def __init__(self, DATA_PATH, input_height, batch_size, num_threads, device_id): super(SimCLRTrainDataTransform, self).__init__(batch_size, num_threads, device_id, seed=12) self.COPIES = 3 self.input_height = input_height self.input = ops.FileReader(file_root=DATA_PATH, random_shuffle=True, seed=12) self.coin = ops.CoinFlip(probability=0.5) self.uniform = ops.Uniform(range=[0.7, 1.3]) #-1 to 1 #read image (I think that has to be cpu, do a mixed operation to decode into gpu) self.decode = ops.ImageDecoder(device='mixed', output_type=types.RGB) self.crop = ops.RandomResizedCrop(size=self.input_height, device="gpu") self.flip = ops.Flip(vertical=self.coin(), horizontal=self.coin(), device="gpu") self.colorjit_gray = ops.ColorTwist(brightness=self.uniform(), contrast=self.uniform(), hue=self.uniform(), saturation=self.uniform(), device="gpu") self.blur = ops.GaussianBlur(window_size=int(0.1 * self.input_height), device="gpu") self.swapaxes = ops.Transpose(perm=[2, 0, 1], device="gpu") self.to_int64 = ops.Cast(dtype=types.INT64, device="gpu")
def __init__(self, DATA_PATH, input_height, batch_size, copies, stage, num_threads, device_id, seed=1729): super(SimCLRTransform, self).__init__(batch_size, num_threads, device_id, seed=seed) #this lets our pytorch compat function find the length of our dataset self.num_samples = len(ImageFolder(DATA_PATH)) self.copies = copies self.input_height = input_height self.stage = stage self.input = ops.FileReader(file_root=DATA_PATH, random_shuffle=True, seed=seed) self.to_int64 = ops.Cast(dtype=types.INT64, device="gpu") self.to_int32_cpu = ops.Cast(dtype=types.INT32, device="cpu") self.coin = ops.random.CoinFlip(probability=0.5) self.uniform = ops.random.Uniform(range=[0.6, 0.9]) self.blur_amt = ops.random.Uniform(values=[ float(i) for i in range(1, int(0.1 * self.input_height), 2) ]) self.angles = ops.random.Uniform(range=[0, 360]) self.cast = ops.Cast(dtype=types.FLOAT, device='gpu') self.decode = ops.ImageDecoder(device='mixed', output_type=types.RGB) self.crop = ops.RandomResizedCrop(size=self.input_height, minibatch_size=batch_size, random_area=[0.75, 1.0], device="gpu") self.resize = ops.Resize(resize_x=self.input_height, resize_y=self.input_height, device="gpu") self.flip = ops.Flip(vertical=self.coin(), horizontal=self.coin(), device="gpu") self.colorjit_gray = ops.ColorTwist(brightness=self.uniform(), contrast=self.uniform(), hue=self.uniform(), saturation=self.uniform(), device="gpu") self.blur = ops.GaussianBlur(window_size=self.to_int32_cpu( self.blur_amt()), device="gpu") self.rotate = ops.Rotate( angle=self.angles(), keep_size=True, interp_type=types.DALIInterpType.INTERP_LINEAR, device="gpu") self.swapaxes = ops.Transpose(perm=[2, 0, 1], device="gpu")
def __new__(cls, sigma=None, window_size=None, dtype=None, **kwargs): """Create a ``GaussianBlur`` operator. Parameters ---------- sigma : Union[float, Sequence[float]], optional The sigma value to gaussian kernel. window_size : Union[int, Sequence[int]], optional The window size to gaussian kernel. dtype : str, optional The output data type. Returns ------- nvidia.dali.ops.GaussianBlur The operator. """ if isinstance(dtype, six.string_types): dtype = getattr(types, dtype.upper()) return ops.GaussianBlur(sigma=sigma, window_size=window_size, dtype=dtype, device=context.get_device_type(), **kwargs)
def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.inp = ops.ExternalSource(num_outputs=num_outputs) self.gb = ops.GaussianBlur(window_size=3)