Exemple #1
0
    def __init__(self, in_channel, out_channel):
        super().__init__()

        self._seq = nn.Sequential(

            nn.Conv2d(in_channel, out_channel, kernel_size=3, padding=1),
            nn.Conv2d(out_channel, out_channel // 2, kernel_size=1),
            nn.BatchNorm2d(out_channel // 2), Swish(),
            nn.Conv2d(out_channel // 2, out_channel, kernel_size=3, stride=2, padding=1),
            nn.BatchNorm2d(out_channel), Swish()
        )
Exemple #2
0
    def __init__(self, z_dim):
        super().__init__()

        # Input channels = z_channels * 2 = x_channels + z_channels
        # Output channels = z_channels
        self.decoder_blocks = nn.ModuleList([
            DecoderBlock([z_dim * 2, z_dim // 2]),  # 2x upsample
            DecoderBlock([z_dim, z_dim // 4, z_dim // 8]),  # 4x upsample
            DecoderBlock([z_dim // 4, z_dim // 16, z_dim // 32])  # 4x uplsampe
        ])
        self.decoder_residual_blocks = nn.ModuleList([
            DecoderResidualBlock(z_dim // 2, n_group=1),
            DecoderResidualBlock(z_dim // 8, n_group=2),
            DecoderResidualBlock(z_dim // 32, n_group=4)
        ])

        # p(z_l | z_(l-1))
        self.condition_z = nn.ModuleList([
            nn.Sequential(ResidualBlock(z_dim // 2), nn.AdaptiveAvgPool2d(1),
                          Swish(), nn.Conv2d(z_dim // 2, z_dim,
                                             kernel_size=1)),
            nn.Sequential(ResidualBlock(z_dim // 8), nn.AdaptiveAvgPool2d(1),
                          Swish(),
                          nn.Conv2d(z_dim // 8, z_dim // 4, kernel_size=1))
        ])

        # p(z_l | x, z_(l-1))
        self.condition_xz = nn.ModuleList([
            nn.Sequential(ResidualBlock(z_dim),
                          nn.Conv2d(z_dim, z_dim // 2, kernel_size=1),
                          nn.AdaptiveAvgPool2d(1), Swish(),
                          nn.Conv2d(z_dim // 2, z_dim, kernel_size=1)),
            nn.Sequential(ResidualBlock(z_dim // 4),
                          nn.Conv2d(z_dim // 4, z_dim // 8, kernel_size=1),
                          nn.AdaptiveAvgPool2d(1), Swish(),
                          nn.Conv2d(z_dim // 8, z_dim // 4, kernel_size=1))
        ])

        self.map_from_z = nn.ModuleList([
            nn.Conv2d(z_dim + 2, z_dim, kernel_size=1),
            nn.Conv2d(z_dim // 2 + 2, z_dim // 2, kernel_size=1),
            nn.Conv2d(z_dim // 8 + 2, z_dim // 8, kernel_size=1)
        ])

        self.recon = nn.Conv2d(z_dim // 32, 3, kernel_size=1)
        self.pos_map = nn.Linear(2, 2)
Exemple #3
0
    def __init__(self, in_channel, out_channel):
        super().__init__()

        self._seq = nn.Sequential(
            nn.ConvTranspose2d(in_channel,
                               out_channel,
                               kernel_size=3,
                               stride=2,
                               padding=1,
                               output_padding=1),
            # nn.UpsamplingBilinear2d(scale_factor=2),
            # nn.Conv2d(in_channel, out_channel, kernel_size=3, padding=1),
            nn.BatchNorm2d(out_channel),
            Swish(),
        )
Exemple #4
0
    def __init__(self, z_dim):
        super().__init__()
        self.encoder_blocks = nn.ModuleList([
            EncoderBlock([3, z_dim // 16, z_dim // 8]),  # (16, 16)
            EncoderBlock([z_dim // 8, z_dim // 4, z_dim // 2]),  # (4, 4)
            EncoderBlock([z_dim // 2, z_dim]),  # (2, 2)
        ])

        self.encoder_residual_blocks = nn.ModuleList([
            EncoderResidualBlock(z_dim // 8),
            EncoderResidualBlock(z_dim // 2),
            EncoderResidualBlock(z_dim),
        ])

        self.condition_x = nn.Sequential(
            Swish(), nn.Conv2d(z_dim, z_dim * 2, kernel_size=1))