def setUp(self): super().setUp() domain, geom = mesh.rectilinear([numpy.linspace(0,1,9)] * 2) gauss = domain.sample('gauss', 5) uin = geom[1] * (1-geom[1]) dx = function.J(geom, 2) ubasis = domain.basis('std', degree=2) pbasis = domain.basis('std', degree=1) if self.single: ubasis, pbasis = function.chain([ubasis.vector(2), pbasis]) dofs = function.Argument('dofs', [len(ubasis)]) u = ubasis.dot(dofs) p = pbasis.dot(dofs) dofs = 'dofs' ures = gauss.integral((self.viscosity * (ubasis.grad(geom) * (u.grad(geom) + u.grad(geom).T)).sum([-1,-2]) - ubasis.div(geom) * p) * dx) dres = gauss.integral((ubasis * (u.grad(geom) * u).sum(-1)).sum(-1) * dx) else: u = (ubasis[:,numpy.newaxis] * function.Argument('dofs', [len(ubasis), 2])).sum(0) p = (pbasis * function.Argument('pdofs', [len(pbasis)])).sum(0) dofs = 'dofs', 'pdofs' ures = gauss.integral((self.viscosity * (ubasis[:,numpy.newaxis].grad(geom) * (u.grad(geom) + u.grad(geom).T)).sum(-1) - ubasis.grad(geom) * p) * dx) dres = gauss.integral(ubasis[:,numpy.newaxis] * (u.grad(geom) * u).sum(-1) * dx) pres = gauss.integral((pbasis * u.div(geom)) * dx) cons = solver.optimize('dofs', domain.boundary['top,bottom'].integral((u**2).sum(), degree=4), droptol=1e-10) cons = solver.optimize('dofs', domain.boundary['left'].integral((u[0]-uin)**2 + u[1]**2, degree=4), droptol=1e-10, constrain=cons) self.cons = cons if self.single else {'dofs': cons} stokes = solver.solve_linear(dofs, residual=ures + pres if self.single else [ures, pres], constrain=self.cons) self.arguments = dict(dofs=stokes) if self.single else stokes self.residual = ures + dres + pres if self.single else [ures + dres, pres] inertia = gauss.integral(.5 * (u**2).sum(-1) * dx).derivative('dofs') self.inertia = inertia if self.single else [inertia, None] self.tol = 1e-10 self.dofs = dofs self.frozen = types.frozenarray if self.single else solver.argdict
def main(nelems:int, etype:str, btype:str, degree:int, poisson:float, angle:float, restol:float, trim:bool): ''' Deformed hyperelastic plate. .. arguments:: nelems [10] Number of elements along edge. etype [square] Type of elements (square/triangle/mixed). btype [std] Type of basis function (std/spline). degree [1] Polynomial degree. poisson [.25] Poisson's ratio, nonnegative and stricly smaller than 1/2. angle [20] Rotation angle for right clamp (degrees). restol [1e-10] Newton tolerance. trim [no] Create circular-shaped hole. ''' domain, geom = mesh.unitsquare(nelems, etype) if trim: domain = domain.trim(function.norm2(geom-.5)-.2, maxrefine=2) bezier = domain.sample('bezier', 5) ns = function.Namespace(fallback_length=domain.ndims) ns.x = geom ns.angle = angle * numpy.pi / 180 ns.lmbda = 2 * poisson ns.mu = 1 - 2 * poisson ns.ubasis = domain.basis(btype, degree=degree) ns.u_i = 'ubasis_k ?lhs_ki' ns.X_i = 'x_i + u_i' ns.strain_ij = '.5 (d(u_i, x_j) + d(u_j, x_i))' ns.energy = 'lmbda strain_ii strain_jj + 2 mu strain_ij strain_ij' sqr = domain.boundary['left'].integral('u_k u_k J(x)' @ ns, degree=degree*2) sqr += domain.boundary['right'].integral('((u_0 - x_1 sin(2 angle) - cos(angle) + 1)^2 + (u_1 - x_1 (cos(2 angle) - 1) + sin(angle))^2) J(x)' @ ns, degree=degree*2) cons = solver.optimize('lhs', sqr, droptol=1e-15) energy = domain.integral('energy J(x)' @ ns, degree=degree*2) lhs0 = solver.optimize('lhs', energy, constrain=cons) X, energy = bezier.eval(['X', 'energy'] @ ns, lhs=lhs0) export.triplot('linear.png', X, energy, tri=bezier.tri, hull=bezier.hull) ns.strain_ij = '.5 (d(u_i, x_j) + d(u_j, x_i) + d(u_k, x_i) d(u_k, x_j))' ns.energy = 'lmbda strain_ii strain_jj + 2 mu strain_ij strain_ij' energy = domain.integral('energy J(x)' @ ns, degree=degree*2) lhs1 = solver.minimize('lhs', energy, arguments=dict(lhs=lhs0), constrain=cons).solve(restol) X, energy = bezier.eval(['X', 'energy'] @ ns, lhs=lhs1) export.triplot('nonlinear.png', X, energy, tri=bezier.tri, hull=bezier.hull) return lhs0, lhs1
def test_unknowntarget(self): err = self.domain.integral('(sqrt(1 - u) - .5)^2' @ self.ns, degree=2) with self.assertRaises(ValueError): dofs = solver.optimize(['dofs', 'other'], err, tol=1e-10) dofs = solver.optimize(['dofs', 'other'], err, tol=1e-10, droptol=1e-10) self.assertEqual(list(dofs), ['dofs']) dofs = solver.optimize(['other'], err, tol=1e-10, droptol=1e-10) self.assertEqual(dofs, {}) with self.assertRaises(KeyError): dofs = solver.optimize('other', err, tol=1e-10, droptol=1e-10)
def main(nelems: int, etype: str, degree: int, reynolds: float): ''' Driven cavity benchmark problem. .. arguments:: nelems [12] Number of elements along edge. etype [square] Element type (square/triangle/mixed). degree [2] Polynomial degree for velocity; the pressure space is one degree less. reynolds [1000] Reynolds number, taking the domain size as characteristic length. ''' domain, geom = mesh.unitsquare(nelems, etype) ns = function.Namespace() ns.Re = reynolds ns.x = geom ns.ubasis, ns.pbasis = function.chain([ domain.basis('std', degree=degree).vector(2), domain.basis('std', degree=degree - 1), ]) ns.u_i = 'ubasis_ni ?lhs_n' ns.p = 'pbasis_n ?lhs_n' ns.stress_ij = '(u_i,j + u_j,i) / Re - p δ_ij' sqr = domain.boundary.integral('u_k u_k d:x' @ ns, degree=degree * 2) wallcons = solver.optimize('lhs', sqr, droptol=1e-15) sqr = domain.boundary['top'].integral('(u_0 - 1)^2 d:x' @ ns, degree=degree * 2) lidcons = solver.optimize('lhs', sqr, droptol=1e-15) cons = numpy.choose(numpy.isnan(lidcons), [lidcons, wallcons]) cons[-1] = 0 # pressure point constraint res = domain.integral('(ubasis_ni,j stress_ij + pbasis_n u_k,k) d:x' @ ns, degree=degree * 2) with treelog.context('stokes'): lhs0 = solver.solve_linear('lhs', res, constrain=cons) postprocess(domain, ns, lhs=lhs0) res += domain.integral( '.5 (ubasis_ni u_i,j - ubasis_ni,j u_i) u_j d:x' @ ns, degree=degree * 3) with treelog.context('navierstokes'): lhs1 = solver.newton('lhs', res, lhs0=lhs0, constrain=cons).solve(tol=1e-10) postprocess(domain, ns, lhs=lhs1) return lhs0, lhs1
def main(nelems:int, etype:str, degree:int, reynolds:float): ''' Driven cavity benchmark problem. .. arguments:: nelems [12] Number of elements along edge. etype [square] Element type (square/triangle/mixed). degree [2] Polynomial degree for velocity; the pressure space is one degree less. reynolds [1000] Reynolds number, taking the domain size as characteristic length. ''' domain, geom = mesh.unitsquare(nelems, etype) ns = function.Namespace() ns.Re = reynolds ns.x = geom ns.ubasis = domain.basis('std', degree=degree).vector(domain.ndims) ns.pbasis = domain.basis('std', degree=degree-1) ns.u_i = 'ubasis_ni ?u_n' ns.p = 'pbasis_n ?p_n' ns.stress_ij = '(d(u_i, x_j) + d(u_j, x_i)) / Re - p δ_ij' usqr = domain.boundary.integral('u_k u_k d:x' @ ns, degree=degree*2) wallcons = solver.optimize('u', usqr, droptol=1e-15) usqr = domain.boundary['top'].integral('(u_0 - 1)^2 d:x' @ ns, degree=degree*2) lidcons = solver.optimize('u', usqr, droptol=1e-15) ucons = numpy.choose(numpy.isnan(lidcons), [lidcons, wallcons]) pcons = numpy.zeros(len(ns.pbasis), dtype=bool) pcons[-1] = True # constrain pressure to zero in a point cons = dict(u=ucons, p=pcons) ures = domain.integral('d(ubasis_ni, x_j) stress_ij d:x' @ ns, degree=degree*2) pres = domain.integral('pbasis_n d(u_k, x_k) d:x' @ ns, degree=degree*2) with treelog.context('stokes'): state0 = solver.solve_linear(('u', 'p'), (ures, pres), constrain=cons) postprocess(domain, ns, **state0) ures += domain.integral('.5 (ubasis_ni d(u_i, x_j) - d(ubasis_ni, x_j) u_i) u_j d:x' @ ns, degree=degree*3) with treelog.context('navierstokes'): state1 = solver.newton(('u', 'p'), (ures, pres), arguments=state0, constrain=cons).solve(tol=1e-10) postprocess(domain, ns, **state1) return state0, state1
def main(viscosity=1.3e-3, density=1e3, pout=223e5, uw=-0.01, nelems=10): # viscosity = 1.3e-3 # density = 1e3 # pout = 223e5 # nelems = 10 # uw = -0.01 domain, geom = mesh.rectilinear([numpy.linspace(0, 1, nelems), numpy.linspace(1, 2, nelems), [0, 2 * numpy.pi]], periodic=[2]) domain = domain.withboundary(inner='bottom', outer='top') ns = function.Namespace() ns.y, ns.r, ns.θ = geom ns.x_i = '<r cos(θ), y, r sin(θ)>_i' ns.uybasis, ns.urbasis, ns.pbasis = function.chain([ domain.basis('std', degree=3, removedofs=((0,-1), None, None)), # remove normal component at y=0 and y=1 domain.basis('std', degree=3, removedofs=((0,-1), None, None)), # remove tangential component at y=0 (no slip) domain.basis('std', degree=2)]) ns.ubasis_ni = '<urbasis_n cos(θ), uybasis_n, urbasis_n sin(θ)>_i' ns.viscosity = viscosity ns.density = density ns.u_i = 'ubasis_ni ?lhs_n' ns.p = 'pbasis_n ?lhs_n' ns.sigma_ij = 'viscosity (u_i,j + u_j,i) - p δ_ij' ns.pout = pout ns.uw = uw ns.uw_i = 'uw <cos(phi), 0, sin(phi)>_i' ns.tout_i = '-pout n_i' ns.uw_i = 'uw n_i' # uniform outflow res = domain.integral('(viscosity ubasis_ni,j u_i,j - p ubasis_ni,i + pbasis_n u_k,k) d:x' @ ns, degree=6) # res -= domain[1].boundary['inner'].integral('ubasis_ni tout_i d:x' @ ns, degree=6) sqr = domain.boundary['inner'].integral('(u_i - uw_i) (u_i - uw_i) d:x' @ ns, degree=6) # sqr = domain.boundary['outer'].integral('(u_i - uin_i) (u_i - uin_i) d:x' @ ns, degree=6) sqr -= domain.boundary['outer'].integral('(p - pout) (p - pout) d:x' @ ns, degree=6) cons = solver.optimize('lhs', sqr, droptol=1e-15) lhs = solver.solve_linear('lhs', res, constrain=cons) plottopo = domain[:, :, 0:].boundary['back'] bezier = plottopo.sample('bezier', 10) r, y, p, u = bezier.eval([ns.r, ns.y, ns.p, function.norm2(ns.u)], lhs=lhs) with export.mplfigure('pressure.png', dpi=800) as fig: ax = fig.add_subplot(111, title='pressure', aspect=1) ax.autoscale(enable=True, axis='both', tight=True) im = ax.tripcolor(r, y, bezier.tri, p, shading='gouraud', cmap='jet') ax.add_collection( collections.LineCollection(numpy.array([y, r]).T[bezier.hull], colors='k', linewidths=0.2, alpha=0.2)) fig.colorbar(im) uniform = plottopo.sample('uniform', 1) r_, y_, uv = uniform.eval([ns.r, ns.y, ns.u], lhs=lhs) with export.mplfigure('velocity.png', dpi=800) as fig: ax = fig.add_subplot(111, title='Velocity', aspect=1) ax.autoscale(enable=True, axis='both', tight=True) im = ax.tripcolor(r, y, bezier.tri, u, shading='gouraud', cmap='jet') ax.quiver(r_, y_, uv[:, 0], uv[:, 1], angles='xy', scale_units='xy') fig.colorbar(im)
def setUp(self): super().setUp() domain, geom = mesh.rectilinear([numpy.linspace(0, 1, 9)] * 2) ubasis = domain.basis('std', degree=2) if self.vector: u = ubasis.vector(2).dot( function.Argument('dofs', [len(ubasis) * 2])) else: u = (ubasis[:, numpy.newaxis] * function.Argument('dofs', [len(ubasis), 2])).sum(0) Geom = geom * [1.1, 1] + u self.cons = solver.optimize('dofs', domain.boundary['left,right'].integral( (u**2).sum(0), degree=4), droptol=1e-15) self.boolcons = ~numpy.isnan(self.cons) strain = .5 * (function.outer(Geom.grad(geom), axis=1).sum(0) - function.eye(2)) self.energy = domain.integral( ((strain**2).sum([0, 1]) + 20 * (function.determinant(Geom.grad(geom)) - 1)**2) * function.J(geom), degree=6) self.residual = self.energy.derivative('dofs') self.tol = 1e-10
def postprocess(domain, ns, every=.05, spacing=.01, **arguments): div = domain.integral('d(u_k, x_k)^2 J(x)' @ ns, degree=1).eval(**arguments)**.5 treelog.info('velocity divergence: {:.2e}'.format(div)) # confirm that velocity is pointwise divergence-free ns = ns.copy_() # copy namespace so that we don't modify the calling argument ns.streambasis = domain.basis('std', degree=2)[1:] # remove first dof to obtain non-singular system ns.stream = 'streambasis_n ?streamdofs_n' # stream function ns.ε = function.levicivita(2) sqr = domain.integral('sum:i((u_i - ε_ij d(stream, x_j))^2) J(x)' @ ns, degree=4) arguments['streamdofs'] = solver.optimize('streamdofs', sqr, arguments=arguments) # compute streamlines bezier = domain.sample('bezier', 9) x, u, p, stream = bezier.eval(['x', 'norm2(u)', 'p', 'stream'] @ ns, **arguments) with export.mplfigure('flow.png') as fig: # plot velocity as field, pressure as contours, streamlines as dashed ax = fig.add_axes([.1,.1,.8,.8], yticks=[], aspect='equal') import matplotlib.collections ax.add_collection(matplotlib.collections.LineCollection(x[bezier.hull], colors='w', linewidths=.5, alpha=.2)) ax.tricontour(x[:,0], x[:,1], bezier.tri, stream, 16, colors='k', linestyles='dotted', linewidths=.5, zorder=9) caxu = fig.add_axes([.1,.1,.03,.8], title='velocity') imu = ax.tripcolor(x[:,0], x[:,1], bezier.tri, u, shading='gouraud', cmap='jet') fig.colorbar(imu, cax=caxu) caxu.yaxis.set_ticks_position('left') caxp = fig.add_axes([.87,.1,.03,.8], title='pressure') imp = ax.tricontour(x[:,0], x[:,1], bezier.tri, p, 16, cmap='gray', linestyles='solid') fig.colorbar(imp, cax=caxp)
def test_nonlinear(self): err = self.domain.boundary['bottom'].integral( '(u + .25 u^3 - 1.25)^2 d:geom' @ self.ns, degree=6) cons = solver.optimize('dofs', err, droptol=1e-15, tol=1e-15) numpy.testing.assert_almost_equal( cons, numpy.take([1, numpy.nan], [0, 1, 1, 0, 1, 1, 0, 1, 1]), decimal=15)
def test_linear(self): ns = self.ns ns.u = 'ubasis_n ?dofs_n' err = self.domain.boundary['bottom'].integral(ns.eval_('(u - 1)^2'), geometry=ns.geom, degree=2) cons = solver.optimize('dofs', err, droptol=1e-15) isnan = numpy.isnan(cons) self.assertTrue(numpy.equal(isnan, [0,1,1,0,1,1,0,1,1]).all()) numpy.testing.assert_almost_equal(cons[~isnan], 1, decimal=15)
def test_nonlinear_multipleroots(self): ns = self.ns ns.u = 'ubasis_n ?dofs_n' ns.gu = 'u + u^2' err = self.domain.boundary['bottom'].integral(ns.eval_('(gu - .75)^2'), geometry=ns.geom, degree=2) cons = solver.optimize('dofs', err, droptol=1e-15, lhs0=numpy.ones(len(ns.ubasis)), newtontol=1e-10) isnan = numpy.isnan(cons) self.assertTrue(numpy.equal(isnan, [0,1,1,0,1,1,0,1,1]).all()) numpy.testing.assert_almost_equal(cons[~isnan], .5, decimal=15)
def test_linear(self): ns = self.ns ns.u = 'ubasis_n ?dofs_n' err = self.domain.boundary['bottom'].integral(ns.eval_('(u - 1)^2'), geometry=ns.geom, degree=2) cons = solver.optimize('dofs', err, droptol=1e-15) isnan = numpy.isnan(cons) self.assertTrue(numpy.equal(isnan, [0, 1, 1, 0, 1, 1, 0, 1, 1]).all()) numpy.testing.assert_almost_equal(cons[~isnan], 1, decimal=15)
def test_nonlinear_multipleroots(self): err = self.domain.boundary['bottom'].integral( '(u + u^2 - .75)^2' @ self.ns, degree=2) cons = solver.optimize('dofs', err, droptol=1e-15, lhs0=numpy.ones(len(self.ns.ubasis)), tol=1e-10) numpy.testing.assert_almost_equal( cons, numpy.take([.5, numpy.nan], [0, 1, 1, 0, 1, 1, 0, 1, 1]), decimal=15)
def postprocess(domain, ns, every=.05, spacing=.01, **arguments): ns = ns.copy_( ) # copy namespace so that we don't modify the calling argument ns.streambasis = domain.basis( 'std', degree=2)[1:] # remove first dof to obtain non-singular system ns.stream = 'streambasis_n ?streamdofs_n' # stream function sqr = domain.integral( '((u_0 - stream_,1)^2 + (u_1 + stream_,0)^2) d:x' @ ns, degree=4) arguments['streamdofs'] = solver.optimize( 'streamdofs', sqr, arguments=arguments) # compute streamlines bezier = domain.sample('bezier', 9) x, u, p, stream = bezier.eval(['x_i', 'sqrt(u_k u_k)', 'p', 'stream'] @ ns, **arguments) with export.mplfigure( 'flow.png' ) as fig: # plot velocity as field, pressure as contours, streamlines as dashed ax = fig.add_axes([.1, .1, .8, .8], yticks=[], aspect='equal') import matplotlib.collections ax.add_collection( matplotlib.collections.LineCollection(x[bezier.hull], colors='w', linewidths=.5, alpha=.2)) ax.tricontour(x[:, 0], x[:, 1], bezier.tri, stream, 16, colors='k', linestyles='dotted', linewidths=.5, zorder=9) caxu = fig.add_axes([.1, .1, .03, .8], title='velocity') imu = ax.tripcolor(x[:, 0], x[:, 1], bezier.tri, u, shading='gouraud', cmap='jet') fig.colorbar(imu, cax=caxu) caxu.yaxis.set_ticks_position('left') caxp = fig.add_axes([.87, .1, .03, .8], title='pressure') imp = ax.tricontour(x[:, 0], x[:, 1], bezier.tri, p, 16, cmap='gray', linestyles='solid') fig.colorbar(imp, cax=caxp)
def main( nelems: 'number of elements' = 12, lmbda: 'first lamé constant' = 1., mu: 'second lamé constant' = 1., degree: 'polynomial degree' = 2, withplots: 'create plots' = True, solvetol: 'solver tolerance' = 1e-10, ): # construct mesh verts = numpy.linspace(0, 1, nelems + 1) domain, geom = mesh.rectilinear([verts, verts]) # create namespace ns = function.Namespace(default_geometry_name='x0') ns.x0 = geom ns.basis = domain.basis('spline', degree=degree).vector(2) ns.u_i = 'basis_ni ?lhs_n' ns.x_i = 'x0_i + u_i' ns.lmbda = lmbda ns.mu = mu ns.strain_ij = '(u_i,j + u_j,i) / 2' ns.stress_ij = 'lmbda strain_kk δ_ij + 2 mu strain_ij' # construct dirichlet boundary constraints sqr = domain.boundary['left'].integral('u_k u_k' @ ns, geometry=ns.x0, degree=2) sqr += domain.boundary['right'].integral('(u_0 - .5)^2' @ ns, geometry=ns.x0, degree=2) cons = solver.optimize('lhs', sqr, droptol=1e-15) # construct residual res = domain.integral('basis_ni,j stress_ij' @ ns, geometry=ns.x0, degree=2) # solve system and substitute the solution in the namespace lhs = solver.solve_linear('lhs', res, constrain=cons) ns |= dict(lhs=lhs) # plot solution if withplots: points, colors = domain.elem_eval([ns.x, ns.stress[0, 1]], ischeme='bezier3', separate=True) with plot.PyPlot('stress', ndigits=0) as plt: plt.mesh(points, colors, tight=False) plt.colorbar() return lhs, cons
def test_nonlinear_multipleroots(self): ns = self.ns ns.u = 'ubasis_n ?dofs_n' ns.gu = 'u + u^2' err = self.domain.boundary['bottom'].integral(ns.eval_('(gu - .75)^2'), geometry=ns.geom, degree=2) cons = solver.optimize('dofs', err, droptol=1e-15, lhs0=numpy.ones(len(ns.ubasis)), newtontol=1e-10) isnan = numpy.isnan(cons) self.assertTrue(numpy.equal(isnan, [0, 1, 1, 0, 1, 1, 0, 1, 1]).all()) numpy.testing.assert_almost_equal(cons[~isnan], .5, decimal=15)
def main(nelems: int, etype: str, btype: str, degree: int, poisson: float): ''' Horizontally loaded linear elastic plate. .. arguments:: nelems [10] Number of elements along edge. etype [square] Type of elements (square/triangle/mixed). btype [std] Type of basis function (std/spline), with availability depending on the configured element type. degree [1] Polynomial degree. poisson [.25] Poisson's ratio, nonnegative and strictly smaller than 1/2. ''' domain, geom = mesh.unitsquare(nelems, etype) ns = function.Namespace() ns.x = geom ns.basis = domain.basis(btype, degree=degree).vector(2) ns.u_i = 'basis_ni ?lhs_n' ns.X_i = 'x_i + u_i' ns.lmbda = 2 * poisson ns.mu = 1 - 2 * poisson ns.strain_ij = '(d(u_i, x_j) + d(u_j, x_i)) / 2' ns.stress_ij = 'lmbda strain_kk δ_ij + 2 mu strain_ij' sqr = domain.boundary['left'].integral('u_k u_k J(x)' @ ns, degree=degree * 2) sqr += domain.boundary['right'].integral('(u_0 - .5)^2 J(x)' @ ns, degree=degree * 2) cons = solver.optimize('lhs', sqr, droptol=1e-15) res = domain.integral('d(basis_ni, x_j) stress_ij J(x)' @ ns, degree=degree * 2) lhs = solver.solve_linear('lhs', res, constrain=cons) bezier = domain.sample('bezier', 5) X, sxy = bezier.eval(['X', 'stress_01'] @ ns, lhs=lhs) export.triplot('shear.png', X, sxy, tri=bezier.tri, hull=bezier.hull) return cons, lhs
def main( nelems: 'number of elements' = 10, degree: 'polynomial degree' = 1, basistype: 'basis function' = 'spline', solvetol: 'solver tolerance' = 1e-10, figures: 'create figures' = True, ): # construct mesh verts = numpy.linspace(0, numpy.pi/2, nelems+1) domain, geom = mesh.rectilinear([verts, verts]) # create namespace ns = function.Namespace() ns.x = geom ns.basis = domain.basis(basistype, degree=degree) ns.u = 'basis_n ?lhs_n' ns.fx = 'sin(x_0)' ns.fy = 'exp(x_1)' # construct residual res = domain.integral('-basis_n,i u_,i' @ ns, geometry=ns.x, degree=degree*2) res += domain.boundary['top'].integral('basis_n fx fy' @ ns, geometry=ns.x, degree=degree*2) # construct dirichlet constraints sqr = domain.boundary['left'].integral('u^2' @ ns, geometry=ns.x, degree=degree*2) sqr += domain.boundary['bottom'].integral('(u - fx)^2' @ ns, geometry=ns.x, degree=degree*2) cons = solver.optimize('lhs', sqr, droptol=1e-15) # find lhs such that res == 0 and substitute this lhs in the namespace lhs = solver.solve_linear('lhs', res, constrain=cons) ns = ns(lhs=lhs) # plot solution if figures: points, colors = domain.elem_eval([ns.x, ns.u], ischeme='bezier9', separate=True) with plot.PyPlot('solution', index=nelems) as plt: plt.mesh(points, colors, cmap='jet') plt.colorbar() # evaluate error against exact solution fx fy err = domain.integrate('(u - fx fy)^2' @ ns, geometry=ns.x, degree=degree*2)**.5 log.user('L2 error: {:.2e}'.format(err)) return cons, lhs, err
def main( nelems: 'number of elements' = 12, lmbda: 'first lamé constant' = 1., mu: 'second lamé constant' = 1., degree: 'polynomial degree' = 2, withplots: 'create plots' = True, solvetol: 'solver tolerance' = 1e-10, ): # construct mesh verts = numpy.linspace(0, 1, nelems+1) domain, geom = mesh.rectilinear([verts,verts]) # create namespace ns = function.Namespace(default_geometry_name='x0') ns.x0 = geom ns.basis = domain.basis('spline', degree=degree).vector(2) ns.u_i = 'basis_ni ?lhs_n' ns.x_i = 'x0_i + u_i' ns.lmbda = lmbda ns.mu = mu ns.strain_ij = '(u_i,j + u_j,i) / 2' ns.stress_ij = 'lmbda strain_kk δ_ij + 2 mu strain_ij' # construct dirichlet boundary constraints sqr = domain.boundary['left'].integral('u_k u_k' @ ns, geometry=ns.x0, degree=2) sqr += domain.boundary['right'].integral('(u_0 - .5)^2' @ ns, geometry=ns.x0, degree=2) cons = solver.optimize('lhs', sqr, droptol=1e-15) # construct residual res = domain.integral('basis_ni,j stress_ij' @ ns, geometry=ns.x0, degree=2) # solve system and substitute the solution in the namespace lhs = solver.solve_linear('lhs', res, constrain=cons) ns |= dict(lhs=lhs) # plot solution if withplots: points, colors = domain.elem_eval([ns.x, ns.stress[0,1]], ischeme='bezier3', separate=True) with plot.PyPlot('stress', ndigits=0) as plt: plt.mesh(points, colors, tight=False) plt.colorbar() return lhs, cons
def main( nelems: 'number of elements' = 20, epsilon: 'epsilon, 0 for automatic (based on nelems)' = 0, timestep: 'time step' = .01, maxtime: 'end time' = 1., theta: 'contact angle (degrees)' = 90, init: 'initial condition (random/bubbles)' = 'random', figures: 'create figures' = True, ): mineps = 1. / nelems if not epsilon: log.info('setting epsilon={}'.format(mineps)) epsilon = mineps elif epsilon < mineps: log.warning('epsilon under crititical threshold: {} < {}'.format( epsilon, mineps)) # create namespace ns = function.Namespace() ns.epsilon = epsilon ns.ewall = .5 * numpy.cos(theta * numpy.pi / 180) # construct mesh xnodes = ynodes = numpy.linspace(0, 1, nelems + 1) domain, ns.x = mesh.rectilinear([xnodes, ynodes]) # prepare bases ns.cbasis, ns.mubasis = function.chain( [domain.basis('spline', degree=2), domain.basis('spline', degree=2)]) # polulate namespace ns.c = 'cbasis_n ?lhs_n' ns.c0 = 'cbasis_n ?lhs0_n' ns.mu = 'mubasis_n ?lhs_n' ns.f = '(6 c0 - 2 c0^3 - 4 c) / epsilon^2' # construct initial condition if init == 'random': numpy.random.seed(0) lhs0 = numpy.random.normal(0, .5, ns.cbasis.shape) elif init == 'bubbles': R1 = .25 R2 = numpy.sqrt(.5) * R1 # area2 = .5 * area1 ns.cbubble1 = function.tanh( (R1 - function.norm2(ns.x - (.5 + R2 / numpy.sqrt(2) + .8 * ns.epsilon))) / ns.epsilon) ns.cbubble2 = function.tanh( (R2 - function.norm2(ns.x - (.5 - R1 / numpy.sqrt(2) - .8 * ns.epsilon))) / ns.epsilon) sqr = domain.integral('(c - cbubble1 - cbubble2 - 1)^2 + mu^2' @ ns, geometry=ns.x, degree=4) lhs0 = solver.optimize('lhs', sqr) else: raise Exception('unknown init %r' % init) # construct residual res = domain.integral( 'epsilon^2 cbasis_n,k mu_,k + mubasis_n (mu + f) - mubasis_n,k c_,k' @ ns, geometry=ns.x, degree=4) res -= domain.boundary.integral('mubasis_n ewall' @ ns, geometry=ns.x, degree=4) inertia = domain.integral('cbasis_n c' @ ns, geometry=ns.x, degree=4) # solve time dependent problem nsteps = numeric.round(maxtime / timestep) makeplots = MakePlots(domain, nsteps, ns) if figures else lambda *args: None for istep, lhs in log.enumerate( 'timestep', solver.impliciteuler('lhs', target0='lhs0', residual=res, inertia=inertia, timestep=timestep, lhs0=lhs0)): makeplots(lhs) if istep == nsteps: break return lhs0, lhs
def main(nelems: int, etype: str, btype: str, degree: int, epsilon: typing.Optional[float], contactangle: float, timestep: float, mtol: float, seed: int, circle: bool, stab: stab): ''' Cahn-Hilliard equation on a unit square/circle. .. arguments:: nelems [20] Number of elements along domain edge. etype [square] Type of elements (square/triangle/mixed). btype [std] Type of basis function (std/spline), with availability depending on the configured element type. degree [2] Polynomial degree. epsilon [] Interface thickness; defaults to an automatic value based on the configured mesh density if left unspecified. contactangle [90] Wall contact angle in degrees. timestep [.01] Time step. mtol [.01] Threshold value for chemical potential peak to peak difference, used as a stop criterion. seed [0] Random seed for the initial condition. circle [no] Select circular domain as opposed to a unit square. stab [linear] Stabilization method (linear/optimal/none). ''' mineps = 1. / nelems if epsilon is None: treelog.info('setting epsilon={}'.format(mineps)) epsilon = mineps elif epsilon < mineps: treelog.warning('epsilon under crititical threshold: {} < {}'.format( epsilon, mineps)) domain, geom = mesh.unitsquare(nelems, etype) bezier = domain.sample('bezier', 5) # sample for plotting ns = function.Namespace() if not circle: ns.x = geom else: angle = (geom - .5) * (numpy.pi / 2) ns.x = function.sin(angle) * function.cos(angle)[[1, 0 ]] / numpy.sqrt(2) ns.epsilon = epsilon ns.ewall = .5 * numpy.cos(contactangle * numpy.pi / 180) ns.cbasis = ns.mbasis = domain.basis('std', degree=degree) ns.c = 'cbasis_n ?c_n' ns.dc = 'cbasis_n (?c_n - ?c0_n)' ns.m = 'mbasis_n ?m_n' ns.F = '.5 (c^2 - 1)^2 / epsilon^2' ns.dF = stab.value ns.dt = timestep nrg_mix = domain.integral('F J(x)' @ ns, degree=7) nrg_iface = domain.integral('.5 sum:k(d(c, x_k)^2) J(x)' @ ns, degree=7) nrg_wall = domain.boundary.integral('(abs(ewall) + c ewall) J(x)' @ ns, degree=7) nrg = nrg_mix + nrg_iface + nrg_wall + domain.integral( '(dF - m dc - .5 dt epsilon^2 sum:k(d(m, x_k)^2)) J(x)' @ ns, degree=7) numpy.random.seed(seed) state = dict(c=numpy.random.normal(0, .5, ns.cbasis.shape), m=numpy.random.normal(0, .5, ns.mbasis.shape)) # initial condition with treelog.iter.plain('timestep', itertools.count()) as steps: for istep in steps: E = sample.eval_integrals(nrg_mix, nrg_iface, nrg_wall, **state) treelog.user( 'energy: {0:.3f} ({1[0]:.0f}% mixture, {1[1]:.0f}% interface, {1[2]:.0f}% wall)' .format(sum(E), 100 * numpy.array(E) / sum(E))) x, c, m = bezier.eval(['x', 'c', 'm'] @ ns, **state) export.triplot('phase.png', x, c, tri=bezier.tri, clim=(-1, 1)) export.triplot('chempot.png', x, m, tri=bezier.tri) if numpy.ptp(m) < mtol: break state['c0'] = state['c'] state = solver.optimize(['c', 'm'], nrg, arguments=state, tol=1e-10) return state
def main(nelems: int, ndims: int, degree: int, timescale: float, newtontol: float, endtime: float): ''' Burgers equation on a 1D or 2D periodic domain. .. arguments:: nelems [20] Number of elements along a single dimension. ndims [1] Number of spatial dimensions. degree [1] Polynomial degree for discontinuous basis functions. timescale [.5] Fraction of timestep and element size: timestep=timescale/nelems. newtontol [1e-5] Newton tolerance. endtime [inf] Stopping time. ''' domain, geom = mesh.rectilinear([numpy.linspace(0, 1, nelems + 1)] * ndims, periodic=range(ndims)) ns = function.Namespace() ns.x = geom ns.basis = domain.basis('discont', degree=degree) ns.u = 'basis_n ?lhs_n' ns.f = '.5 u^2' ns.C = 1 res = domain.integral('-basis_n,0 f d:x' @ ns, degree=5) res += domain.interfaces.integral( '-[basis_n] n_0 ({f} - .5 C [u] n_0) d:x' @ ns, degree=degree * 2) inertia = domain.integral('basis_n u d:x' @ ns, degree=5) sqr = domain.integral( '(u - exp(-?y_i ?y_i)(y_i = 5 (x_i - 0.5_i)))^2 d:x' @ ns, degree=5) lhs0 = solver.optimize('lhs', sqr) timestep = timescale / nelems bezier = domain.sample('bezier', 7) with treelog.iter.plain( 'timestep', solver.impliciteuler('lhs', res, inertia, timestep=timestep, lhs0=lhs0, newtontol=newtontol)) as steps: for itime, lhs in enumerate(steps): x, u = bezier.eval(['x_i', 'u'] @ ns, lhs=lhs) export.triplot('solution.png', x, u, tri=bezier.tri, hull=bezier.hull, clim=(0, 1)) if itime * timestep >= endtime: break return lhs
def test_nanres(self): err = self.domain.integral('(sqrt(1 - u) - .5)^2' @ self.ns, degree=2) dofs = solver.optimize('dofs', err, tol=1e-10) numpy.testing.assert_almost_equal(dofs, .75)
def main(nrefine: int, traction: float, radius: float, poisson: float): ''' Horizontally loaded linear elastic plate with IGA hole. .. arguments:: nrefine [2] Number of uniform refinements starting from 1x2 base mesh. traction [.1] Far field traction (relative to Young's modulus). radius [.5] Cut-out radius. poisson [.3] Poisson's ratio, nonnegative and strictly smaller than 1/2. ''' # create the coarsest level parameter domain domain, geom0 = mesh.rectilinear([1, 2]) bsplinebasis = domain.basis('spline', degree=2) controlweights = numpy.ones(12) controlweights[1:3] = .5 + .25 * numpy.sqrt(2) weightfunc = bsplinebasis.dot(controlweights) nurbsbasis = bsplinebasis * controlweights / weightfunc # create geometry function indices = [0, 2], [1, 2], [2, 1], [2, 0] controlpoints = numpy.concatenate([ numpy.take([0, 2**.5 - 1, 1], indices) * radius, numpy.take([0, .3, 1], indices) * (radius + 1) / 2, numpy.take([0, 1, 1], indices) ]) geom = (nurbsbasis[:, numpy.newaxis] * controlpoints).sum(0) radiuserr = domain.boundary['left'].integral( (function.norm2(geom) - radius)**2 * function.J(geom0), degree=9).eval()**.5 treelog.info('hole radius exact up to L2 error {:.2e}'.format(radiuserr)) # refine domain if nrefine: domain = domain.refine(nrefine) bsplinebasis = domain.basis('spline', degree=2) controlweights = domain.project(weightfunc, onto=bsplinebasis, geometry=geom0, ischeme='gauss9') nurbsbasis = bsplinebasis * controlweights / weightfunc ns = function.Namespace() ns.x = geom ns.lmbda = 2 * poisson ns.mu = 1 - poisson ns.ubasis = nurbsbasis.vector(2) ns.u_i = 'ubasis_ni ?lhs_n' ns.X_i = 'x_i + u_i' ns.strain_ij = '(d(u_i, x_j) + d(u_j, x_i)) / 2' ns.stress_ij = 'lmbda strain_kk δ_ij + 2 mu strain_ij' ns.r2 = 'x_k x_k' ns.R2 = radius**2 / ns.r2 ns.k = (3 - poisson) / (1 + poisson) # plane stress parameter ns.scale = traction * (1 + poisson) / 2 ns.uexact_i = 'scale (x_i ((k + 1) (0.5 + R2) + (1 - R2) R2 (x_0^2 - 3 x_1^2) / r2) - 2 δ_i1 x_1 (1 + (k - 1 + R2) R2))' ns.du_i = 'u_i - uexact_i' sqr = domain.boundary['top,bottom'].integral('(u_i n_i)^2 J(x)' @ ns, degree=9) cons = solver.optimize('lhs', sqr, droptol=1e-15) sqr = domain.boundary['right'].integral('du_k du_k J(x)' @ ns, degree=20) cons = solver.optimize('lhs', sqr, droptol=1e-15, constrain=cons) # construct residual res = domain.integral('d(ubasis_ni, x_j) stress_ij J(x)' @ ns, degree=9) # solve system lhs = solver.solve_linear('lhs', res, constrain=cons) # vizualize result bezier = domain.sample('bezier', 9) X, stressxx = bezier.eval(['X', 'stress_00'] @ ns, lhs=lhs) export.triplot('stressxx.png', X, stressxx, tri=bezier.tri, hull=bezier.hull, clim=(numpy.nanmin(stressxx), numpy.nanmax(stressxx))) # evaluate error err = domain.integral('<du_k du_k, sum:ij(d(du_i, x_j)^2)>_n J(x)' @ ns, degree=9).eval(lhs=lhs)**.5 treelog.user('errors: L2={:.2e}, H1={:.2e}'.format(*err)) return err, cons, lhs
def main(nelems: int, degree: int, reynolds: float, rotation: float, timestep: float, maxradius: float, seed: int, endtime: float): ''' Flow around a cylinder. .. arguments:: nelems [24] Element size expressed in number of elements along the cylinder wall. All elements have similar shape with approximately unit aspect ratio, with elements away from the cylinder wall growing exponentially. degree [3] Polynomial degree for velocity space; the pressure space is one degree less. reynolds [1000] Reynolds number, taking the cylinder radius as characteristic length. rotation [0] Cylinder rotation speed. timestep [.04] Time step maxradius [25] Target exterior radius; the actual domain size is subject to integer multiples of the configured element size. seed [0] Random seed for small velocity noise in the intial condition. endtime [inf] Stopping time. ''' elemangle = 2 * numpy.pi / nelems melems = int(numpy.log(2 * maxradius) / elemangle + .5) treelog.info('creating {}x{} mesh, outer radius {:.2f}'.format( melems, nelems, .5 * numpy.exp(elemangle * melems))) domain, geom = mesh.rectilinear([melems, nelems], periodic=(1, )) domain = domain.withboundary(inner='left', outer='right') ns = function.Namespace() ns.uinf = 1, 0 ns.r = .5 * function.exp(elemangle * geom[0]) ns.Re = reynolds ns.phi = geom[1] * elemangle # add small angle to break element symmetry ns.x_i = 'r <cos(phi), sin(phi)>_i' ns.J = ns.x.grad(geom) ns.unbasis, ns.utbasis, ns.pbasis = function.chain([ # compatible spaces domain.basis( 'spline', degree=(degree, degree - 1), removedofs=((0, ), None)), domain.basis('spline', degree=(degree - 1, degree)), domain.basis('spline', degree=degree - 1), ]) / function.determinant(ns.J) ns.ubasis_ni = 'unbasis_n J_i0 + utbasis_n J_i1' # piola transformation ns.u_i = 'ubasis_ni ?lhs_n' ns.p = 'pbasis_n ?lhs_n' ns.sigma_ij = '(u_i,j + u_j,i) / Re - p δ_ij' ns.h = .5 * elemangle ns.N = 5 * degree / ns.h ns.rotation = rotation ns.uwall_i = '0.5 rotation <-sin(phi), cos(phi)>_i' inflow = domain.boundary['outer'].select( -ns.uinf.dotnorm(ns.x), ischeme='gauss1') # upstream half of the exterior boundary sqr = inflow.integral('(u_i - uinf_i) (u_i - uinf_i)' @ ns, degree=degree * 2) cons = solver.optimize( 'lhs', sqr, droptol=1e-15) # constrain inflow semicircle to uinf sqr = domain.integral('(u_i - uinf_i) (u_i - uinf_i) + p^2' @ ns, degree=degree * 2) lhs0 = solver.optimize('lhs', sqr) # set initial condition to u=uinf, p=0 numpy.random.seed(seed) lhs0 *= numpy.random.normal(1, .1, lhs0.shape) # add small velocity noise res = domain.integral( '(ubasis_ni u_i,j u_j + ubasis_ni,j sigma_ij + pbasis_n u_k,k) d:x' @ ns, degree=9) res += domain.boundary['inner'].integral( '(N ubasis_ni - (ubasis_ni,j + ubasis_nj,i) n_j) (u_i - uwall_i) d:x / Re' @ ns, degree=9) inertia = domain.integral('ubasis_ni u_i d:x' @ ns, degree=9) bbox = numpy.array( [[-2, 46 / 9], [-2, 2]]) # bounding box for figure based on 16x9 aspect ratio bezier0 = domain.sample('bezier', 5) bezier = bezier0.subset((bezier0.eval( (ns.x - bbox[:, 0]) * (bbox[:, 1] - ns.x)) > 0).all(axis=1)) interpolate = util.tri_interpolator( bezier.tri, bezier.eval(ns.x), mergetol=1e-5) # interpolator for quivers spacing = .05 # initial quiver spacing xgrd = util.regularize(bbox, spacing) with treelog.iter.plain( 'timestep', solver.impliciteuler('lhs', residual=res, inertia=inertia, lhs0=lhs0, timestep=timestep, constrain=cons, newtontol=1e-10)) as steps: for istep, lhs in enumerate(steps): t = istep * timestep x, u, normu, p = bezier.eval( ['x_i', 'u_i', 'sqrt(u_k u_k)', 'p'] @ ns, lhs=lhs) ugrd = interpolate[xgrd](u) with export.mplfigure('flow.png', figsize=(12.8, 7.2)) as fig: ax = fig.add_axes([0, 0, 1, 1], yticks=[], xticks=[], frame_on=False, xlim=bbox[0], ylim=bbox[1]) im = ax.tripcolor(x[:, 0], x[:, 1], bezier.tri, p, shading='gouraud', cmap='jet') import matplotlib.collections ax.add_collection( matplotlib.collections.LineCollection(x[bezier.hull], colors='k', linewidths=.1, alpha=.5)) ax.quiver(xgrd[:, 0], xgrd[:, 1], ugrd[:, 0], ugrd[:, 1], angles='xy', width=1e-3, headwidth=3e3, headlength=5e3, headaxislength=2e3, zorder=9, alpha=.5) ax.plot(0, 0, 'k', marker=(3, 2, t * rotation * 180 / numpy.pi - 90), markersize=20) cax = fig.add_axes([0.9, 0.1, 0.01, 0.8]) cax.tick_params(labelsize='large') fig.colorbar(im, cax=cax) if t >= endtime: break xgrd = util.regularize(bbox, spacing, xgrd + ugrd * timestep) return lhs0, lhs
def main( nelems: 'number of elements' = 12, viscosity: 'fluid viscosity' = 1e-2, density: 'fluid density' = 1, tol: 'solver tolerance' = 1e-12, rotation: 'cylinder rotation speed' = 0, timestep: 'time step' = 1/24, maxradius: 'approximate domain size' = 25, tmax: 'end time' = numpy.inf, degree: 'polynomial degree' = 2, withplots: 'create plots' = True, ): log.user('reynolds number: {:.1f}'.format(density / viscosity)) # based on unit length and velocity # create namespace ns = function.Namespace() ns.uinf = 1, 0 ns.density = density ns.viscosity = viscosity # construct mesh rscale = numpy.pi / nelems melems = numpy.ceil(numpy.log(2*maxradius) / rscale).astype(int) log.info('creating {}x{} mesh, outer radius {:.2f}'.format(melems, 2*nelems, .5*numpy.exp(rscale*melems))) domain, x0 = mesh.rectilinear([range(melems+1),numpy.linspace(0,2*numpy.pi,2*nelems+1)], periodic=(1,)) rho, phi = x0 phi += 1e-3 # tiny nudge (0.057 deg) to break element symmetry radius = .5 * function.exp(rscale * rho) ns.x = radius * function.trigtangent(phi) domain = domain.withboundary(inner='left', inflow=domain.boundary['right'].select(-ns.uinf.dotnorm(ns.x), ischeme='gauss1')) # prepare bases (using piola transformation to maintain u/p compatibility) J = ns.x.grad(x0) detJ = function.determinant(J) ns.unbasis, ns.utbasis, ns.pbasis = function.chain([ # compatible spaces using piola transformation domain.basis('spline', degree=(degree+1,degree), removedofs=((0,),None))[:,_] * J[:,0] / detJ, domain.basis('spline', degree=(degree,degree+1))[:,_] * J[:,1] / detJ, domain.basis('spline', degree=degree) / detJ, ]) ns.ubasis_ni = 'unbasis_ni + utbasis_ni' # populate namespace ns.u_i = 'ubasis_ni ?lhs_n' ns.p = 'pbasis_n ?lhs_n' ns.sigma_ij = 'viscosity (u_i,j + u_j,i) - p δ_ij' ns.hinner = 2 * numpy.pi / nelems ns.c = 5 * (degree+1) / ns.hinner ns.nietzsche_ni = 'viscosity (c ubasis_ni - (ubasis_ni,j + ubasis_nj,i) n_j)' ns.ucyl = -.5 * rotation * function.trignormal(phi) # create residual vector components res = domain.integral('ubasis_ni,j sigma_ij + pbasis_n u_k,k' @ ns, geometry=ns.x, degree=2*(degree+1)) res += domain.boundary['inner'].integral('nietzsche_ni (u_i - ucyl_i)' @ ns, geometry=ns.x, degree=2*(degree+1)) oseen = domain.integral('density ubasis_ni u_i,j uinf_j' @ ns, geometry=ns.x, degree=2*(degree+1)) convec = domain.integral('density ubasis_ni u_i,j u_j' @ ns, geometry=ns.x, degree=3*(degree+1)) inertia = domain.integral('density ubasis_ni u_i' @ ns, geometry=ns.x, degree=2*(degree+1)) # constrain full velocity vector at inflow sqr = domain.boundary['inflow'].integral('(u_i - uinf_i) (u_i - uinf_i)' @ ns, geometry=ns.x, degree=9) cons = solver.optimize('lhs', sqr, droptol=1e-15) # solve unsteady navier-stokes equations, starting from stationary oseen flow lhs0 = solver.solve_linear('lhs', res+oseen, constrain=cons) makeplots = MakePlots(domain, ns, timestep=timestep, rotation=rotation) if withplots else lambda *args: None for istep, lhs in log.enumerate('timestep', solver.impliciteuler('lhs', residual=res+convec, inertia=inertia, lhs0=lhs0, timestep=timestep, constrain=cons, newtontol=1e-10)): makeplots(lhs) if istep * timestep >= tmax: break return lhs0, lhs
def main(inflow: 'inflow velocity' = 10, viscosity: 'kinematic viscosity' = 1.0, density: 'density' = 1.0, theta=0.5, timestepsize=0.01): # mesh and geometry definition grid_x_1 = numpy.linspace(-3, -1, 7) grid_x_1 = grid_x_1[:-1] grid_x_2 = numpy.linspace(-1, -0.3, 8) grid_x_2 = grid_x_2[:-1] grid_x_3 = numpy.linspace(-0.3, 0.3, 13) grid_x_3 = grid_x_3[:-1] grid_x_4 = numpy.linspace(0.3, 1, 8) grid_x_4 = grid_x_4[:-1] grid_x_5 = numpy.linspace(1, 3, 7) grid_x = numpy.concatenate( (grid_x_1, grid_x_2, grid_x_3, grid_x_4, grid_x_5), axis=None) grid_y_1 = numpy.linspace(0, 1.5, 16) grid_y_1 = grid_y_1[:-1] grid_y_2 = numpy.linspace(1.5, 2, 4) grid_y_2 = grid_y_2[:-1] grid_y_3 = numpy.linspace(2, 4, 7) grid_y = numpy.concatenate((grid_y_1, grid_y_2, grid_y_3), axis=None) grid = [grid_x, grid_y] topo, geom = mesh.rectilinear(grid) domain = topo.withboundary(inflow='left', wall='top,bottom', outflow='right') - \ topo[18:20, :10].withboundary(flap='left,right,top') # Nutils namespace ns = function.Namespace() # time approximations # TR interpolation ns._functions['t'] = lambda f: theta * f + (1 - theta) * subs0(f) ns._functions_nargs['t'] = 1 # 1st order FD ns._functions['δt'] = lambda f: (f - subs0(f)) / dt ns._functions_nargs['δt'] = 1 # 2nd order FD ns._functions['tt'] = lambda f: (1.5 * f - 2 * subs0(f) + 0.5 * subs00(f) ) / dt ns._functions_nargs['tt'] = 1 # extrapolation for pressure ns._functions['tp'] = lambda f: (1.5 * f - 0.5 * subs0(f)) ns._functions_nargs['tp'] = 1 ns.nu = viscosity ns.rho = density ns.uin = inflow ns.x0 = geom # reference geometry ns.dbasis = domain.basis('std', degree=1).vector(2) ns.d_i = 'dbasis_ni ?meshdofs_n' ns.umesh_i = 'dbasis_ni (1.5 ?meshdofs_n - 2 ?oldmeshdofs_n + 0.5 ?oldoldmeshdofs_n ) / ?dt' ns.x_i = 'x0_i + d_i' # moving geometry ns.ubasis, ns.pbasis = function.chain([ domain.basis('std', degree=2).vector(2), domain.basis('std', degree=1), ]) ns.F_i = 'ubasis_ni ?F_n' # stress field ns.urel_i = 'ubasis_ni ?lhs_n' # relative velocity ns.u_i = 'umesh_i + urel_i' # total velocity ns.p = 'pbasis_n ?lhs_n' # pressure # initialization of dofs meshdofs = numpy.zeros(len(ns.dbasis)) oldmeshdofs = meshdofs oldoldmeshdofs = meshdofs oldoldoldmeshdofs = meshdofs lhs0 = numpy.zeros(len(ns.ubasis)) # for visualization bezier = domain.sample('bezier', 2) # preCICE setup configFileName = "../precice-config.xml" participantName = "Fluid" solverProcessIndex = 0 solverProcessSize = 1 interface = precice.Interface(participantName, configFileName, solverProcessIndex, solverProcessSize) # define coupling meshes meshName = "Fluid-Mesh" meshID = interface.get_mesh_id(meshName) couplinginterface = domain.boundary['flap'] couplingsample = couplinginterface.sample( 'gauss', degree=2) # mesh located at Gauss points dataIndices = interface.set_mesh_vertices(meshID, couplingsample.eval(ns.x0)) # coupling data writeData = "Force" readData = "Displacement" writedataID = interface.get_data_id(writeData, meshID) readdataID = interface.get_data_id(readData, meshID) # initialize preCICE precice_dt = interface.initialize() dt = min(precice_dt, timestepsize) # boundary conditions for fluid equations sqr = domain.boundary['wall,flap'].integral('urel_k urel_k d:x0' @ ns, degree=4) cons = solver.optimize('lhs', sqr, droptol=1e-15) sqr = domain.boundary['inflow'].integral( '((urel_0 - uin)^2 + urel_1^2) d:x0' @ ns, degree=4) cons = solver.optimize('lhs', sqr, droptol=1e-15, constrain=cons) # weak form fluid equations res = domain.integral('t(ubasis_ni,j (u_i,j + u_j,i) rho nu d:x)' @ ns, degree=4) res += domain.integral('(-ubasis_ni,j p δ_ij + pbasis_n u_k,k) d:x' @ ns, degree=4) res += domain.integral('rho ubasis_ni δt(u_i d:x)' @ ns, degree=4) res += domain.integral('rho ubasis_ni t(u_i,j urel_j d:x)' @ ns, degree=4) # weak form for force computation resF = domain.integral('(ubasis_ni,j (u_i,j + u_j,i) rho nu d:x)' @ ns, degree=4) resF += domain.integral('tp(-ubasis_ni,j p δ_ij d:x)' @ ns, degree=4) resF += domain.integral('pbasis_n u_k,k d:x' @ ns, degree=4) resF += domain.integral('rho ubasis_ni tt(u_i d:x)' @ ns, degree=4) resF += domain.integral('rho ubasis_ni (u_i,j urel_j d:x)' @ ns, degree=4) resF += couplinginterface.sample('gauss', 4).integral('ubasis_ni F_i d:x' @ ns) consF = numpy.isnan( solver.optimize('F', couplinginterface.sample('gauss', 4).integral('F_i F_i' @ ns), droptol=1e-10)) # boundary conditions mesh displacements sqr = domain.boundary['inflow,outflow,wall'].integral('d_i d_i' @ ns, degree=2) meshcons0 = solver.optimize('meshdofs', sqr, droptol=1e-15) # weak form mesh displacements meshsqr = domain.integral('d_i,x0_j d_i,x0_j d:x0' @ ns, degree=2) # better initial guess: start from Stokes solution, comment out for comparison with other solvers #res_stokes = domain.integral('(ubasis_ni,j ((u_i,j + u_j,i) rho nu - p δ_ij) + pbasis_n u_k,k) d:x' @ ns, degree=4) #lhs0 = solver.solve_linear('lhs', res_stokes, constrain=cons, arguments=dict(meshdofs=meshdofs, oldmeshdofs=oldmeshdofs, oldoldmeshdofs=oldoldmeshdofs, oldoldoldmeshdofs=oldoldoldmeshdofs, dt=dt)) lhs00 = lhs0 timestep = 0 t = 0 while interface.is_coupling_ongoing(): # read displacements from interface if interface.is_read_data_available(): readdata = interface.read_block_vector_data( readdataID, dataIndices) coupledata = couplingsample.asfunction(readdata) sqr = couplingsample.integral(((ns.d - coupledata)**2).sum(0)) meshcons = solver.optimize('meshdofs', sqr, droptol=1e-15, constrain=meshcons0) meshdofs = solver.optimize('meshdofs', meshsqr, constrain=meshcons) # save checkpoint if interface.is_action_required( precice.action_write_iteration_checkpoint()): lhs_checkpoint = lhs0 lhs00_checkpoint = lhs00 t_checkpoint = t timestep_checkpoint = timestep oldmeshdofs_checkpoint = oldmeshdofs oldoldmeshdofs_checkpoint = oldoldmeshdofs oldoldoldmeshdofs_checkpoint = oldoldoldmeshdofs interface.mark_action_fulfilled( precice.action_write_iteration_checkpoint()) # solve fluid equations lhs1 = solver.newton( 'lhs', res, lhs0=lhs0, constrain=cons, arguments=dict( lhs0=lhs0, dt=dt, meshdofs=meshdofs, oldmeshdofs=oldmeshdofs, oldoldmeshdofs=oldoldmeshdofs, oldoldoldmeshdofs=oldoldoldmeshdofs)).solve(tol=1e-6) # write forces to interface if interface.is_write_data_required(dt): F = solver.solve_linear('F', resF, constrain=consF, arguments=dict( lhs00=lhs00, lhs0=lhs0, lhs=lhs1, dt=dt, meshdofs=meshdofs, oldmeshdofs=oldmeshdofs, oldoldmeshdofs=oldoldmeshdofs, oldoldoldmeshdofs=oldoldoldmeshdofs)) # writedata = couplingsample.eval(ns.F, F=F) # for stresses writedata = couplingsample.eval('F_i d:x' @ ns, F=F, meshdofs=meshdofs) * \ numpy.concatenate([p.weights for p in couplingsample.points])[:, numpy.newaxis] interface.write_block_vector_data(writedataID, dataIndices, writedata) # do the coupling precice_dt = interface.advance(dt) dt = min(precice_dt, timestepsize) # advance variables timestep += 1 t += dt lhs00 = lhs0 lhs0 = lhs1 oldoldoldmeshdofs = oldoldmeshdofs oldoldmeshdofs = oldmeshdofs oldmeshdofs = meshdofs # read checkpoint if required if interface.is_action_required( precice.action_read_iteration_checkpoint()): lhs0 = lhs_checkpoint lhs00 = lhs00_checkpoint t = t_checkpoint timestep = timestep_checkpoint oldmeshdofs = oldmeshdofs_checkpoint oldoldmeshdofs = oldoldmeshdofs_checkpoint oldoldoldmeshdofs = oldoldoldmeshdofs_checkpoint interface.mark_action_fulfilled( precice.action_read_iteration_checkpoint()) if interface.is_time_window_complete(): x, u, p = bezier.eval(['x_i', 'u_i', 'p'] @ ns, lhs=lhs1, meshdofs=meshdofs, oldmeshdofs=oldmeshdofs, oldoldmeshdofs=oldoldmeshdofs, oldoldoldmeshdofs=oldoldoldmeshdofs, dt=dt) with treelog.add(treelog.DataLog()): export.vtk('Fluid_' + str(timestep), bezier.tri, x, u=u, p=p) interface.finalize()
def main(fname: str, degree: int, Δuload: unit['mm'], nsteps: int, E: unit['GPa'], nu: float, σyield: unit['MPa'], hardening: unit['GPa'], referencedata: typing.Optional[str], testing: bool): ''' Plastic deformation of a perforated strip. .. arguments:: fname [strip.msh] Mesh file with units in [mm] degree [1] Finite element interpolation order Δuload [5μm] Load boundary displacement steps nsteps [11] Number of load steps E [70GPa] Young's modulus nu [0.2] Poisson ratio σyield [243MPa] Yield strength hardening [2.25GPa] Hardening parameter referencedata [zienkiewicz.csv] Reference data file name testing [False] Use a 1 element mesh for testing .. presets:: testing nsteps=30 referencedata= testing=True ''' # We commence with reading the mesh from the specified GMSH file, or, alternatively, # we continue with a single-element mesh for testing purposes. domain, geom = mesh.gmsh(pathlib.Path(__file__).parent/fname) Wdomain, Hdomain = domain.boundary['load'].integrate([function.J(geom),geom[1]*function.J(geom)], degree=1) Hdomain /= Wdomain if testing: domain, geom = mesh.rectilinear([numpy.linspace(0,Wdomain/2,2),numpy.linspace(0,Hdomain,2)]) domain = domain.withboundary(hsymmetry='left', vsymmetry='bottom', load='top') # We next initiate the point set in which the constitutive bahvior will be evaluated. # Note that this is also the point set in which the history variable will be stored. gauss = domain.sample('gauss', 2) # Elasto-plastic formulation # ========================== # The weak formulation is constructed using a `Namespace`, which is initialized and # populated with the necessary problem parameters and coordinate system. Note that the # coefficients `mu` and `λ` have been defined such that 'C_{ijkl}' is the fourth-order # **plane stress** elasticity tensor. ns = function.Namespace(fallback_length=domain.ndims) ns.x = geom ns.Δuload = Δuload ns.mu = E/(1-nu**2)*((1-nu)/2) ns.λ = E/(1-nu**2)*nu ns.delta = function.eye(domain.ndims) ns.C_ijkl = 'mu ( delta_ik delta_jl + delta_il delta_jk ) + λ delta_ij delta_kl' # We make use of a Lagrange finite element basis of arbitrary `degree`. Since we # approximate the displacement field, the basis functions are vector-valued. Both # the displacement field at the current load step `u` and displacement field of the # previous load step `u0` are approximated using this basis: ns.basis = domain.basis('std',degree=degree).vector(domain.ndims) ns.u0_i = 'basis_ni ?lhs0_n' ns.u_i = 'basis_ni ?lhs_n' # This simulation is based on a standard elasto-plasticity model. In this # model the *total strain*, ε_kl = ½ (∂u_k/∂x_l + ∂u_l/∂x_k)', is comprised of an # elastic and a plastic part: # # ε_kl = εe_kl + εp_kl # # The stress is related to the *elastic strain*, εe_kl, through Hooke's law: # # σ_ij = C_ijkl εe_kl = C_ijkl (ε_kl - εp_kl) ns.ε_kl = '(u_k,l + u_l,k) / 2' ns.ε0_kl = '(u0_k,l + u0_l,k) / 2' ns.gbasis = gauss.basis() ns.εp0_ij = 'gbasis_n ?εp0_nij' ns.κ0 = 'gbasis_n ?κ0_n' ns.εp = PlasticStrain(ns.ε, ns.ε0, ns.εp0, ns.κ0, E, nu, σyield, hardening) ns.εe_ij = 'ε_ij - εp_ij' ns.σ_ij = 'C_ijkl εe_kl' # Note that the plasticity model is implemented through the user-defined function `PlasticStrain`, # which implements the actual yielding model including a standard return mapping algorithm. This # function is discussed in detail below. # # The components of the residual vector are then defined as: # # r_n = ∫_Ω (∂N_ni/∂x_j) σ_ij dΩ res = domain.integral('basis_ni,j σ_ij d:x' @ ns, degree=2) # The problem formulation is completed by supplementing prescribed displacement boundary conditions # (for a load step), which are computed in the standard manner: sqr = domain.boundary['hsymmetry,vsymmetry'].integral('(u_k n_k)^2 d:x' @ ns, degree=2) sqr += domain.boundary['load'].integral('(u_k n_k - Δuload)^2 d:x' @ ns, degree=2) cons = solver.optimize('lhs', sqr, droptol=1e-15) # Incremental-iterative solution procedure # ======================================== # We initialize the solution vector for the first load step `lhs` and solution vector # of the previous load step `lhs0`. Note that, in order to construct a predictor step # for the first load step, we define the previous load step state as the solution # vector corresponding to a negative elastic loading step. lhs0 = -solver.solve_linear('lhs', domain.integral('basis_ni,j C_ijkl ε_kl d:x' @ ns, degree=2), constrain=cons) lhs = numpy.zeros_like(lhs0) εp0 = numpy.zeros((gauss.npoints,)+ns.εp0.shape) κ0 = numpy.zeros((gauss.npoints,)+ns.κ0.shape) # To store the force-dispalcement data we initialize an empty data array with the # inital state solution substituted in the first row. fddata = numpy.empty(shape=(nsteps+1,2)) fddata[:] = numpy.nan fddata[0,:] = 0 # Load step incrementation # ------------------------ with treelog.iter.fraction('step', range(nsteps)) as counter: for step in counter: # The solution of the previous load step is set to `lhs0`, and the Newton solution # procedure is initialized by extrapolation of the state vector: lhs_init = lhs + (lhs-lhs0) lhs0 = lhs # The non-linear system of equations is solved for `lhs` using Newton iterations, # where the `step` variable is used to scale the incremental constraints. lhs = solver.newton(target='lhs', residual=res, constrain=cons*step, lhs0=lhs_init, arguments={'lhs0':lhs0,'εp0':εp0,'κ0':κ0}).solve(tol=1e-6) # The computed solution is post-processed in the form of a loading curve - which # plots the normalized mean stress versus the maximum 'ε_{yy}' strain # component - and a contour plot showing the 'σ_{yy}' stress component on a # deformed mesh. Note that since the stresses are defined in the integration points # only, a post-processing step is involved that transfers the stress information to # the nodal points. εyymax = gauss.eval(ns.ε[1,1], arguments=dict(lhs=lhs)).max() basis = domain.basis('std', degree=1) bw, b = domain.integrate([basis * ns.σ[1,1] * function.J(geom), basis * function.J(geom)], degree=2, arguments=dict(lhs=lhs,lhs0=lhs0,εp0=εp0,κ0=κ0)) σyy = basis.dot(bw / b) uyload, σyyload = domain.boundary['load'].integrate(['u_1 d:x'@ns,σyy * function.J(geom)], degree=2, arguments=dict(lhs=lhs,εp0=εp0,κ0=κ0)) uyload /= Wdomain σyyload /= Wdomain fddata[step,0] = (E*εyymax)/σyield fddata[step,1] = (σyyload*2)/σyield with export.mplfigure('forcedisp.png') as fig: ax = fig.add_subplot(111, xlabel=r'${E \cdot {\rm max}(\varepsilon_{yy})}/{\sigma_{\rm yield}}$', ylabel=r'${\sigma_{\rm mean}}/{\sigma_{\rm yield}}$') if referencedata: data = numpy.genfromtxt(pathlib.Path(__file__).parent/referencedata, delimiter=',', skip_header=1) ax.plot(data[:,0], data[:,1], 'r:', label='Reference') ax.legend() ax.plot(fddata[:,0], fddata[:,1], 'o-', label='Nutils') ax.grid() bezier = domain.sample('bezier', 3) points, uvals, σyyvals = bezier.eval(['(x_i + 25 u_i)' @ ns, ns.u, σyy], arguments=dict(lhs=lhs)) with export.mplfigure('stress.png') as fig: ax = fig.add_subplot(111, aspect='equal', xlabel=r'$x$ [mm]', ylabel=r'$y$ [mm]') im = ax.tripcolor(points[:,0]/unit('mm'), points[:,1]/unit('mm'), bezier.tri, σyyvals/unit('MPa'), shading='gouraud', cmap='jet') ax.add_collection(collections.LineCollection(points.take(bezier.hull, axis=0), colors='k', linewidths=.1)) ax.autoscale(enable=True, axis='both', tight=True) cb = fig.colorbar(im) im.set_clim(0, 1.2*σyield) cb.set_label(r'$σ_{yy}$ [MPa]') # Load step convergence # --------------------- # At the end of the loading step, the plastic strain state and history parameter are updated, # where use if made of the strain hardening relation for the history variable: # # Δκ = √(Δεp_ij Δεp_ij) Δεp = ns.εp-ns.εp0 Δκ = function.sqrt((Δεp*Δεp).sum((0,1))) κ0 = gauss.eval(ns.κ0+Δκ, arguments=dict(lhs0=lhs0,lhs=lhs,εp0=εp0,κ0=κ0)) εp0 = gauss.eval(ns.εp, arguments=dict(lhs0=lhs0,lhs=lhs,εp0=εp0,κ0=κ0))
def main( L: 'domain size' = 4., R: 'hole radius' = 1., E: "young's modulus" = 1e5, nu: "poisson's ratio" = 0.3, T: 'far field traction' = 10, nr: 'number of h-refinements' = 2, figures: 'create figures' = True, ): ns = function.Namespace() ns.lmbda = E*nu/(1-nu**2) ns.mu = .5*E/(1+nu) # create the coarsest level parameter domain domain0, geometry = mesh.rectilinear( [1,2] ) # create the second-order B-spline basis over the coarsest domain ns.bsplinebasis = domain0.basis('spline', degree=2) ns.controlweights = 1,.5+.5/2**.5,.5+.5/2**.5,1,1,1,1,1,1,1,1,1 ns.weightfunc = 'bsplinebasis_n controlweights_n' ns.nurbsbasis = ns.bsplinebasis * ns.controlweights / ns.weightfunc # create the isogeometric map ns.controlpoints = [0,R],[R*(1-2**.5),R],[-R,R*(2**.5-1)],[-R,0],[0,.5*(R+L)],[-.15*(R+L),.5*(R+L)],[-.5*(R+L),.15*(R*L)],[-.5*(R+L),0],[0,L],[-L,L],[-L,L],[-L,0] ns.x_i = 'nurbsbasis_n controlpoints_ni' # create the computational domain by h-refinement domain = domain0.refine(nr) # create the second-order B-spline basis over the refined domain ns.bsplinebasis = domain.basis('spline', degree=2) sqr = domain.integral('(bsplinebasis_n ?lhs_n - weightfunc)^2' @ ns, geometry=ns.x, degree=9) ns.controlweights = solver.optimize('lhs', sqr) ns.nurbsbasis = ns.bsplinebasis * ns.controlweights / ns.weightfunc # prepare the displacement field ns.ubasis = ns.nurbsbasis.vector(2) ns.u_i = 'ubasis_ni ?lhs_n' ns.strain_ij = '(u_i,j + u_j,i) / 2' ns.stress_ij = 'lmbda strain_kk δ_ij + 2 mu strain_ij' # construct the exact solution ns.r2 = 'x_k x_k' ns.R2 = R**2 ns.T = T ns.k = (3-nu) / (1+nu) # plane stress parameter ns.uexact_i = '''(T / 4 mu) <x_0 ((k + 1) / 2 + (1 + k) R2 / r2 + (1 - R2 / r2) (x_0^2 - 3 x_1^2) R2 / r2^2), x_1 ((k - 3) / 2 + (1 - k) R2 / r2 + (1 - R2 / r2) (3 x_0^2 - x_1^2) R2 / r2^2)>_i''' ns.strainexact_ij = '(uexact_i,j + uexact_j,i) / 2' ns.stressexact_ij = 'lmbda strainexact_kk δ_ij + 2 mu strainexact_ij' # define the linear and bilinear forms res = domain.integral('ubasis_ni,j stress_ij' @ ns, geometry=ns.x, degree=9) res -= domain.boundary['right'].integral('ubasis_ni stressexact_ij n_j' @ ns, geometry=ns.x, degree=9) # compute the constraints vector for the symmetry conditions sqr = domain.boundary['top,bottom'].integral('(u_i n_i)^2' @ ns, degree=9) cons = solver.optimize('lhs', sqr, droptol=1e-15) # solve the system of equations lhs = solver.solve_linear('lhs', res, constrain=cons) ns = ns(lhs=lhs) # post-processing if figures: geom, stressxx = domain.simplex.elem_eval([ns.x, 'stress_00' @ ns], ischeme='bezier8', separate=True) with plot.PyPlot( 'solution', index=nr ) as plt: plt.mesh( geom, stressxx ) plt.colorbar() # compute the L2-norm of the error in the stress err = domain.integrate('(?dstress_ij ?dstress_ij)(dstress_ij = stress_ij - stressexact_ij)' @ ns, geometry=ns.x, ischeme='gauss9')**.5 # compute the mesh parameter (maximum physical distance between knots) hmax = max(numpy.linalg.norm(v[:,numpy.newaxis]-v, axis=2).max() for v in domain.elem_eval(ns.x, ischeme='bezier2', separate=True)) return err, hmax
def main(nelems: int, etype: str, btype: str, degree: int): ''' Laplace problem on a unit square. .. arguments:: nelems [10] Number of elements along edge. etype [square] Type of elements (square/triangle/mixed). btype [std] Type of basis function (std/spline), availability depending on the selected element type. degree [1] Polynomial degree. ''' # A unit square domain is created by calling the # :func:`nutils.mesh.unitsquare` mesh generator, with the number of elements # along an edge as the first argument, and the type of elements ("square", # "triangle", or "mixed") as the second. The result is a topology object # ``domain`` and a vectored valued geometry function ``geom``. domain, geom = mesh.unitsquare(nelems, etype) # To be able to write index based tensor contractions, we need to bundle all # relevant functions together in a namespace. Here we add the geometry ``x``, # a scalar ``basis``, and the solution ``u``. The latter is formed by # contracting the basis with a to-be-determined solution vector ``?lhs``. ns = function.Namespace() ns.x = geom ns.basis = domain.basis(btype, degree=degree) ns.u = 'basis_n ?lhs_n' # We are now ready to implement the Laplace equation. In weak form, the # solution is a scalar field :math:`u` for which: # # .. math:: ∀ v: ∫_Ω \frac{dv}{dx_i} \frac{du}{dx_i} - ∫_{Γ_n} v f = 0. # # By linearity the test function :math:`v` can be replaced by the basis that # spans its space. The result is an integral ``res`` that evaluates to a # vector matching the size of the function space. res = domain.integral('d(basis_n, x_i) d(u, x_i) J(x)' @ ns, degree=degree * 2) res -= domain.boundary['right'].integral( 'basis_n cos(1) cosh(x_1) J(x)' @ ns, degree=degree * 2) # The Dirichlet constraints are set by finding the coefficients that minimize # the error: # # .. math:: \min_u ∫_{\Gamma_d} (u - u_d)^2 # # The resulting ``cons`` array holds numerical values for all the entries of # ``?lhs`` that contribute (up to ``droptol``) to the minimization problem. # All remaining entries are set to ``NaN``, signifying that these degrees of # freedom are unconstrained. sqr = domain.boundary['left'].integral('u^2 J(x)' @ ns, degree=degree * 2) sqr += domain.boundary['top'].integral( '(u - cosh(1) sin(x_0))^2 J(x)' @ ns, degree=degree * 2) cons = solver.optimize('lhs', sqr, droptol=1e-15) # The unconstrained entries of ``?lhs`` are to be determined such that the # residual vector evaluates to zero in the corresponding entries. This step # involves a linearization of ``res``, resulting in a jacobian matrix and # right hand side vector that are subsequently assembled and solved. The # resulting ``lhs`` array matches ``cons`` in the constrained entries. lhs = solver.solve_linear('lhs', res, constrain=cons) # Once all entries of ``?lhs`` are establised, the corresponding solution can # be vizualised by sampling values of ``ns.u`` along with physical # coordinates ``ns.x``, with the solution vector provided via the # ``arguments`` dictionary. The sample members ``tri`` and ``hull`` provide # additional inter-point information required for drawing the mesh and # element outlines. bezier = domain.sample('bezier', 9) x, u = bezier.eval(['x', 'u'] @ ns, lhs=lhs) export.triplot('solution.png', x, u, tri=bezier.tri, hull=bezier.hull) # To confirm that our computation is correct, we use our knowledge of the # analytical solution to evaluate the L2-error of the discrete result. err = domain.integral('(u - sin(x_0) cosh(x_1))^2 J(x)' @ ns, degree=degree * 2).eval(lhs=lhs)**.5 treelog.user('L2 error: {:.2e}'.format(err)) return cons, lhs, err
def main( L: 'domain size' = 4., R: 'hole radius' = 1., E: "young's modulus" = 1e5, nu: "poisson's ratio" = 0.3, T: 'far field traction' = 10, nr: 'number of h-refinements' = 2, withplots: 'create plots' = True, ): ns = function.Namespace() ns.lmbda = E * nu / (1 - nu**2) ns.mu = .5 * E / (1 + nu) # create the coarsest level parameter domain domain0, geometry = mesh.rectilinear([1, 2]) # create the second-order B-spline basis over the coarsest domain ns.bsplinebasis = domain0.basis('spline', degree=2) ns.controlweights = 1, .5 + .5 / 2**.5, .5 + .5 / 2**.5, 1, 1, 1, 1, 1, 1, 1, 1, 1 ns.weightfunc = 'bsplinebasis_n controlweights_n' ns.nurbsbasis = ns.bsplinebasis * ns.controlweights / ns.weightfunc # create the isogeometric map ns.controlpoints = [0, R], [R * (1 - 2**.5), R], [-R, R * (2**.5 - 1)], [ -R, 0 ], [0, .5 * (R + L)], [-.15 * (R + L), .5 * (R + L)], [-.5 * (R + L), .15 * (R * L) ], [-.5 * (R + L), 0], [0, L], [-L, L], [-L, L], [-L, 0] ns.x_i = 'nurbsbasis_n controlpoints_ni' # create the computational domain by h-refinement domain = domain0.refine(nr) # create the second-order B-spline basis over the refined domain ns.bsplinebasis = domain.basis('spline', degree=2) sqr = domain.integral('(bsplinebasis_n ?lhs_n - weightfunc)^2' @ ns, geometry=ns.x, degree=9) ns.controlweights = solver.optimize('lhs', sqr) ns.nurbsbasis = ns.bsplinebasis * ns.controlweights / ns.weightfunc # prepare the displacement field ns.ubasis = ns.nurbsbasis.vector(2) ns.u_i = 'ubasis_ni ?lhs_n' ns.strain_ij = '(u_i,j + u_j,i) / 2' ns.stress_ij = 'lmbda strain_kk δ_ij + 2 mu strain_ij' # construct the exact solution ns.r2 = 'x_k x_k' ns.R2 = R**2 ns.T = T ns.k = (3 - nu) / (1 + nu) # plane stress parameter ns.uexact_i = '''(T / 4 mu) <x_0 ((k + 1) / 2 + (1 + k) R2 / r2 + (1 - R2 / r2) (x_0^2 - 3 x_1^2) R2 / r2^2), x_1 ((k - 3) / 2 + (1 - k) R2 / r2 + (1 - R2 / r2) (3 x_0^2 - x_1^2) R2 / r2^2)>_i''' ns.strainexact_ij = '(uexact_i,j + uexact_j,i) / 2' ns.stressexact_ij = 'lmbda strainexact_kk δ_ij + 2 mu strainexact_ij' # define the linear and bilinear forms res = domain.integral('ubasis_ni,j stress_ij' @ ns, geometry=ns.x, degree=9) res -= domain.boundary['right'].integral( 'ubasis_ni stressexact_ij n_j' @ ns, geometry=ns.x, degree=9) # compute the constraints vector for the symmetry conditions sqr = domain.boundary['top,bottom'].integral('(u_i n_i)^2' @ ns, degree=9) cons = solver.optimize('lhs', sqr, droptol=1e-15) # solve the system of equations lhs = solver.solve_linear('lhs', res, constrain=cons) ns |= dict(lhs=lhs) # post-processing if withplots: geom, stressxx = domain.simplex.elem_eval([ns.x, 'stress_00' @ ns], ischeme='bezier8', separate=True) with plot.PyPlot('solution', index=nr) as plt: plt.mesh(geom, stressxx) plt.colorbar() # compute the L2-norm of the error in the stress err = domain.integrate( '?dstress_ij ?dstress_ij | ?dstress_ij = stress_ij - stressexact_ij' @ ns, geometry=ns.x, ischeme='gauss9')**.5 # compute the mesh parameter (maximum physical distance between knots) hmax = max( numpy.linalg.norm(v[:, numpy.newaxis] - v, axis=2).max() for v in domain.elem_eval(ns.x, ischeme='bezier2', separate=True)) return err, hmax
def main( nelems: 'number of elements' = 12, viscosity: 'fluid viscosity' = 1e-2, density: 'fluid density' = 1, tol: 'solver tolerance' = 1e-12, rotation: 'cylinder rotation speed' = 0, timestep: 'time step' = 1/24, maxradius: 'approximate domain size' = 25, tmax: 'end time' = numpy.inf, degree: 'polynomial degree' = 2, figures: 'create figures' = True, ): log.user('reynolds number: {:.1f}'.format(density / viscosity)) # based on unit length and velocity # create namespace ns = function.Namespace() ns.uinf = 1, 0 ns.density = density ns.viscosity = viscosity # construct mesh rscale = numpy.pi / nelems melems = numpy.ceil(numpy.log(2*maxradius) / rscale).astype(int) log.info('creating {}x{} mesh, outer radius {:.2f}'.format(melems, 2*nelems, .5*numpy.exp(rscale*melems))) domain, x0 = mesh.rectilinear([range(melems+1),numpy.linspace(0,2*numpy.pi,2*nelems+1)], periodic=(1,)) rho, phi = x0 phi += 1e-3 # tiny nudge (0.057 deg) to break element symmetry radius = .5 * function.exp(rscale * rho) ns.x = radius * function.trigtangent(phi) domain = domain.withboundary(inner='left', inflow=domain.boundary['right'].select(-ns.uinf.dotnorm(ns.x), ischeme='gauss1')) # prepare bases (using piola transformation to maintain u/p compatibility) J = ns.x.grad(x0) detJ = function.determinant(J) ns.unbasis, ns.utbasis, ns.pbasis = function.chain([ # compatible spaces using piola transformation domain.basis('spline', degree=(degree+1,degree), removedofs=((0,),None))[:,_] * J[:,0] / detJ, domain.basis('spline', degree=(degree,degree+1))[:,_] * J[:,1] / detJ, domain.basis('spline', degree=degree) / detJ, ]) ns.ubasis_ni = 'unbasis_ni + utbasis_ni' # populate namespace ns.u_i = 'ubasis_ni ?lhs_n' ns.p = 'pbasis_n ?lhs_n' ns.sigma_ij = 'viscosity (u_i,j + u_j,i) - p δ_ij' ns.hinner = 2 * numpy.pi / nelems ns.c = 5 * (degree+1) / ns.hinner ns.nietzsche_ni = 'viscosity (c ubasis_ni - (ubasis_ni,j + ubasis_nj,i) n_j)' ns.ucyl = -.5 * rotation * function.trignormal(phi) # create residual vector components res = domain.integral('ubasis_ni,j sigma_ij + pbasis_n u_k,k' @ ns, geometry=ns.x, degree=2*(degree+1)) res += domain.boundary['inner'].integral('nietzsche_ni (u_i - ucyl_i)' @ ns, geometry=ns.x, degree=2*(degree+1)) oseen = domain.integral('density ubasis_ni u_i,j uinf_j' @ ns, geometry=ns.x, degree=2*(degree+1)) convec = domain.integral('density ubasis_ni u_i,j u_j' @ ns, geometry=ns.x, degree=3*(degree+1)) inertia = domain.integral('density ubasis_ni u_i' @ ns, geometry=ns.x, degree=2*(degree+1)) # constrain full velocity vector at inflow sqr = domain.boundary['inflow'].integral('(u_i - uinf_i) (u_i - uinf_i)' @ ns, geometry=ns.x, degree=9) cons = solver.optimize('lhs', sqr, droptol=1e-15) # solve unsteady navier-stokes equations, starting from stationary oseen flow lhs0 = solver.solve_linear('lhs', res+oseen, constrain=cons) makeplots = MakePlots(domain, ns, timestep=timestep, rotation=rotation) if figures else lambda *args: None for istep, lhs in log.enumerate('timestep', solver.impliciteuler('lhs', residual=res+convec, inertia=inertia, lhs0=lhs0, timestep=timestep, constrain=cons, newtontol=1e-10)): makeplots(lhs) if istep * timestep >= tmax: break return lhs0, lhs
def main(etype: str, btype: str, degree: int, nrefine: int): ''' Adaptively refined Laplace problem on an L-shaped domain. .. arguments:: etype [square] Type of elements (square/triangle/mixed). btype [h-std] Type of basis function (h/th-std/spline), with availability depending on the configured element type. degree [2] Polynomial degree nrefine [5] Number of refinement steps to perform. ''' domain, geom = mesh.unitsquare(2, etype) x, y = geom - .5 exact = (x**2 + y**2)**(1 / 3) * function.cos( function.arctan2(y + x, y - x) * (2 / 3)) domain = domain.trim(exact - 1e-15, maxrefine=0) linreg = util.linear_regressor() with treelog.iter.fraction('level', range(nrefine + 1)) as lrange: for irefine in lrange: if irefine: refdom = domain.refined ns.refbasis = refdom.basis(btype, degree=degree) indicator = refdom.integral( 'd(refbasis_n, x_k) d(u, x_k) J(x)' @ ns, degree=degree * 2).eval(lhs=lhs) indicator -= refdom.boundary.integral( 'refbasis_n d(u, x_k) n(x_k) J(x)' @ ns, degree=degree * 2).eval(lhs=lhs) supp = ns.refbasis.get_support( indicator**2 > numpy.mean(indicator**2)) domain = domain.refined_by(refdom.transforms[supp]) ns = function.Namespace() ns.x = geom ns.basis = domain.basis(btype, degree=degree) ns.u = 'basis_n ?lhs_n' ns.du = ns.u - exact sqr = domain.boundary['trimmed'].integral('u^2 J(x)' @ ns, degree=degree * 2) cons = solver.optimize('lhs', sqr, droptol=1e-15) sqr = domain.boundary.integral('du^2 J(x)' @ ns, degree=7) cons = solver.optimize('lhs', sqr, droptol=1e-15, constrain=cons) res = domain.integral('d(basis_n, x_k) d(u, x_k) J(x)' @ ns, degree=degree * 2) lhs = solver.solve_linear('lhs', res, constrain=cons) ndofs = len(ns.basis) error = domain.integral('<du^2, sum:k(d(du, x_k)^2)>_i J(x)' @ ns, degree=7).eval(lhs=lhs)**.5 rate, offset = linreg.add(numpy.log(len(ns.basis)), numpy.log(error)) treelog.user( 'ndofs: {ndofs}, L2 error: {error[0]:.2e} ({rate[0]:.2f}), H1 error: {error[1]:.2e} ({rate[1]:.2f})' .format(ndofs=len(ns.basis), error=error, rate=rate)) bezier = domain.sample('bezier', 9) x, u, du = bezier.eval(['x', 'u', 'du'] @ ns, lhs=lhs) export.triplot('sol.png', x, u, tri=bezier.tri, hull=bezier.hull) export.triplot('err.png', x, du, tri=bezier.tri, hull=bezier.hull) return ndofs, error, lhs
def neutrondiffusion(mat_flag='scatterer', BC_flag='vacuum', bigsquare=1, smallsquare=.1, degree=1, basis='lagrange'): W = bigsquare #width of outer box Wi = smallsquare #width of inner box nelems = int((2 * 1 * W / Wi)) if mat_flag == 'scatterer': sigt = 2 sigs = 1.99 elif mat_flag == 'reflector': sigt = 2 sigs = 1.8 elif mat_flag == 'absorber': sigt = 10 sigs = 2 elif mat_flag == 'air': sigt = .01 sigs = .006 topo, geom = mesh.unitsquare(nelems, 'square') #unit square centred at (0.5, 0.5) ns = function.Namespace() ns.basis = topo.basis(basis, degree=degree) ns.x = W * geom #scales the unit square to our physical square ns.f = function.max( function.abs(ns.x[0] - W / 2), function.abs(ns.x[1] - W / 2)) #level set function for inner square inner, outer = function.partition( ns.f, Wi / 2) #indicator function for inner square and outer square ns.phi = 'basis_A ?dofs_A' ns.SIGs = sigs * outer #scattering cross-section ns.SIGt = 0.1 * inner + sigt * outer #total cross-section ns.SIGa = 'SIGt - SIGs' #absorption cross-section ns.D = '1 / (3 SIGt)' #diffusion co-efficient ns.Q = inner #source term if BC_flag == 'vacuum': sqr = topo.boundary.integral('(phi - 0)^2 J(x)' @ ns, degree=degree * 2) cons = solver.optimize( 'dofs', sqr, droptol=1e-14) #this applies the boundary condition to u #residual res = topo.integral( '(D basis_i,j phi_,j + SIGa basis_i phi - basis_i Q) J(x)' @ ns, degree=degree * 2) #solve for degrees of freedom dofs = solver.solve_linear('dofs', res, constrain=cons) elif BC_flag == 'reflecting': #residual res = topo.integral( '(D basis_i,j phi_,j + SIGa basis_i phi - basis_i Q) J(x)' @ ns, degree=degree * 2) #solve for degrees of freedom dofs = solver.solve_linear('dofs', res) #select lower triangular half of square domain. Diagonal is one of its boundaries triang = topo.trim('x_0 - x_1' @ ns, maxrefine=5) triangbnd = triang.boundary #select boundary of lower triangle # eval the vertices of the boundary elements of lower triangle: verts = triangbnd.sample(*element.parse_legacy_ischeme("vertex")).eval( 'x_i' @ ns) # now select the verts of the boundary diag = topology.SubsetTopology(triangbnd, [ triangbnd.references[i] if (verts[2 * i][0] == verts[2 * i][1] and verts[2 * i + 1][0] == verts[2 * i + 1][1]) else triangbnd.references[i].empty for i in range(len(triangbnd.references)) ]) bezier_diag = diag.sample('bezier', degree + 1) x_diag = bezier_diag.eval('(x_0^2 + x_1^2)^(1 / 2)' @ ns) phi_diag = bezier_diag.eval('phi' @ ns, dofs=dofs) bezier_bottom = topo.boundary['bottom'].sample('bezier', degree + 1) x_bottom = bezier_bottom.eval('x_0' @ ns) phi_bottom = bezier_bottom.eval('phi' @ ns, dofs=dofs) fig_bottom = plt.figure(0) ax_bottom = fig_bottom.add_subplot(111) plt.plot(x_bottom, phi_bottom) ax_bottom.set_title('Scalar flux along bottom for %s with %s BCs' % (mat_flag, BC_flag)) ax_bottom.set_xlabel('x') ax_bottom.set_ylabel('$\\phi(x)$') fig_diag = plt.figure(1) ax_diag = fig_diag.add_subplot(111) plt.plot(x_diag, phi_diag) ax_diag.set_title('Scalar flux along diagonal for %s with %s BCs' % (mat_flag, BC_flag)) ax_diag.set_xlabel('$\\sqrt{x^2 + y^2}$') ax_diag.set_ylabel('$\\phi(x = y)$') return fig_bottom, fig_diag
def main(nelems: int, etype: str, btype: str, degree: int, traction: float, maxrefine: int, radius: float, poisson: float): ''' Horizontally loaded linear elastic plate with FCM hole. .. arguments:: nelems [9] Number of elements along edge. etype [square] Type of elements (square/triangle/mixed). btype [std] Type of basis function (std/spline), with availability depending on the selected element type. degree [2] Polynomial degree. traction [.1] Far field traction (relative to Young's modulus). maxrefine [2] Number or refinement levels used for the finite cell method. radius [.5] Cut-out radius. poisson [.3] Poisson's ratio, nonnegative and strictly smaller than 1/2. ''' domain0, geom = mesh.unitsquare(nelems, etype) domain = domain0.trim(function.norm2(geom) - radius, maxrefine=maxrefine) ns = function.Namespace() ns.x = geom ns.lmbda = 2 * poisson ns.mu = 1 - poisson ns.ubasis = domain.basis(btype, degree=degree).vector(2) ns.u_i = 'ubasis_ni ?lhs_n' ns.X_i = 'x_i + u_i' ns.strain_ij = '(d(u_i, x_j) + d(u_j, x_i)) / 2' ns.stress_ij = 'lmbda strain_kk δ_ij + 2 mu strain_ij' ns.r2 = 'x_k x_k' ns.R2 = radius**2 / ns.r2 ns.k = (3 - poisson) / (1 + poisson) # plane stress parameter ns.scale = traction * (1 + poisson) / 2 ns.uexact_i = 'scale (x_i ((k + 1) (0.5 + R2) + (1 - R2) R2 (x_0^2 - 3 x_1^2) / r2) - 2 δ_i1 x_1 (1 + (k - 1 + R2) R2))' ns.du_i = 'u_i - uexact_i' sqr = domain.boundary['left,bottom'].integral('(u_i n_i)^2 J(x)' @ ns, degree=degree * 2) cons = solver.optimize('lhs', sqr, droptol=1e-15) sqr = domain.boundary['top,right'].integral('du_k du_k J(x)' @ ns, degree=20) cons = solver.optimize('lhs', sqr, droptol=1e-15, constrain=cons) res = domain.integral('d(ubasis_ni, x_j) stress_ij J(x)' @ ns, degree=degree * 2) lhs = solver.solve_linear('lhs', res, constrain=cons) bezier = domain.sample('bezier', 5) X, stressxx = bezier.eval(['X', 'stress_00'] @ ns, lhs=lhs) export.triplot('stressxx.png', X, stressxx, tri=bezier.tri, hull=bezier.hull) err = domain.integral('<du_k du_k, sum:ij(d(du_i, x_j)^2)>_n J(x)' @ ns, degree=max(degree, 3) * 2).eval(lhs=lhs)**.5 treelog.user('errors: L2={:.2e}, H1={:.2e}'.format(*err)) return err, cons, lhs
def main( nelems: 'number of elements' = 20, epsilon: 'epsilon, 0 for automatic (based on nelems)' = 0, timestep: 'time step' = .01, maxtime: 'end time' = 1., theta: 'contact angle (degrees)' = 90, init: 'initial condition (random/bubbles)' = 'random', withplots: 'create plots' = True, ): mineps = 1./nelems if not epsilon: log.info('setting epsilon={}'.format(mineps)) epsilon = mineps elif epsilon < mineps: log.warning('epsilon under crititical threshold: {} < {}'.format(epsilon, mineps)) # create namespace ns = function.Namespace() ns.epsilon = epsilon ns.ewall = .5 * numpy.cos( theta * numpy.pi / 180 ) # construct mesh xnodes = ynodes = numpy.linspace(0,1,nelems+1) domain, ns.x = mesh.rectilinear( [ xnodes, ynodes ] ) # prepare bases ns.cbasis, ns.mubasis = function.chain([ domain.basis('spline', degree=2), domain.basis('spline', degree=2) ]) # polulate namespace ns.c = 'cbasis_n ?lhs_n' ns.c0 = 'cbasis_n ?lhs0_n' ns.mu = 'mubasis_n ?lhs_n' ns.f = '(6 c0 - 2 c0^3 - 4 c) / epsilon^2' # construct initial condition if init == 'random': numpy.random.seed(0) lhs0 = numpy.random.normal(0, .5, ns.cbasis.shape) elif init == 'bubbles': R1 = .25 R2 = numpy.sqrt(.5) * R1 # area2 = .5 * area1 ns.cbubble1 = function.tanh((R1-function.norm2(ns.x-(.5+R2/numpy.sqrt(2)+.8*ns.epsilon)))/ns.epsilon) ns.cbubble2 = function.tanh((R2-function.norm2(ns.x-(.5-R1/numpy.sqrt(2)-.8*ns.epsilon)))/ns.epsilon) sqr = domain.integral('(c - cbubble1 - cbubble2 - 1)^2 + mu^2' @ ns, geometry=ns.x, degree=4) lhs0 = solver.optimize('lhs', sqr) else: raise Exception( 'unknown init %r' % init ) # construct residual res = domain.integral('epsilon^2 cbasis_n,k mu_,k + mubasis_n (mu + f) - mubasis_n,k c_,k' @ ns, geometry=ns.x, degree=4) res -= domain.boundary.integral('mubasis_n ewall' @ ns, geometry=ns.x, degree=4) inertia = domain.integral('cbasis_n c' @ ns, geometry=ns.x, degree=4) # solve time dependent problem nsteps = numeric.round(maxtime/timestep) makeplots = MakePlots(domain, nsteps, ns) if withplots else lambda *args: None for istep, lhs in log.enumerate('timestep', solver.impliciteuler('lhs', target0='lhs0', residual=res, inertia=inertia, timestep=timestep, lhs0=lhs0)): makeplots(lhs) if istep == nsteps: break return lhs0, lhs