Exemple #1
0
    def __init__(self, data_paths, num_shards, batch_size, num_threads, device_id, prefetch, fp16, random_shuffle, nhwc,
                 dont_use_mmap, decoder_type, decoder_cache_params, reader_queue_depth, shard_id):
        super(CommonPipeline, self).__init__(batch_size, num_threads, device_id, random_shuffle, prefetch_queue_depth=prefetch)
        if decoder_type == 'roi':
            print('Using nvJPEG with ROI decoding')
            self.decode_gpu = ops.decoders.ImageRandomCrop(device = "mixed", output_type = types.RGB)
            self.res = ops.Resize(device="gpu", resize_x=224, resize_y=224)
        elif decoder_type == 'cached':
            assert decoder_cache_params['cache_enabled'] == True
            cache_size = decoder_cache_params['cache_size']
            cache_threshold = decoder_cache_params['cache_threshold']
            cache_type = decoder_cache_params['cache_type']
            print('Using nvJPEG with cache (size : {} threshold: {}, type: {})'.format(cache_size, cache_threshold, cache_type))
            self.decode_gpu = ops.decoders.Image(device = "mixed", output_type = types.RGB,
                                                cache_size=cache_size, cache_threshold=cache_threshold,
                                                cache_type=cache_type, cache_debug=False)
            self.res = ops.RandomResizedCrop(device="gpu", size =(224,224))
        else:
            print('Using nvJPEG')
            self.decode_gpu = ops.decoders.Image(device = "mixed", output_type = types.RGB)
            self.res = ops.RandomResizedCrop(device="gpu", size =(224,224))

        layout = types.NHWC if nhwc else types.NCHW
        out_type = types.FLOAT16 if fp16 else types.FLOAT

        self.cmnp = ops.CropMirrorNormalize(device="gpu",
                                            dtype=out_type,
                                            output_layout=layout,
                                            crop=(224, 224),
                                            mean=[0.485 * 255,0.456 * 255,0.406 * 255],
                                            std=[0.229 * 255,0.224 * 255,0.225 * 255])
        self.coin = ops.random.CoinFlip(probability=0.5)
 def __init__(self,
              batch_size,
              num_threads,
              device_id,
              data_dir,
              crop,
              dali_cpu=False,
              local_rank=0,
              world_size=1):
     super(HybridTrainPipe, self).__init__(batch_size,
                                           num_threads,
                                           device_id,
                                           seed=12 + device_id)
     dali_device = "gpu"
     self.input = ops.FileReader(file_root=data_dir,
                                 shard_id=local_rank,
                                 num_shards=world_size,
                                 random_shuffle=True)
     self.decode = ops.ImageDecoder(device="mixed", output_type=types.RGB)
     self.res = ops.RandomResizedCrop(device="gpu",
                                      size=crop,
                                      random_area=[0.08, 1.25])
     self.cmnp = ops.CropMirrorNormalize(
         device="gpu",
         output_dtype=types.FLOAT,
         output_layout=types.NCHW,
         image_type=types.RGB,
         mean=[0.485 * 255, 0.456 * 255, 0.406 * 255],
         std=[0.229 * 255, 0.224 * 255, 0.225 * 255])
     self.coin = ops.CoinFlip(probability=0.5)
     print('DALI "{0}" variant'.format(dali_device))
 def __init__(self,
              batch_size,
              num_threads,
              device_id,
              image_dir,
              file_list,
              seed=1,
              num_gpu=1,
              random_area=[0.08, 1.0]):
     super(TrainPipeline, self).__init__(batch_size,
                                         num_threads,
                                         device_id,
                                         seed=seed)
     self.input = ops.FileReader(file_root=image_dir,
                                 file_list=file_list,
                                 random_shuffle=True,
                                 num_shards=num_gpu,
                                 shard_id=device_id)
     self.decode = ops.nvJPEGDecoder(device="mixed", output_type=types.RGB)
     self.rrc = ops.RandomResizedCrop(device="gpu",
                                      size=(224, 224),
                                      random_area=random_area)
     self.cmnp = ops.CropMirrorNormalize(
         device="gpu",
         output_dtype=types.FLOAT,
         output_layout=types.NCHW,
         crop=(224, 224),
         image_type=types.RGB,
         mean=[0.485 * 255, 0.456 * 255, 0.406 * 255],
         std=[0.229 * 255, 0.224 * 255, 0.225 * 255])
     self.coin = ops.CoinFlip(probability=0.5)
Exemple #4
0
 def __init__(self, file_list, file_root, crop_size,
              batch_size, num_threads, device_id,
              random_shuffle=True, seed=-1, mean=None, std=None,
              num_samples=None):
     super(DaliPipelineTrain, self).__init__(batch_size, num_threads,
                                             device_id, seed=seed)
     crop_size = _pair(crop_size)
     if mean is None:
         mean = [0.485 * 255, 0.456 * 255, 0.406 * 255]
     if std is None:
         std = [0.229 * 255, 0.224 * 255, 0.225 * 255]
     if num_samples is None:
         initial_fill = 4096
     else:
         initial_fill = min(4096, num_samples)
     self.loader = ops.FileReader(file_root=file_root, file_list=file_list,
                                  random_shuffle=random_shuffle,
                                  initial_fill=initial_fill)
     self.decode = ops.HostDecoder()
     self.resize = ops.Resize(device="gpu", resize_x=256, resize_y=256)
     # self.hue = ops.Hue(device="gpu")
     # self.bright = ops.Brightness(device="gpu")
     # self.cntrst = ops.Contrast(device="gpu")
     # self.rotate = ops.Rotate(device="gpu")
     # self.jitter = ops.Jitter(device="gpu")
     random_area = (crop_size[0] / 256) * (crop_size[1] / 256)
     random_area = _pair(random_area)
     random_aspect_ratio = _pair(1.0)
     self.rrcrop = ops.RandomResizedCrop(
         device="gpu", size=crop_size, random_area=random_area,
         random_aspect_ratio=random_aspect_ratio)
     self.cmnorm = ops.CropMirrorNormalize(
         device="gpu", crop=list(crop_size), mean=mean, std=std)
     self.coin = ops.CoinFlip(probability=0.5)
Exemple #5
0
 def __init__(self, batch_size, num_threads, device_id, data_dir, crop):
     super(HybridTrainPipe, self).__init__(batch_size, num_threads,
                                           device_id, data_dir, crop)
     self.pad = ops.Paste(device="gpu",
                          fill_value=0,
                          ratio=1.1,
                          min_canvas_size=crop)
     self.res = ops.RandomResizedCrop(device="gpu",
                                      size=crop,
                                      random_area=[0.9, 1.1],
                                      random_aspect_ratio=1.33333)
     self.cutmix = ops.PythonFunction(function=cut_mixe_image,
                                      num_outputs=2,
                                      device='gpu')
     self.cmnp = ops.CropMirrorNormalize(
         device="gpu",
         output_dtype=types.FLOAT,
         output_layout=types.NCHW,
         image_type=types.RGB,
         mean=[0.485 * 255, 0.456 * 255, 0.406 * 255],
         std=[0.229 * 255, 0.224 * 255, 0.225 * 255])
     self.coin = ops.CoinFlip(probability=0.5)
     self.rotated = ops.Rotate(device="gpu", keep_size=True)
     self.rotated_rng = ops.Uniform(range=(-5.0, 5.0))
     self.brightness = ops.Brightness(device="gpu")
     self.brightness_rng = ops.Uniform(range=(0.8, 1.2))
     self.reshape = ops.Reshape(device="gpu", layout="HWC")
     self.one_hot = ops.OneHot(num_classes=3,
                               dtype=types.INT32,
                               device="cpu")
     self.jitter_rng = ops.CoinFlip(probability=0.3)
     self.jittered = ops.Jitter(device="gpu")
Exemple #6
0
    def __init__(self, DATA_PATH, input_height, batch_size, num_threads,
                 device_id):
        super(SimCLRTrainDataTransform, self).__init__(batch_size,
                                                       num_threads,
                                                       device_id,
                                                       seed=12)

        self.COPIES = 3

        self.input_height = input_height
        self.input = ops.FileReader(file_root=DATA_PATH,
                                    random_shuffle=True,
                                    seed=12)

        self.coin = ops.CoinFlip(probability=0.5)
        self.uniform = ops.Uniform(range=[0.7, 1.3])  #-1 to 1
        #read image (I think that has to be cpu, do a mixed operation to decode into gpu)
        self.decode = ops.ImageDecoder(device='mixed', output_type=types.RGB)
        self.crop = ops.RandomResizedCrop(size=self.input_height, device="gpu")
        self.flip = ops.Flip(vertical=self.coin(),
                             horizontal=self.coin(),
                             device="gpu")
        self.colorjit_gray = ops.ColorTwist(brightness=self.uniform(),
                                            contrast=self.uniform(),
                                            hue=self.uniform(),
                                            saturation=self.uniform(),
                                            device="gpu")
        self.blur = ops.GaussianBlur(window_size=int(0.1 * self.input_height),
                                     device="gpu")
        self.swapaxes = ops.Transpose(perm=[2, 0, 1], device="gpu")

        self.to_int64 = ops.Cast(dtype=types.INT64, device="gpu")
    def __init__(self,
                 DATA_PATH,
                 input_height,
                 batch_size,
                 copies,
                 stage,
                 num_threads,
                 device_id,
                 seed=1729):
        super(SimCLRTransform, self).__init__(batch_size,
                                              num_threads,
                                              device_id,
                                              seed=seed)

        #this lets our pytorch compat function find the length of our dataset
        self.num_samples = len(ImageFolder(DATA_PATH))

        self.copies = copies
        self.input_height = input_height
        self.stage = stage

        self.input = ops.FileReader(file_root=DATA_PATH,
                                    random_shuffle=True,
                                    seed=seed)
        self.to_int64 = ops.Cast(dtype=types.INT64, device="gpu")
        self.to_int32_cpu = ops.Cast(dtype=types.INT32, device="cpu")

        self.coin = ops.random.CoinFlip(probability=0.5)
        self.uniform = ops.random.Uniform(range=[0.6, 0.9])
        self.blur_amt = ops.random.Uniform(values=[
            float(i) for i in range(1, int(0.1 * self.input_height), 2)
        ])
        self.angles = ops.random.Uniform(range=[0, 360])
        self.cast = ops.Cast(dtype=types.FLOAT, device='gpu')
        self.decode = ops.ImageDecoder(device='mixed', output_type=types.RGB)

        self.crop = ops.RandomResizedCrop(size=self.input_height,
                                          minibatch_size=batch_size,
                                          random_area=[0.75, 1.0],
                                          device="gpu")
        self.resize = ops.Resize(resize_x=self.input_height,
                                 resize_y=self.input_height,
                                 device="gpu")
        self.flip = ops.Flip(vertical=self.coin(),
                             horizontal=self.coin(),
                             device="gpu")
        self.colorjit_gray = ops.ColorTwist(brightness=self.uniform(),
                                            contrast=self.uniform(),
                                            hue=self.uniform(),
                                            saturation=self.uniform(),
                                            device="gpu")
        self.blur = ops.GaussianBlur(window_size=self.to_int32_cpu(
            self.blur_amt()),
                                     device="gpu")
        self.rotate = ops.Rotate(
            angle=self.angles(),
            keep_size=True,
            interp_type=types.DALIInterpType.INTERP_LINEAR,
            device="gpu")
        self.swapaxes = ops.Transpose(perm=[2, 0, 1], device="gpu")
Exemple #8
0
 def __init__(self,
              batch_size,
              num_threads,
              device_id,
              data_dir,
              crop,
              dali_cpu=False):
     super(HybridTrainPipe, self).__init__(batch_size,
                                           num_threads,
                                           device_id,
                                           seed=12 + device_id)
     self.input = ops.TFRecordReader(
         path=data_dir + ".tfrecord",
         index_path=data_dir + ".index",
         features={
             "image": tfrec.FixedLenFeature([], tfrec.string, ""),
             'label': tfrec.FixedLenFeature([], tfrec.float32, 0.0),
             'index': tfrec.FixedLenFeature([], tfrec.int64, 0),
         })
     self.decode = ops.ImageDecoder(
         device="cpu",
         output_type=types.RGB,
         split_stages=True,
     )
     self.res = ops.RandomResizedCrop(device="gpu", size=(224, 224))
     self.cmnp = ops.CropMirrorNormalize(
         device="gpu",
         output_dtype=types.FLOAT,
         output_layout=types.NCHW,
         crop=(crop, crop),
         image_type=types.RGB,
         mean=[0.485 * 255, 0.456 * 255, 0.406 * 255],
         std=[0.229 * 255, 0.224 * 255, 0.225 * 255])
     self.coin = ops.CoinFlip(probability=0.5)
     print('DALI "{0}" variant'.format('gpu'))
    def __init__(self, data_root, data_list, sampler, crop, colorjitter=None):
        super(ImageNetTrainPipeV2, self).__init__()
        # print('data root: {}, data list: {}, len(sampler_index): {}'.format(
        #     data_root, data_list, len(sampler)))
        self.mc_input = ops.McReader(file_root=data_root,
                                     file_list=data_list,
                                     sampler_index=list(sampler))
        self.colorjitter = colorjitter

        dali_device = "gpu"
        # This padding sets the size of the internal nvJPEG buffers to be able to handle all
        # images from full-sized ImageNet without additional reallocations
        self.decode = ops.ImageDecoder(device="mixed", output_type=types.RGB,
                                       device_memory_padding=211025920,
                                       host_memory_padding=140544512)

        self.res = ops.RandomResizedCrop(device=dali_device, size=(crop, crop))

        self.cmnp = ops.CropMirrorNormalize(device="gpu",
                                            output_dtype=types.FLOAT,
                                            output_layout=types.NCHW,
                                            crop=(crop, crop),
                                            image_type=types.RGB,
                                            mean=[0.485 * 255, 0.456 * 255, 0.406 * 255],
                                            std=[0.229 * 255, 0.224 * 255, 0.225 * 255])
        self.coin = ops.CoinFlip(probability=0.5)

        if self.colorjitter is not None:
            self.colorjit = ops.ColorTwist(device="gpu")
            self.rng_brightness = ops.Uniform(range=(1.0 - self.colorjitter[0], 1.0 + self.colorjitter[0]))
            self.rng_contrast = ops.Uniform(range=(1.0 - self.colorjitter[1], 1.0 + self.colorjitter[1]))
            self.rng_saturation = ops.Uniform(range=(1.0 - self.colorjitter[2], 1.0 + self.colorjitter[2]))
            self.rng_hue = ops.Uniform(range=(-self.colorjitter[3], self.colorjitter[3]))
Exemple #10
0
    def __init__(self, batch_size, num_threads, device_id, rec_path, idx_path,
                 shard_id, num_shards, crop_shape, 
                 min_random_area, max_random_area,
                 min_random_aspect_ratio, max_random_aspect_ratio,
                 nvjpeg_padding, prefetch_queue=3,
                 seed=12,
                 output_layout=types.NCHW, pad_output=True, dtype='float16',
                 mlperf_print=True):
        super(HybridTrainPipe, self).__init__(
                batch_size, num_threads, device_id, 
                seed = seed + device_id, 
                prefetch_queue_depth = prefetch_queue)

        if mlperf_print:
            # Shuffiling is done inside ops.MXNetReader
            mx_resnet_print(key=mlperf_log.INPUT_ORDER)

        self.input = ops.MXNetReader(path = [rec_path], index_path=[idx_path],
                                     random_shuffle=True, shard_id=shard_id, num_shards=num_shards)

        self.decode = ops.nvJPEGDecoder(device = "mixed", output_type = types.RGB,
                                        device_memory_padding = nvjpeg_padding,
                                        host_memory_padding = nvjpeg_padding)

        self.rrc = ops.RandomResizedCrop(device = "gpu",
                                         random_area = [
                                             min_random_area,
                                             max_random_area],
                                         random_aspect_ratio = [
                                             min_random_aspect_ratio,
                                             max_random_aspect_ratio],
                                         size = crop_shape)

        self.cmnp = ops.CropMirrorNormalize(device = "gpu",
                                            output_dtype = types.FLOAT16 if dtype == 'float16' else types.FLOAT,
                                            output_layout = output_layout,
                                            crop = crop_shape,
                                            pad_output = pad_output,
                                            image_type = types.RGB,
                                            mean = _mean_pixel,
                                            std =  _std_pixel)
        self.coin = ops.CoinFlip(probability = 0.5)

        if mlperf_print:
            mx_resnet_print(
                    key=mlperf_log.INPUT_CROP_USES_BBOXES,
                    val=False)
            mx_resnet_print(
                    key=mlperf_log.INPUT_DISTORTED_CROP_RATIO_RANGE,
                    val=(min_random_aspect_ratio,
                         max_random_aspect_ratio))
            mx_resnet_print(
                    key=mlperf_log.INPUT_DISTORTED_CROP_AREA_RANGE,
                    val=(min_random_area,
                         max_random_area))
            mx_resnet_print(
                    key=mlperf_log.INPUT_MEAN_SUBTRACTION,
                    val=_mean_pixel)
            mx_resnet_print(
                    key=mlperf_log.INPUT_RANDOM_FLIP)
 def __init__(self, path_imgrec, batch_size, num_threads, device_id,
              num_gpus, initial_fill):
     '''
     initial_fill: 太大会占用内存,太小导致单个 batch id 重复率高而 loss 下降太慢,测试了下 batch_size*1000 基本不影响到训练
     num_threads: 经测试,单核3.5GHz的U,hhd设置为3~4,ssd设置为5~6
     '''
     super(HybridTrainPipe, self).__init__(batch_size,
                                           num_threads,
                                           device_id,
                                           seed=12 + device_id)
     logging.info('loading recordio %s...', path_imgrec)
     path_imgidx = path_imgrec[0:-4] + ".idx"
     self.input = ops.MXNetReader(path=[path_imgrec],
                                  index_path=[path_imgidx],
                                  random_shuffle=True,
                                  shard_id=device_id,
                                  num_shards=num_gpus,
                                  prefetch_queue_depth=5,
                                  initial_fill=initial_fill)
     self.decode = ops.ImageDecoder(device="mixed", output_type=types.RGB)
     self.res = ops.Resize(device="gpu", resize_x=112, resize_y=112)
     self.rrc = ops.RandomResizedCrop(device="gpu", size=(112, 112))
     # self.cmnp = ops.CropMirrorNormalize(device = "gpu",
     #                                     dtype = types.FLOAT,
     #                                     output_layout = types.NCHW,
     #                                     mean = [0.485 * 255,0.456 * 255,0.406 * 255],
     #                                     std = [0.229 * 255,0.224 * 255,0.225 * 255])
     self.cmnp = ops.CropMirrorNormalize(device="gpu",
                                         dtype=types.FLOAT,
                                         output_layout=types.NCHW)
     self.coin = ops.CoinFlip(probability=0.5)
Exemple #12
0
 def __init__(self,
              batch_size,
              num_threads,
              device_id,
              data_dir,
              crop,
              seed=12,
              local_rank=0,
              world_size=1,
              spos_pre=False):
     super(HybridTrainPipe, self).__init__(batch_size,
                                           num_threads,
                                           device_id,
                                           seed=seed + device_id)
     color_space_type = types.BGR if spos_pre else types.RGB
     self.input = ops.FileReader(file_root=data_dir,
                                 shard_id=local_rank,
                                 num_shards=world_size,
                                 random_shuffle=True)
     self.decode = ops.ImageDecoder(device="mixed",
                                    output_type=color_space_type)
     self.res = ops.RandomResizedCrop(device="gpu",
                                      size=crop,
                                      interp_type=types.INTERP_LINEAR if
                                      spos_pre else types.INTERP_TRIANGULAR)
     self.twist = ops.ColorTwist(device="gpu")
     self.jitter_rng = ops.Uniform(range=[0.6, 1.4])
     self.cmnp = ops.CropMirrorNormalize(
         device="gpu",
         output_dtype=types.FLOAT,
         output_layout=types.NCHW,
         image_type=color_space_type,
         mean=0. if spos_pre else [0.485 * 255, 0.456 * 255, 0.406 * 255],
         std=1. if spos_pre else [0.229 * 255, 0.224 * 255, 0.225 * 255])
     self.coin = ops.CoinFlip(probability=0.5)
Exemple #13
0
 def __init__(self,
              batch_size,
              num_threads,
              data_dir,
              crop,
              shuffle,
              scale,
              ratio,
              world_size=1,
              seed=10,
              da=False):
     super(HybridTrainPipe,
           self).__init__(batch_size, num_threads, 0,
                          seed=seed)  # , RANDOM_SEED_TRAINING
     self.input = ops.FileReader(file_root=data_dir,
                                 num_shards=world_size,
                                 pad_last_batch=False,
                                 prefetch_queue_depth=2,
                                 random_shuffle=shuffle)
     self.decode = ops.ImageDecoder(device="mixed", output_type=types.RGB)
     self.res = ops.RandomResizedCrop(device="gpu",
                                      size=crop,
                                      random_area=scale,
                                      random_aspect_ratio=ratio)
     self.cmnp = ops.CropMirrorNormalize(
         device="gpu",
         output_dtype=types.FLOAT,
         output_layout=types.NCHW,
         image_type=types.RGB,
         mean=[0.5 * 255, 0.5 * 255, 0.5 * 255],
         std=[0.5 * 255, 0.5 * 255, 0.5 * 255])
     self.da = da
     if self.da:
         self.coin = ops.CoinFlip(probability=0.5)
Exemple #14
0
    def __init__(self, batch_size, num_threads, device_id, data_dir, crop, half=False):
        super(HybridTrainPipe, self).__init__(batch_size, num_threads, device_id, seed=0, exec_async=True)

        out_type = types.FLOAT
        if half:
            out_type = types.FLOAT16

        print('Reading from {}'.format(data_dir))
        file_name = make_dali_cached_file_list_which_is_also_a_file(data_dir)

        self.input = ops.FileReader(
            file_root=data_dir,
            file_list=file_name,
            shard_id=0,
            num_shards=1,
            random_shuffle=True)

        self.decode = ops.nvJPEGDecoder(device="mixed", output_type=types.RGB)

        self.rrc = ops.RandomResizedCrop(device="gpu", size =(crop, crop))

        self.cmnp = ops.CropMirrorNormalize(
            device="gpu",
            output_dtype=out_type,
            output_layout=types.NCHW,
            crop=(crop, crop),
            image_type=types.RGB,
            mean=[0.485 * 255,0.456 * 255,0.406 * 255],
            std=[0.229 * 255,0.224 * 255,0.225 * 255])

        self.coin = ops.CoinFlip(probability=0.5)
        self.jpegs = None
        self.labels = None
Exemple #15
0
    def __init__(self, batch_size, num_threads, device_id, num_gpus,
                 data_paths, prefetch, fp16, nhwc):
        super(RN50Pipeline, self).__init__(batch_size,
                                           num_threads,
                                           device_id,
                                           prefetch_queue_depth=prefetch)
        self.input = ops.FileReader(file_root=data_paths[0],
                                    shard_id=device_id,
                                    num_shards=num_gpus)
        self.decode_gpu = ops.nvJPEGDecoder(device="mixed",
                                            output_type=types.RGB)
        self.res = ops.RandomResizedCrop(device="gpu", size=(224, 224))

        layout = types.args.nhwc if nhwc else types.NCHW
        out_type = types.FLOAT16 if fp16 else types.FLOAT

        self.cmnp = ops.CropMirrorNormalize(
            device="gpu",
            output_dtype=out_type,
            output_layout=layout,
            crop=(224, 224),
            image_type=types.RGB,
            mean=[0.485 * 255, 0.456 * 255, 0.406 * 255],
            std=[0.229 * 255, 0.224 * 255, 0.225 * 255])
        self.coin = ops.CoinFlip(probability=0.5)
Exemple #16
0
    def __init__(self,
                 img_dir,
                 img_size,
                 batch_size,
                 num_threads,
                 device_id,
                 num_gpus=1,
                 seed=1):
        super(DataPipeline, self).__init__(batch_size,
                                           num_threads,
                                           device_id,
                                           seed=seed)
        self.input = ops.FileReader(file_root=img_dir,
                                    random_shuffle=True,
                                    num_shards=num_gpus,
                                    shard_id=device_id)
        self.decode = ops.ImageDecoder(device='mixed', output_type=types.RGB)

        self.res = ops.Resize(device="gpu", resize_x=img_size)
        self.cmn = ops.CropMirrorNormalize(
            device='gpu',
            image_type=types.RGB,
            mean=[0.5 * 255, 0.5 * 255, 0.5 * 255],
            std=[0.5 * 255, 0.5 * 255, 0.5 * 255],
        )
        self.rrc = ops.RandomResizedCrop(device='gpu',
                                         size=(img_size, img_size))
    def __init__(self, root_dir, batch_size, num_threads, device_id,
                 use_shift_scale=False,
                 num_shards=None, shard_id=None):
        super().__init__(batch_size, num_threads, device_id, seed=12)

        self.random_angle = ops.Uniform(range=(0, 360.0))
        self.random = ops.Uniform(range=(0.5, 1.5))
        self.random_coin = ops.CoinFlip()

        self.input = ops.FileReader(
            file_root=root_dir, random_shuffle=True,
            num_shards=num_shards, shard_id=shard_id,
        )

        self.decode = ops.ImageDecoder(device='mixed')
        self.rotate = ops.Rotate(device='gpu', interp_type=types.INTERP_LINEAR)
        self.crop = ops.Crop(device='gpu', crop=(224, 224))
        self.use_shift_scale = use_shift_scale
        if self.use_shift_scale:
            self.shift_scale = ops.RandomResizedCrop(
                device='gpu',
                size=(224, 224),
                interp_type=types.INTERP_LINEAR,
                random_area=(0.3, 1.0),
            )
        self.flip = ops.Flip(device='gpu')
        self.color_twist = ops.ColorTwist(device='gpu')
 def __init__(self,
              batch_size,
              num_threads,
              device_id,
              data_dir,
              crop_size,
              local_rank=0,
              world_size=1):
     super(HybridTrainPipe, self).__init__(batch_size,
                                           num_threads,
                                           device_id,
                                           seed=12 + device_id)
     dali_device = "gpu"
     self.input = ops.FileReader(file_root=data_dir,
                                 shard_id=local_rank,
                                 num_shards=world_size,
                                 random_shuffle=True)
     self.decode = ops.ImageDecoder(device="mixed", output_type=types.RGB)
     self.rand_resize_crop = ops.RandomResizedCrop(device=dali_device,
                                                   size=crop_size,
                                                   random_area=[0.08, 1.25])
     self.crop_mirror_norm = ops.CropMirrorNormalize(
         device=dali_device,
         output_dtype=types.FLOAT,
         output_layout=types.NCHW,
         mean=[0.485, 0.456, 0.406],
         std=[0.229, 0.224, 0.225])
     self.coin_flip = ops.CoinFlip(probability=0.5)
Exemple #19
0
    def __init__(self, batch_size, num_threads, device_id, prefetch, fp16,
                 nhwc):
        super(CommonPipeline, self).__init__(batch_size,
                                             num_threads,
                                             device_id,
                                             prefetch_queue_depth=prefetch)

        self.decode_gpu = ops.nvJPEGDecoder(device="mixed",
                                            output_type=types.RGB)
        self.res = ops.RandomResizedCrop(device="gpu", size=(224, 224))
        if nhwc:
            layout = types.NHWC
        else:
            layout = types.NCHW
        if fp16:
            out_type = types.FLOAT16
        else:
            out_type = types.FLOAT
        self.cmnp = ops.CropMirrorNormalize(
            device="gpu",
            output_dtype=out_type,
            output_layout=layout,
            crop=(224, 224),
            image_type=types.RGB,
            mean=[0.485 * 255, 0.456 * 255, 0.406 * 255],
            std=[0.229 * 255, 0.224 * 255, 0.225 * 255])
        self.coin = ops.CoinFlip(probability=0.5)
Exemple #20
0
def build_train_and_test_transforms():
    """Returns torchvision OR nvidia-dali transforms.

    :returns: train_transforms, test_transforms
    :rtype: list, list

    """
    resize_shape = (args.image_size_override, args.image_size_override)

    if 'dali' in args.task:
        # Lazy import DALI dependencies because debug cpu nodes might not have DALI.
        import nvidia.dali.ops as ops
        import nvidia.dali.types as types
        from datasets.dali_imagefolder import ColorJitter, RandomHorizontalFlip, RandomGrayScale

        train_transform = [
            ops.RandomResizedCrop(device="gpu" if args.cuda else "cpu",
                                  size=resize_shape,
                                  random_area=(0.08, 1.0),
                                  random_aspect_ratio=(3. / 4, 4. / 3)),
            RandomHorizontalFlip(prob=0.2, cuda=args.cuda),
            ColorJitter(brightness=0.8 * args.color_jitter_strength,
                        contrast=0.8 * args.color_jitter_strength,
                        saturation=0.2 * args.color_jitter_strength,
                        hue=0.2 * args.color_jitter_strength,
                        prob=0.8,
                        cuda=args.cuda),
            RandomGrayScale(prob=0.2, cuda=args.cuda)
            # TODO: Gaussian-blur
        ]
        test_transform = [
            ops.Resize(resize_x=resize_shape[0],
                       resize_y=resize_shape[1],
                       device="gpu" if args.cuda else "cpu",
                       image_type=types.RGB,
                       interp_type=types.INTERP_LINEAR)
        ]
    else:
        from datasets.utils import GaussianBlur

        train_transform = [
            # transforms.CenterCrop(first_center_crop_size),
            transforms.RandomResizedCrop(
                (args.image_size_override, args.image_size_override)),
            transforms.RandomHorizontalFlip(p=0.5),
            transforms.RandomApply([
                transforms.ColorJitter(
                    brightness=0.8 * args.color_jitter_strength,
                    contrast=0.8 * args.color_jitter_strength,
                    saturation=0.8 * args.color_jitter_strength,
                    hue=0.2 * args.color_jitter_strength)
            ],
                                   p=0.8),
            transforms.RandomGrayscale(p=0.2),
            GaussianBlur(kernel_size=int(0.1 * args.image_size_override),
                         p=0.5)
        ]
        test_transform = [transforms.Resize(resize_shape)]

    return train_transform, test_transform
Exemple #21
0
 def __init__(self,
              batch_size,
              num_threads,
              device_id,
              data_dir="./",
              dali_cpu=False):
     super(DecodeAndCropPipeline, self).__init__(batch_size,
                                                 num_threads,
                                                 device_id,
                                                 seed=12)
     self.input = ops.FileReader(file_root=data_dir, random_shuffle=True)
     if dali_cpu:
         decoder_device = "cpu"
     else:
         decoder_device = "mixed"
     device_memory_padding = 211025920 if decoder_device == 'mixed' else 0
     host_memory_padding = 140544512 if decoder_device == 'mixed' else 0
     self.decode = ops.ImageDecoder(
         device=decoder_device,
         output_type=types.RGB,
         device_memory_padding=device_memory_padding,
         host_memory_padding=host_memory_padding)
     dali_device = "cpu" if dali_cpu else "gpu"
     self.res = ops.RandomResizedCrop(device=dali_device,
                                      size=224,
                                      interp_type=types.INTERP_TRIANGULAR,
                                      random_aspect_ratio=[0.8, 1.25],
                                      random_area=[0.1, 1.0],
                                      num_attempts=100)
Exemple #22
0
    def __init__(self,
                 args,
                 batch_size,
                 num_threads,
                 device_id,
                 rec_path,
                 idx_path,
                 shard_id,
                 num_shards,
                 crop_shape,
                 nvjpeg_padding,
                 prefetch_queue=3,
                 output_layout=types.NCHW,
                 pad_output=True,
                 dtype='float16',
                 dali_cpu=False):
        super(HybridTrainPipe,
              self).__init__(batch_size,
                             num_threads,
                             device_id,
                             seed=12 + device_id,
                             prefetch_queue_depth=prefetch_queue)
        self.input = ops.MXNetReader(path=[rec_path],
                                     index_path=[idx_path],
                                     random_shuffle=True,
                                     shard_id=shard_id,
                                     num_shards=num_shards)

        dali_device, decoder_device = get_device_names(dali_cpu)
        if args.dali_fuse_decoder:
            self.decode = ops.ImageDecoderRandomCrop(
                device=decoder_device,
                output_type=types.RGB,
                device_memory_padding=nvjpeg_padding,
                host_memory_padding=nvjpeg_padding)
        else:
            self.decode = ops.ImageDecoder(
                device=decoder_device,
                output_type=types.RGB,
                device_memory_padding=nvjpeg_padding,
                host_memory_padding=nvjpeg_padding)

        if args.dali_fuse_decoder:
            self.resize = ops.Resize(device=dali_device,
                                     resize_x=crop_shape[1],
                                     resize_y=crop_shape[0])
        else:
            self.resize = ops.RandomResizedCrop(device=dali_device,
                                                size=crop_shape)

        self.cmnp = ops.CropMirrorNormalize(
            device="gpu",
            dtype=types.FLOAT16 if dtype == 'float16' else types.FLOAT,
            output_layout=output_layout,
            crop=crop_shape,
            pad_output=pad_output,
            mean=args.rgb_mean,
            std=args.rgb_std)
        self.coin = ops.random.CoinFlip(probability=0.5)
    def __init__(self,
                 batch_size,
                 num_threads,
                 device_id,
                 data_dir,
                 crop,
                 size=256,
                 dali_cpu=False,
                 local_rank=0,
                 world_size=1):
        super(HybridTrainPipe, self).__init__(batch_size,
                                              num_threads,
                                              device_id,
                                              seed=12 + device_id)
        dali_device = "gpu"
        self.input = ops.FileReader(file_root=data_dir,
                                    shard_id=local_rank,
                                    num_shards=world_size,
                                    random_shuffle=True)
        self.decode = ops.ImageDecoder(device="mixed", output_type=types.RGB)
        # self.res = ops.Resize(device="gpu", resize_x=size, resize_y=size, interp_type=types.INTERP_LINEAR)
        self.res = ops.Resize(device="gpu",
                              resize_shorter=size,
                              interp_type=types.INTERP_LINEAR)
        self.rescrop = ops.RandomResizedCrop(device="gpu",
                                             size=crop,
                                             random_area=[0.08, 1.25])
        self.bc = ops.BrightnessContrast(device="gpu",
                                         brightness=0.5,
                                         contrast=0.6)

        # Will flip vertically with prob of 0.1
        self.vert_flip = ops.Flip(device='gpu', horizontal=0)
        self.vert_coin = ops.CoinFlip(probability=0.4)

        self.transform_source = ops.ExternalSource()
        self.warp_keep_size = ops.WarpAffine(
            device="gpu",
            # size                              # keep original canvas size
            interp_type=types.INTERP_LINEAR  # use linear interpolation
        )

        # My workaround for Dali not supporting random affine transforms:
        # a "synthetic random" warp affine transform.

        # Rotate within a narrow range with probability of 0.075
        self.rotate = ops.Rotate(device='gpu')
        self.rotate_range = ops.Uniform(range=(-20.0, 20.0))
        self.rotate_coin = ops.CoinFlip(probability=0.075)

        self.cmnp = ops.CropMirrorNormalize(
            device="gpu",
            output_dtype=types.FLOAT,
            output_layout=types.NCHW,
            image_type=types.RGB,
            mean=[0.485 * 255, 0.456 * 255, 0.406 * 255],
            std=[0.229 * 255, 0.224 * 255, 0.225 * 255])
        self.coin = ops.CoinFlip(probability=0.5)
        print('DALI "{0}" variant'.format(dali_device))
Exemple #24
0
    def __init__(self,
                 batch_size,
                 num_threads,
                 device_id,
                 data_dir,
                 crop,
                 dali_cpu=False):
        super(HybridTrainPipe, self).__init__(batch_size,
                                              num_threads,
                                              device_id,
                                              seed=12 + device_id)
        if torch.distributed.is_initialized():
            rank = torch.distributed.get_rank()
            world_size = torch.distributed.get_world_size()
        else:
            rank = 0
            world_size = 1

        self.input = ops.FileReader(
            file_root=data_dir,
            shard_id=rank,
            num_shards=world_size,
            random_shuffle=True,
            pad_last_batch=True,
        )

        if dali_cpu:
            dali_device = "cpu"
            self.decode = ops.ImageDecoder(device=dali_device,
                                           output_type=types.RGB)
        else:
            dali_device = "gpu"
            # This padding sets the size of the internal nvJPEG buffers to be able to handle all images from full-sized ImageNet
            # without additional reallocations
            self.decode = ops.ImageDecoder(
                device="mixed",
                output_type=types.RGB,
                device_memory_padding=211025920,
                host_memory_padding=140544512,
            )

        self.res = ops.RandomResizedCrop(
            device=dali_device,
            size=[crop, crop],
            interp_type=types.INTERP_LINEAR,
            random_aspect_ratio=[0.75, 4.0 / 3.0],
            random_area=[0.08, 1.0],
            num_attempts=100,
        )

        self.cmnp = ops.CropMirrorNormalize(
            device="gpu",
            dtype=types.FLOAT,
            output_layout=types.NCHW,
            crop=(crop, crop),
            mean=[0.485 * 255, 0.456 * 255, 0.406 * 255],
            std=[0.229 * 255, 0.224 * 255, 0.225 * 255],
        )
        self.coin = ops.CoinFlip(probability=0.5)
    def __init__(self,
                 batch_size,
                 num_threads,
                 device_id,
                 crop,
                 colorjitter=None,
                 dali_cpu=False):
        super(ImageNetTrainPipe, self).__init__(batch_size,
                                                num_threads,
                                                device_id,
                                                seed=12 + device_id)
        self.data_input = ops.ExternalSource()
        self.label_input = ops.ExternalSource()
        self.colorjitter = colorjitter
        # let user decide which pipeline works him bets for RN version he runs
        if dali_cpu:
            dali_device = "cpu"
            self.decode = ops.HostDecoderRandomCrop(device=dali_device,
                                                    output_type=types.RGB)
            self.res = ops.Resize(resize_x=crop, resize_y=crop)
        else:
            dali_device = "gpu"
            # This padding sets the size of the internal nvJPEG buffers to be able to
            # handle all images from full-sized ImageNet without additional reallocations
            self.decode = ops.nvJPEGDecoder(device="mixed",
                                            output_type=types.RGB,
                                            device_memory_padding=211025920,
                                            host_memory_padding=140544512)
            self.res = ops.RandomResizedCrop(device=dali_device,
                                             size=(crop, crop))

        self.cmnp = ops.CropMirrorNormalize(
            device="gpu",
            output_dtype=types.FLOAT,
            output_layout=types.NCHW,
            crop=(crop, crop),
            image_type=types.RGB,
            mean=[0.485 * 255, 0.456 * 255, 0.406 * 255],
            std=[0.229 * 255, 0.224 * 255, 0.225 * 255])
        self.coin = ops.CoinFlip(probability=0.5)

        if self.colorjitter is not None:
            self.colorjit = ops.ColorTwist(device="gpu")
            self.rng_brightness = ops.Uniform(range=(1.0 - self.colorjitter[0],
                                                     1.0 +
                                                     self.colorjitter[0]))
            self.rng_contrast = ops.Uniform(range=(1.0 - self.colorjitter[1],
                                                   1.0 + self.colorjitter[1]))
            self.rng_saturation = ops.Uniform(range=(1.0 - self.colorjitter[2],
                                                     1.0 +
                                                     self.colorjitter[2]))
            self.rng_hue = ops.Uniform(range=(-self.colorjitter[3],
                                              self.colorjitter[3]))
Exemple #26
0
    def __new__(
        cls,
        size,
        interp_type=None,
        mag_filter=None,
        min_filter=None,
        random_area=(0.08, 1.),
        random_aspect_ratio=(0.75, 1.33),
        num_attempts=10,
        **kwargs
    ):
        """Create a ``ImageDecoderRandomCrop`` operator.

        Parameters
        ----------
        size : Union[int, Sequence[int]]
            The output image size.
        interp_type : str, optional
            The interpolation for both up and down sampling.
        mag_filter : str, optional, default='LINEAR'
            The interpolation for up sampling.
        min_filter : str, optional, default='TRIANGULAR'
            The interpolation for down sampling.
        random_area : Sequence[float], optional, default=(0.08, 1.)
            The range of scale for sampling.
        random_aspect_ratio : Sequence[float], optional, default=(0.75, 1.33)
            The range of aspect ratio for sampling.
        num_attempts : int, optional, default=10
            The max number of sampling trails.

        Returns
        -------
        nvidia.dali.ops.ImageDecoderRandomCrop
            The operator.

        """
        if isinstance(interp_type, six.string_types):
            interp_type = getattr(types, 'INTERP_' + interp_type.upper())
        if isinstance(mag_filter, six.string_types):
            mag_filter = getattr(types, 'INTERP_' + mag_filter.upper())
        if isinstance(min_filter, six.string_types):
            min_filter = getattr(types, 'INTERP_' + min_filter.upper())
        return ops.RandomResizedCrop(
            size=size,
            interp_type=interp_type,
            mag_filter=mag_filter,
            min_filter=min_filter,
            random_area=random_area,
            random_aspect_ratio=random_aspect_ratio,
            num_attempts=num_attempts,
            device=context.get_device_type(),
            **kwargs
        )
Exemple #27
0
    def __init__(self, batch_size, num_threads, device_id, num_gpus, data_paths):
        super(CustomPipe, self).__init__(batch_size, num_threads, device_id,)
        self.input = ops.FileReader(file_root = data_paths, shard_id = device_id, num_shards = num_gpus)
        self.decode_gpu = ops.ImageDecoder(device = "mixed", output_type = types.RGB)
        self.res = ops.RandomResizedCrop(device="gpu", size =(224, 224))

        self.cmnp = ops.CropMirrorNormalize(device="gpu",
                                            output_dtype=types.FLOAT,
                                            output_layout=types.NCHW,
                                            crop=(224, 224),
                                            image_type=types.RGB,
                                            mean=[0.485 * 255,0.456 * 255,0.406 * 255],
                                            std=[0.229 * 255,0.224 * 255,0.225 * 255])
Exemple #28
0
 def __init__(self, batch_size, num_threads, device_id, data_dir, crop):
     super(HybridTrainPipe, self).__init__(batch_size, num_threads, device_id, seed = 12 + device_id)
     self.input = ops.FileReader(file_root = data_dir, shard_id = args.local_rank, num_shards = args.world_size, random_shuffle = True)
     self.decode = ops.nvJPEGDecoder(device = "mixed", output_type = types.RGB)
     self.rrc = ops.RandomResizedCrop(device = "gpu", size = (crop, crop))
     self.cmnp = ops.CropMirrorNormalize(device = "gpu",
                                         output_dtype = types.FLOAT,
                                         output_layout = types.NCHW,
                                         crop = (crop, crop),
                                         image_type = types.RGB,
                                         mean = [0.485 * 255,0.456 * 255,0.406 * 255],
                                         std = [0.229 * 255,0.224 * 255,0.225 * 255])
     self.coin = ops.CoinFlip(probability = 0.5)
Exemple #29
0
 def __init__(self, data_iter, batch_size, x_dim, num_threads, device_id):
     super(MiniPipeline, self).__init__(batch_size, num_threads, device_id, seed=12)
     data_iter = iter(data_iter)
     self.source = ops.ExternalSource(source=data_iter, num_outputs=2)
     self.decode = ops.ImageDecoder(device='mixed', output_type=types.RGB)
     self.rrc = ops.RandomResizedCrop(device='gpu', size=x_dim[:2], random_area=[0.95, 1.0])
     self.flip = ops.Flip(device='gpu')
     # self.colortwist = ops.ColorTwist(device='gpu', brightness=.1, contrast=.1, saturation=.1, hue=.1)
     self.norm = ops.CropMirrorNormalize(device='gpu',
                                         output_layout=types.NCHW,
                                         # mean=[0.485 * 255, 0.456 * 255, 0.406 * 255],
                                         # std=[0.229 * 255, 0.224 * 255, 0.225 * 255]
                                         )
Exemple #30
0
 def __init__(self, image_dir, batch_size, num_threads, device_id, num_gpus=1, seed=1, train=True):
     super(DataPipeline, self).__init__(
         batch_size, num_threads, device_id, seed=seed)
     self.input = ops.FileReader(file_root=image_dir,
                                 random_shuffle=True, num_shards=num_gpus, shard_id=device_id)
     self.decode = ops.ImageDecoder(device='mixed', output_type=types.RGB)
     self.rrc = ops.RandomResizedCrop(device='gpu', size=(128, 128))
     self.cmn = ops.CropMirrorNormalize(device='gpu',
                                        crop=(128, 128),
                                        image_type=types.RGB,
                                        mean=[0.5*256, 0.5*256, 0.5*256],
                                        std=[0.5*256, 0.5*256, 0.5*256],
                                        )
     self.coin = ops.CoinFlip(probability=0.5)
     self.res = ops.Resize(device="gpu", resize_shorter=256)
     self.train = train