(domain, nsteps, ns) if figures else lambda *args: None for istep, lhs in log.enumerate( 'timestep', solver.impliciteuler('lhs', target0='lhs0', residual=res, inertia=inertia, timestep=timestep, lhs0=lhs0)): makeplots(lhs) if istep == nsteps: break return lhs0, lhs
def main( nelems: 'number of elements' = 12, viscosity: 'fluid viscosity' = 1e-2, density: 'fluid density' = 1, tol: 'solver tolerance' = 1e-12, rotation: 'cylinder rotation speed' = 0, timestep: 'time step' = 1/24, maxradius: 'approximate domain size' = 25, tmax: 'end time' = numpy.inf, degree: 'polynomial degree' = 2, figures: 'create figures' = True, ): log.user('reynolds number: {:.1f}'.format(density / viscosity)) # based on unit length and velocity # create namespace ns = function.Namespace() ns.uinf = 1, 0 ns.density = density ns.viscosity = viscosity # construct mesh rscale = numpy.pi / nelems melems = numpy.ceil(numpy.log(2*maxradius) / rscale).astype(int) log.info('creating {}x{} mesh, outer radius {:.2f}'.format(melems, 2*nelems, .5*numpy.exp(rscale*melems))) domain, x0 = mesh.rectilinear([range(melems+1),numpy.linspace(0,2*numpy.pi,2*nelems+1)], periodic=(1,)) rho, phi = x0 phi += 1e-3 # tiny nudge (0.057 deg) to break element symmetry radius = .5 * function.exp(rscale * rho) ns.x = radius * function.trigtangent(phi) domain = domain.withboundary(inner='left', inflow=domain.boundary['right'].select(-ns.uinf.dotnorm(ns.x), ischeme='gauss1')) # prepare bases (using piola transformation to maintain u/p compatibility) J = ns.x.grad(x0) detJ = function.determinant(J) ns.unbasis, ns.utbasis, ns.pbasis = function.chain([ # compatible spaces using piola transformation domain.basis('spline', degree=(degree+1,degree), removedofs=((0,),None))[:,_] * J[:,0] / detJ, domain.basis('spline', degree=(degree,degree+1))[:,_] * J[:,1] / detJ, domain.basis('spline', degree=degree) / detJ, ]) ns.ubasis_ni = 'unbasis_ni + utbasis_ni' # populate namespace ns.u_i = 'ubasis_ni ?lhs_n' ns.p = 'pbasis_n ?lhs_n' ns.sigma_ij = 'viscosity (u_i,j + u_j,i) - p δ_ij' ns.hinner = 2 * numpy.pi / nelems ns.c = 5 * (degree+1) / ns.hinner ns.nietzsche_ni = 'viscosity (c ubasis_ni - (ubasis_ni,j + ubasis_nj,i) n_j)' ns.ucyl = -.5 * rotation * function.trignormal(phi) # create residual vector components res = domain.integral('ubasis_ni,j sigma_ij + pbasis_n u_k,k' @ ns, geometry=ns.x, degree=2*(degree+1)) res += domain.boundary['inner'].integral('nietzsche_ni (u_i - ucyl_i)' @ ns, geometry=ns.x, degree=2*(degree+1)) oseen = domain.integral('density ubasis_ni u_i,j uinf_j' @ ns, geometry=ns.x, degree=2*(degree+1)) convec = domain.integral('density ubasis_ni u_i,j u_j' @ ns, geometry=ns.x, degree=3*(degree+1)) inertia = domain.integral('density ubasis_ni u_i' @ ns, geometry=ns.x, degree=2*(degree+1)) # constrain full velocity vector at inflow sqr = domain.boundary['inflow'].integral('(u_i - uinf_i) (u_i - uinf_i)' @ ns, geometry=ns.x, degree=9) cons = solver.optimize('lhs', sqr, droptol=1e-15) # solve unsteady navier-stokes equations, starting from stationary oseen flow lhs0 = solver.solve_linear('lhs', res+oseen, constrain=cons) makeplots = MakePlots(domain, ns, timestep=timestep, rotation=rotation) if figures else lambda *args: None for istep, lhs in log.enumerate('timestep', solver.impliciteuler('lhs', residual=res+convec, inertia=inertia, lhs0=lhs0, timestep=timestep, constrain=cons, newtontol=1e-10)): makeplots(lhs) if istep * timestep >= tmax: break return lhs0, lhs
def main( nelems: 'number of elements' = 20, epsilon: 'epsilon, 0 for automatic (based on nelems)' = 0, timestep: 'time step' = .01, maxtime: 'end time' = 1., theta: 'contact angle (degrees)' = 90, init: 'initial condition (random/bubbles)' = 'random', withplots: 'create plots' = True, ): mineps = 1./nelems if not epsilon: log.info('setting epsilon={}'.format(mineps)) epsilon = mineps elif epsilon < mineps: log.warning('epsilon under crititical threshold: {} < {}'.format(epsilon, mineps)) # create namespace ns = function.Namespace() ns.epsilon = epsilon ns.ewall = .5 * numpy.cos( theta * numpy.pi / 180 ) # construct mesh xnodes = ynodes = numpy.linspace(0,1,nelems+1) domain, ns.x = mesh.rectilinear( [ xnodes, ynodes ] ) # prepare bases ns.cbasis, ns.mubasis = function.chain([ domain.basis('spline', degree=2), domain.basis('spline', degree=2) ]) # polulate namespace ns.c = 'cbasis_n ?lhs_n' ns.c0 = 'cbasis_n ?lhs0_n' ns.mu = 'mubasis_n ?lhs_n' ns.f = '(6 c0 - 2 c0^3 - 4 c) / epsilon^2' # construct initial condition if init == 'random': numpy.random.seed(0) lhs0 = numpy.random.normal(0, .5, ns.cbasis.shape) elif init == 'bubbles': R1 = .25 R2 = numpy.sqrt(.5) * R1 # area2 = .5 * area1 ns.cbubble1 = function.tanh((R1-function.norm2(ns.x-(.5+R2/numpy.sqrt(2)+.8*ns.epsilon)))/ns.epsilon) ns.cbubble2 = function.tanh((R2-function.norm2(ns.x-(.5-R1/numpy.sqrt(2)-.8*ns.epsilon)))/ns.epsilon) sqr = domain.integral('(c - cbubble1 - cbubble2 - 1)^2 + mu^2' @ ns, geometry=ns.x, degree=4) lhs0 = solver.optimize('lhs', sqr) else: raise Exception( 'unknown init %r' % init ) # construct residual res = domain.integral('epsilon^2 cbasis_n,k mu_,k + mubasis_n (mu + f) - mubasis_n,k c_,k' @ ns, geometry=ns.x, degree=4) res -= domain.boundary.integral('mubasis_n ewall' @ ns, geometry=ns.x, degree=4) inertia = domain.integral('cbasis_n c' @ ns, geometry=ns.x, degree=4) # solve time dependent problem nsteps = numeric.round(maxtime/timestep) makeplots = MakePlots(domain, nsteps, ns) if withplots else lambda *args: None for istep, lhs in log.enumerate('timestep', solver.impliciteuler('lhs', target0='lhs0', residual=res, inertia=inertia, timestep=timestep, lhs0=lhs0)): makeplots(lhs) if istep == nsteps: break return lhs0, lhs