Exemple #1
0
    def test_synMem2(self):
        """Test issue where nxcompiler runs out of synMem.

        The problem is that whenever the number of syn bits is an exact
        multiple of 64, nxcompiler requires an extra mem word. E.g. 128 bits
        would count as 3 words.

        We have implemented a check in the NxTF compiler that allocates an
        extra mem word when it detects that the numBits are an exact multiple
        of 64. So this test should pass.
        """

        inputLayer = NxInputLayer((1, 1, 1))
        x = NxConv2D(6, (1, 1),
                     name='conv1',
                     kernel_initializer='ones',
                     synapseEncoding='dense1',
                     useSharedSign=False)(inputLayer.input)
        model = NxModel(inputLayer.input, x, saveOutput=False)
        model.compileModel()
        model.run(1)
        model.disconnect()

        layers = model.partitionOptimizer.getLayers()
        assert layers[1].numSynMemWords == 2
Exemple #2
0
    def test_synMem(self):
        """Test issue where nxcompiler runs out of synMem.

        The problem is that whenever the number of syn bits is an exact
        multiple of 64, nxcompiler requires an extra mem word. E.g. 128 bits
        would count as 3 words.

        Normally, this test would fail due to an assertion in the nxcompiler
        that checks for number of syn mem words to be smaller than 2**14.

        We have implemented a check in the NxTF compiler that allocates an
        extra mem word when it detects that the numBits are an exact multiple
        of 64. So this test should pass.
        """

        np.random.seed(123)
        inputLayer = NxInputLayer((1, 1, 256))

        x = NxConv2D(256, (1, 1), name='conv1')(inputLayer.input)

        model = NxModel(inputLayer.input, x)

        model.compileModel()
        model.run(1)
        model.disconnect()
Exemple #3
0
    def _setup_2layer_stimulus_net(inputImage,
                                   vTh,
                                   padding='same',
                                   verbose=False):
        """Helper method to set up a 2-layer CNN.

        The output layer has a single kernel with all weights equal to 1.
        """

        assert isinstance(inputImage, np.ndarray)

        inputShape = inputImage.shape

        inputLayer = NxInputLayer(inputShape,
                                  vThMant=vTh,
                                  biasExp=0,
                                  visualizePartitions=False)
        outputLayer = NxConv2D(filters=1,
                               kernel_size=3,
                               padding=padding,
                               vThMant=1000,
                               weightExponent=0,
                               synapseEncoding='sparse',
                               kernel_initializer='ones',
                               bias_initializer='zeros',
                               visualizePartitions=False)

        model = NxModel(inputLayer.input,
                        outputLayer(inputLayer.input),
                        numCandidatesToCompute=1)

        mapper = model.compileModel()

        if verbose:
            hiddenCore = model.board.n2Chips[0].n2CoresAsList[1]
            outputCore = model.board.n2Chips[0].n2CoresAsList[0]

            mapper.printCore(hiddenCore, compartments=True)
            mapper.printCore(outputCore, compartments=True)

        outputShape = model.output_shape[1:]

        # Define probes to read out current and voltages
        vProbes1 = []
        uProbes2 = []
        for i in range(int(np.asscalar(np.prod(inputShape)))):
            vProbes1.append(inputLayer[i].probe(state=ProbableStates.VOLTAGE))
        for i in range(int(np.asscalar(np.prod(outputShape)))):
            uProbes2.append(outputLayer[i].probe(state=ProbableStates.CURRENT))

        # Set bias currents
        for i, b in enumerate(np.ravel(inputImage, 'F')):
            inputLayer[i].biasMant = b
            inputLayer[i].phase = 2

        return model, vProbes1, uProbes2
    def test_saveLoadNxModel(self):
        """Check that NxModel can be saved and loaded like a Keras Model."""

        inputLayer = NxInputLayer(batch_input_shape=(1, 10, 10, 3))
        layer = NxConv2D(2, 3)(inputLayer.input)
        model1 = NxModel(inputLayer.input, layer)
        model1.compile('sgd', 'mse')
        model1.compileModel()
        model1.clearTemp()
        filename = os.path.abspath(
            os.path.join(os.path.dirname(os.path.realpath(__file__)),
                         '../../..', 'temp', str(hash(model1))))
        model1.save(filename)
        model2 = loadNxModel(filename)
        os.remove(filename)

        x = np.random.random_sample(model1.input_shape)
        y1 = model1.predict(x)
        y2 = model2.predict(x)

        self.assertTrue(np.array_equal(y1, y2))
Exemple #5
0
    def test_compile(self):
        """Check compilation of NxModel and retrieval of cxResourceMap."""

        # Create an arbitrary model
        inputShape = (31, 35, 2)
        inputLayer = NxInputLayer(inputShape)
        hiddenLayer = NxConv2D(4, 3)
        outputLayer = NxConv2D(7, 3)
        model = NxModel(inputLayer.input,
                        outputLayer(hiddenLayer(inputLayer.input)),
                        numCandidatesToCompute=1)

        model.compileModel()

        if self.verbose:
            hiddenLayer.exclusionCriteria.print()
            outputLayer.exclusionCriteria.print()

            for l in model.layers:
                if isinstance(l, NxConv2D):
                    print(l._cxResourceMap)
    def test_CompartmentInterface_probe(self):
        """Check probe generation."""

        # Create an arbitrary model
        inputShape = (16, 16, 1)
        inputLayer = NxInputLayer(inputShape)
        outputLayer = NxConv2D(1, 3, padding='same', validatePartitions=True)
        model = NxModel(inputLayer.input,
                        outputLayer(inputLayer.input),
                        numCandidatesToCompute=3)

        model.compileModel()

        uProbe = outputLayer[0].probe(ProbableStates.CURRENT)
        sProbe = outputLayer[0].probe(ProbableStates.SPIKE)
        aProbe = outputLayer[0].probe(ProbableStates.ACTIVITY)
        pProbe = outputLayer[2].probe(ProbableStates.PHASE)

        self.assertTrue(isinstance(uProbe, N2Probe))
        self.assertTrue(isinstance(sProbe, N2SpikeProbe))
        self.assertTrue(isinstance(aProbe, N2Probe))
        self.assertTrue(isinstance(pProbe, N2Probe))

        self.assertEqual(uProbe.chipId, outputLayer._cxResourceMap[0, 0])
        self.assertEqual(uProbe.coreId, outputLayer._cxResourceMap[0, 1])
        self.assertEqual(uProbe.nodeId, outputLayer._cxResourceMap[0, 2])

        self.assertEqual(sProbe.chipId, outputLayer._cxResourceMap[0, 0])
        self.assertEqual(sProbe.coreId, outputLayer._cxResourceMap[0, 1])
        self.assertEqual(sProbe.cxId, outputLayer._cxResourceMap[0, 2])

        self.assertEqual(aProbe.chipId, outputLayer._cxResourceMap[0, 0])
        self.assertEqual(aProbe.coreId, outputLayer._cxResourceMap[0, 1])
        self.assertEqual(aProbe.nodeId, outputLayer._cxResourceMap[0, 2])

        self.assertEqual(pProbe.chipId, outputLayer._cxResourceMap[2, 0])
        self.assertEqual(pProbe.coreId, outputLayer._cxResourceMap[2, 1])
        self.assertEqual(pProbe.nodeId, outputLayer._cxResourceMap[2, 2] // 4)
    def test_setter_getter(self):
        """Check setter and getter methods of CompartmentInterface."""

        # Create an arbitrary model
        inputShape = (16, 16, 1)
        inputLayer = NxInputLayer(inputShape)
        outputLayer = NxConv2D(1, 3, padding='same', validatePartitions=True)
        model = NxModel(inputLayer.input,
                        outputLayer(inputLayer.input),
                        numCandidatesToCompute=3)

        model.compileModel()

        # Set ome arbitrary values
        outputLayer[0].current = 1
        outputLayer[0].voltage = 2
        outputLayer[0].activity = 3
        outputLayer[0].biasMant = 4
        outputLayer[0].biasExp = 5
        outputLayer[0].phase = 1
        outputLayer[1].phase = 2
        outputLayer[2].phase = 3
        outputLayer[3].phase = 4
        outputLayer[4].phase = 5

        # Check values
        self.assertEqual(outputLayer[0].current, 1)
        self.assertEqual(outputLayer[0].voltage, 2)
        self.assertEqual(outputLayer[0].activity, 3)
        self.assertEqual(outputLayer[0].biasMant, 4)
        self.assertEqual(outputLayer[0].biasExp, 5)
        self.assertEqual(outputLayer[0].phase, 1)
        self.assertEqual(outputLayer[1].phase, 2)
        self.assertEqual(outputLayer[2].phase, 3)
        self.assertEqual(outputLayer[3].phase, 4)
        self.assertEqual(outputLayer[4].phase, 5)
Exemple #8
0
    def test_NxInputLayer(self):
        """
        Test input layer in soft-reset mode.
        """

        plot = False
        verbose = False

        resetMode = 'soft'
        neuronSize = 2 if resetMode == 'soft' else 1

        input_shape = (32, 32, 3)
        inputSize = np.prod(input_shape)
        inputLayer = NxInputLayer(input_shape,
                                  probeSpikes=True,
                                  vThMant=255,
                                  resetMode=resetMode)
        out = inputLayer.input

        model = NxModel(out, out)

        model.compile('adam', 'categorical_crossentropy', ['accuracy'])

        model.summary()

        layers = [inputLayer]

        input_image = np.linspace(
            0, 256, endpoint=False,
            num=inputSize).reshape(input_shape).astype(int)
        x_test = [input_image]
        y_test = [0]

        mapper = model.compileModel()
        if verbose:
            printLayerMappings(layers, mapper, synapses=True, inputAxons=True)
            printLayers(layers)

        layerProbes = []
        numProbes = 32
        for i, layer in enumerate(layers):
            shape = layer.output_shape[1:]

            # Define probes to read out currents.
            vProbes = []
            sProbes = []
            uProbes = []

            toProbe = numProbes if i == (len(layers) -
                                         1) else numProbes * neuronSize
            toProbe = min(toProbe,
                          int(np.asscalar(np.prod(shape))) * neuronSize)

            for j in range(toProbe):
                vProbes.append(layer[j].probe(ProbableStates.VOLTAGE))
                sProbes.append(layer[j].probe(ProbableStates.ACTIVITY))
                uProbes.append(layer[j].probe(ProbableStates.CURRENT))

            layerProbes.append([uProbes, vProbes, sProbes])

        # How many time steps to run each sample.
        num_steps = 1000
        # How many samples to test.
        num_samples_to_test = 1

        # Iterate over samples in testset.
        for i, (input_image, target) in enumerate(zip(x_test, y_test)):
            if i == num_samples_to_test:
                break

            if plot:
                plt.hist(input_image.ravel())
                plt.show()

            # Set input bias currents.
            for j, b in enumerate(np.ravel(input_image, 'F')):
                inputLayer[j * neuronSize].biasMant = b
                inputLayer[j * neuronSize].biasExp = 6
                inputLayer[j * neuronSize].phase = 2

            # Run model.
            model.run(num_steps)

        # Clean up.
        data = [[extract(probe) for probe in lp] for lp in layerProbes]
        spikesRates = []
        for i, (layer, d) in enumerate(zip(layers, data)):
            sData = d[2][:, (neuronSize - 1)::neuronSize]
            spikecount = (sData // 127).sum(0)
            spikesRates.append(spikecount / num_steps)

        model.disconnect()

        layer_activations = [x_test[0]]

        if plot:
            for activations, spikerate in zip(layer_activations, spikesRates):
                plt.figure()
                scale = np.max(activations)
                spikesFlat = spikerate  #spikerate.flatten()
                plt.plot(
                    activations.flatten('F')[:len(spikesFlat)] / scale,
                    spikesFlat, '.')

            plotLayerProbes(layers, data, neuronSize)

        cor = np.corrcoef(np.ravel(spikesRates[-1]),
                          np.ravel(layer_activations[0],
                                   'F')[:numProbes // 2])[0, 1]
        self.assertGreater(cor, 0.99)
Exemple #9
0
    def test_random_cor(self):
        """
        Tests the soft reset mode by comparing activations from an ANN
        to spike-rate from the converted SNN. The input and weights
        are randomly initialized.
        """

        seed = 123
        np.random.seed(seed)

        plot = False
        verbose = False

        visualizePartitions = False
        logger = None
        resetMode = 'soft'
        neuronSize = 2 if resetMode == 'soft' else 1

        inputShape = (4, 4, 1)
        inputScale = 255

        inputImage = np.random.randint(int(inputScale * 0.25), int(inputScale),
                                       inputShape)

        maxNumSpikes = 100
        numSteps = int(np.max(inputImage / 255) * maxNumSpikes)

        inputLayer = NxInputLayer(batch_input_shape=(1, ) + inputShape,
                                  vThMant=255,
                                  visualizePartitions=visualizePartitions,
                                  resetMode=resetMode,
                                  probeSpikes=True)
        out = inputLayer.input

        layers = [inputLayer]

        # Conv2D
        kernelShape = (3, 3, 1)
        kernelScale = 4
        # No need to divide by thrGain because spike input receives equal gain.
        vThMant = 2**9 - 1

        kernel_init = partial(kernel_initializer, kernelScale=kernelScale)

        numLayers = 1
        for i in range(numLayers):

            layer = NxConv2D(filters=kernelShape[-1],
                             kernel_size=kernelShape[:-1],
                             vThMant=vThMant,
                             kernel_initializer=kernel_init,
                             bias_initializer='ones',
                             validatePartitions=False,
                             probeSpikes=True,
                             activation='relu',
                             resetMode=resetMode)

            layers.append(layer)
            out = layer(out)

        model = NxModel(inputLayer.input, out, logger=logger)

        for layer in layers[1:]:
            weights, biases = layer.get_weights()
            weights, biases = to_integer(weights, biases, 8,
                                         np.max(weights) // 2)
            layer.set_weights([weights, biases])

        mapper = model.compileModel()

        if verbose:
            printLayerMappings(layers, mapper, synapses=True, inputAxons=True)
            printLayers(layers)
        print(model.summary())

        layerProbes = []

        for layer in layers:
            shape = layer.output_shape[1:]

            # Define probes to read out currents.
            vProbes = []
            sProbes = []
            uProbes = []

            for i in range(int(np.asscalar(np.prod(shape))) * neuronSize):
                vProbes.append(layer[i].probe(ProbableStates.VOLTAGE))
                sProbes.append(layer[i].probe(ProbableStates.ACTIVITY))
                uProbes.append(layer[i].probe(ProbableStates.CURRENT))

            layerProbes.append([uProbes, vProbes, sProbes])

        # Set bias currents
        for i, b in enumerate(np.ravel(inputImage, 'F')):
            inputLayer[i * neuronSize].biasMant = b
            inputLayer[i * neuronSize].phase = 2

        if verbose:
            for layer in layers:
                print(getCompartmentStates(layer, neuronSize))

        model.run(numSteps)

        if verbose:
            for layer in layers:
                print(getCompartmentStates(layer, neuronSize))

        model.disconnect()

        data = [[extract(probe) for probe in lp] for lp in layerProbes]

        if plot:
            plotLayerProbes(layers, data, neuronSize)

        spikesRates = []
        for i, (layer, d) in enumerate(zip(layers, data)):
            sData = d[2][:, (neuronSize - 1)::neuronSize]
            shape = layer.output_shape[1:]
            spikecount = _data_to_img(sData // 127, shape)
            spikesRates.append(spikecount / numSteps)

        batchInputImage = np.expand_dims(inputImage, 0)
        activations = model.predict(batchInputImage)[0]

        if plot:
            plt.figure()
            plt.plot(inputImage.flatten(), spikesRates[0].flatten(), '.')
            plt.show()

            plt.figure()
            plt.plot(activations.flatten(), spikesRates[-1].flatten(), '.')
            plt.show()

            plt.figure()
            plt.imshow(normalize_image_dims(activations))
            plt.show()

            plt.figure()
            plt.imshow(normalize_image_dims(spikesRates[-1]))
            plt.show()

        cor = np.corrcoef(np.ravel(spikesRates[-1]), np.ravel(activations))[0,
                                                                            1]
        self.assertGreater(cor, 0.99)
        if verbose:
            print(cor)
Exemple #10
0
    def test_Flatten(self):
        """Test correlation between ANN activations and SNN spikerates.

        The network consists of a 3D input layer, followed by a flatten layer,
        which has 1-to-1 connections to the output layer. The input pixel
        values are set to ascending integers in Fortran style.

        This test asserts that the spikerates in the output layer are close to
        the ANN activations, by computing the Pearson correlation coefficient.
        A perfect correlation cannot be expected due to quantization errors
        when approximating ANN activations with discrete spikes. However,
        correlations should be higher than 0.99.
        """

        visualizePartitions = False
        doPlot = False

        # Height, width, depth
        inputShape = (3, 4, 5)

        numInputNeurons = int(np.asscalar(np.prod(inputShape)))
        numOutputNeurons = numInputNeurons - 1
        inputScale = 255

        thrToInputRatio = 2**7
        thrGain = 2**6

        # No need to divide by thrGain because spike input receives equal gain.
        vThMant = 1

        vThMantInput = thrToInputRatio * inputScale // thrGain

        maxNumSpikes = 100
        numSteps = thrToInputRatio * maxNumSpikes

        weights = np.eye(numInputNeurons, numOutputNeurons, dtype=int)
        biases = np.zeros(numOutputNeurons, int)

        nxInput = NxInputLayer(inputShape,
                               vThMant=vThMantInput,
                               visualizePartitions=visualizePartitions)
        nxLayer = NxDense(numOutputNeurons,
                          weights=[weights, biases],
                          vThMant=vThMant,
                          validatePartitions=True,
                          probeSpikes=True)
        nxModel = NxModel(nxInput.input, nxLayer(NxFlatten()(nxInput.input)))
        nxModel.compileModel()

        kerasInput = Input(inputShape)
        kerasLayer = Dense(numOutputNeurons,
                           weights=[weights, biases])(Flatten()(kerasInput))
        kerasModel = Model(kerasInput, kerasLayer)

        # Define probes to read out currents.
        sProbes = []
        for i in range(numOutputNeurons):
            sProbes.append(nxLayer[i].probe(ProbableStates.ACTIVITY))

        # Set bias currents
        inputImage = np.reshape(np.arange(numInputNeurons), inputShape, 'F')
        inputImage = inputImage % 255
        for i, b in enumerate(np.ravel(inputImage, 'F')):
            nxInput[i].biasMant = b
            nxInput[i].phase = 2

        nxModel.run(numSteps)
        nxModel.disconnect()

        data = extract(sProbes)
        spikecount = _data_to_img(data // 127, nxLayer.output_shape[1:])
        spikerates = spikecount / numSteps * thrToInputRatio

        batchInputImage = np.expand_dims(inputImage, 0)
        activations = \
            kerasModel.predict(batchInputImage)[0] / (vThMant * thrGain)

        if doPlot:

            plt.figure(3)
            plt.imshow(normalize_image_dims(inputImage))
            plt.show()

            plt.figure(6)
            plt.plot(activations.flatten(), spikerates.flatten(), '.')
            plt.show()

            plt.figure(7)
            plt.imshow(normalize_image_dims(activations))
            plt.show()

            plt.figure(8)
            plt.imshow(normalize_image_dims(spikerates))
            plt.show()

        corr = np.corrcoef(np.ravel(spikerates), np.ravel(activations))[0, 1]

        self.assertAlmostEqual(corr,
                               1,
                               2,
                               msg="Correlation between ANN activations "
                               "and SNN spikerates is too low.")
Exemple #11
0
    def test_Conv2DBiases(self):
        """Test correlation between ANN activations and SNN spikerates.

        The network consists of an input layer connected to a convolution
        layer. The input to the network is a square gray-scale image of random
        integers. The weights are also random integers. Biases are non-zero.

        This test asserts that the spikerates in the output layer are close to
        the ANN activations, by computing the Pearson correlation coefficient.
        A perfect correlation cannot be expected due to quantization errors
        when approximating ANN activations with discrete spikes. However,
        correlations should be higher than 0.99.
        """
        def bias_initializer(shape, dtype=None, biasScale=1):
            """Increasing integer bias initializer for Keras layer.

            :param list | tuple | np.ndarray shape: Shape of biases.
            :param str | type | None dtype: Data type of biases.
            :param int biasScale: Scale factor applied to the biases.

            :return: Bias tensor.
            """

            return k.constant(np.arange(biasScale), dtype, shape)

        numFilters = 16
        kernelShape = (3, 3)
        inputShape = (28, 28, 3)
        vThMant = numFilters * 2**4
        thrGain = 2**6
        visualizePartitions = False
        plotUV = False
        numSteps = 500

        bias_init = partial(bias_initializer, biasScale=numFilters)

        layer = NxConv2D(filters=numFilters,
                         kernel_size=kernelShape,
                         vThMant=vThMant,
                         kernel_initializer='zeros',
                         bias_initializer=bias_init,
                         validatePartitions=True,
                         probeSpikes=True,
                         activation='relu',
                         strides=(2, 2))

        inputLayer = NxInputLayer(batch_input_shape=(1, ) + inputShape,
                                  vThMant=vThMant,
                                  visualizePartitions=visualizePartitions)

        model = NxModel(inputLayer.input, layer(inputLayer.input))

        model.compileModel()

        outputShape = layer.output_shape[1:]

        # Define probes to read out currents.
        vProbes = []
        sProbes = []
        for i in range(int(np.asscalar(np.prod(outputShape)))):
            vProbes.append(layer[i].probe(ProbableStates.VOLTAGE))
            sProbes.append(layer[i].probe(ProbableStates.ACTIVITY))

        model.run(numSteps)
        model.disconnect()

        data = extract(sProbes)
        spikecount = _data_to_img(data // 127, outputShape)
        spikerates = spikecount / numSteps

        batchInputImage = np.expand_dims(np.zeros(inputShape), 0)
        activations = model.predict(batchInputImage)[0] / (vThMant * thrGain)

        if plotUV:
            plt.figure(1)
            _plot_stimulus_response(vProbes, sProbes)
            plt.show()

            plt.figure(2)
            plt.plot(activations.flatten(), spikerates.flatten(), '.')
            plt.show()

            plt.figure(3)
            plt.imshow(normalize_image_dims(activations))
            plt.show()

            plt.figure(4)
            plt.imshow(normalize_image_dims(spikerates))
            plt.show()

        corr = np.corrcoef(np.ravel(spikerates), np.ravel(activations))[0, 1]

        self.assertAlmostEqual(corr,
                               1,
                               2,
                               msg="Correlation between ANN activations "
                               "and SNN spikerates is too low.")
Exemple #12
0
def runCorrelationRandom(layer,
                         vThMant,
                         insertFlatten=False,
                         inputShape=None,
                         logger=None):
    """Run network to test correlation between ANN and SNN.

    :param NxLayer | Layer layer: NxLayer to test.
    :param int vThMant: Threshold of ``layer``; used to scale activations.
    :param bool insertFlatten: Whether to flatten input before applying it to
        ``layer``.
    :param np.ndarray | tuple | list inputShape: Shape of input to the network.
    :param logging.Logger logger: Logger.

    :return: Pearson correlation coefficient of ANN activations and SNN rates.
    :rtype: float
    """

    seed = 123
    np.random.seed(seed)

    visualizePartitions = False
    plotUV = False

    if inputShape is None:
        inputShape = (7, 7, 1)
    numInputNeurons = int(np.asscalar(np.prod(inputShape)))
    inputScale = numInputNeurons - 1

    thrToInputRatio = 2**7
    thrGain = 2**0

    vThMantInput = thrToInputRatio * inputScale // thrGain

    maxNumSpikes = 100
    numSteps = thrToInputRatio * maxNumSpikes

    inputImage = np.random.randint(0, inputScale, inputShape)

    inputLayer = NxInputLayer(batch_input_shape=(1, ) + inputShape,
                              vThMant=vThMantInput,
                              visualizePartitions=visualizePartitions)

    out = layer(NxFlatten()(inputLayer.input)) \
        if insertFlatten else layer(inputLayer.input)

    model = NxModel(inputLayer.input, out, logger=logger)

    model.compileModel()

    outputShape = layer.output_shape[1:]

    # Define probes to read out currents.
    vProbes0 = []
    for i in range(numInputNeurons):
        vProbes0.append(inputLayer[i].probe(ProbableStates.VOLTAGE))

    vProbes = []
    sProbes = []
    for i in range(int(np.asscalar(np.prod(outputShape)))):
        vProbes.append(layer[i].probe(ProbableStates.VOLTAGE))
        sProbes.append(layer[i].probe(ProbableStates.ACTIVITY))

    # Set bias currents
    for i, b in enumerate(np.ravel(inputImage, 'F')):
        inputLayer[i].biasMant = b
        inputLayer[i].phase = 2

    model.run(numSteps)
    model.disconnect()

    data = extract(sProbes)
    spikecount = _data_to_img(data // 127, outputShape)
    spikerates = spikecount / numSteps * thrToInputRatio

    batchInputImage = np.expand_dims(inputImage, 0)
    activations = model.predict(batchInputImage)[0] / (vThMant * thrGain)

    if plotUV:
        plt.figure(1)
        _plot_stimulus_response(vProbes0, [])
        plt.show()

        plt.figure(2)
        _plot_stimulus_response(vProbes, sProbes)
        plt.show()

        plt.figure(3)
        plt.imshow(normalize_image_dims(inputImage))
        plt.show()

        plt.figure(6)
        plt.plot(activations.flatten(), spikerates.flatten(), '.')
        plt.show()

        plt.figure(7)
        plt.imshow(normalize_image_dims(activations))
        plt.show()

        plt.figure(8)
        plt.imshow(normalize_image_dims(spikerates))
        plt.show()

    return np.corrcoef(np.ravel(spikerates), np.ravel(activations))[0, 1]
Exemple #13
0
def runModelFromConfig(argsInput, argsHidden, argsOutput, n=None):
    """A helper function used by test_correlationUniform.

    Given a model configuration, this function creates a NxModel, checks
    that the model architecture is valid, then partitions, maps and runs the
    network with a constant white input image.

    The function probes voltage and current states, which can be plotted.
    Spikecountss are derived from the current trace.and are used to assert
    that the SNN activity equals the ANN activations.

    :param InputParams argsInput: Parameters for input layer.
    :param LayerParams argsHidden: Parameters for hidden layer.
    :param LayerParams argsOutput: Parameters for output layer.
    :param int n: The id of the current config. Only used for printing.
    """

    # Define stimulus and runtime settings.
    # #####################################

    inputScale = 1
    vThMantInput = 1
    vThMant = 1
    numSteps = (vThMantInput << 6) // inputScale + 1 + 1 + 1 + 1
    biasExp = 0
    visualizePartitions = False
    plotUV = False

    # Build model.
    # ############

    inputShape = (argsInput.imgHeight, argsInput.imgWidth, argsInput.imgDepth)
    batchInputShape = (1, ) + inputShape

    inputLayer = NxInputLayer(batch_input_shape=batchInputShape,
                              biasExp=biasExp,
                              vThMant=vThMantInput,
                              visualizePartitions=visualizePartitions)

    inputLayer._maxNumCompartments = argsInput.maxNumCxPerCore

    hiddenLayer = NxConv2D(argsHidden.kernelDepth,
                           (argsHidden.kernelHeight, argsHidden.kernelWidth),
                           strides=(argsHidden.strideY, argsHidden.strideX),
                           padding=argsHidden.padding,
                           vThMant=vThMant,
                           synapseEncoding=argsHidden.encoding,
                           kernel_initializer='ones',
                           visualizePartitions=visualizePartitions,
                           validatePartitions=True)

    hiddenLayer._maxNumCompartments = argsHidden.maxNumCxPerCore

    outputLayer = NxConv2D(argsOutput.kernelDepth,
                           (argsOutput.kernelHeight, argsOutput.kernelWidth),
                           strides=(argsOutput.strideY, argsOutput.strideX),
                           padding=argsOutput.padding,
                           vThMant=vThMant,
                           synapseEncoding=argsOutput.encoding,
                           kernel_initializer='ones',
                           validatePartitions=True)

    outputLayer._maxNumCompartments = argsOutput.maxNumCxPerCore

    hiddenShape = hiddenLayer.compute_output_shape(batchInputShape)
    outputShape = outputLayer.compute_output_shape(hiddenShape)

    hiddenShape = hiddenShape[1:]
    outputShape = outputShape[1:]

    if np.any(np.array(hiddenShape) <= 0) or \
            np.any(np.array(outputShape) <= 0):
        print("Configuration resulted in negative layer shape; skip.")
        print("Input layer shape: {}".format(inputShape))
        print("Hidden layer shape: {}".format(hiddenShape))
        print("Output layer shape: {}".format(outputShape))
        return

    # Create NxModel from input to output layer.
    snn = NxModel(inputLayer.input,
                  outputLayer(hiddenLayer(inputLayer.input)),
                  numCandidatesToCompute=1)
    snn.compileModel()

    # Create plain Keras model from input to hidden layer so we
    # can read out hidden layer activations.
    model1 = Model(inputLayer.input, hiddenLayer(inputLayer.input))
    hiddenInput = Input(hiddenShape)
    model2 = Model(hiddenInput, outputLayer(hiddenInput))

    # Define probes to read out currents.
    # ###################################

    u = ProbableStates.CURRENT
    v = ProbableStates.VOLTAGE

    uProbes1 = []
    vProbes1 = []
    for i in range(int(np.asscalar(np.prod(hiddenShape)))):
        uProbes1.append(hiddenLayer[i].probe(u))
        if plotUV:
            vProbes1.append(hiddenLayer[i].probe(v))

    uProbes2 = []
    vProbes2 = []
    for i in range(int(np.asscalar(np.prod(outputShape)))):
        uProbes2.append(outputLayer[i].probe(u))
        if plotUV:
            vProbes2.append(outputLayer[i].probe(v))

    # Apply input image via bias currents.
    # ####################################

    inputImage = inputScale * np.ones(inputShape, int)
    for i, biasMant in enumerate(np.ravel(inputImage, 'F')):
        inputLayer[i].biasMant = biasMant
        inputLayer[i].phase = 2

    # Run model.
    # ##########

    snn.run(numSteps)
    snn.disconnect()

    # Get SNN spike counts.
    data1 = extract(uProbes1)
    spikecount1 = _data_to_img(data1 // (vThMant * 2**6), hiddenShape)

    data2 = extract(uProbes2)
    spikecount2 = _data_to_img(data2 // (vThMant * 2**6), outputShape)

    # Get ANN activations as target reference.
    batchInputImage = np.expand_dims(inputImage, 0)
    activations1 = model1.predict(batchInputImage)
    activations2 = model2.predict(activations1 > 0)

    # Remove batch dim.
    activations1 = activations1[0].astype(int)
    activations2 = activations2[0].astype(int)

    # Plotting.
    # #########

    if plotUV:
        plt.figure()
        _plot_stimulus_response(vProbes1, uProbes1)
        plt.show()

        plt.figure()
        _plot_stimulus_response(vProbes2, uProbes2)
        plt.show()

    # Validation.
    # ###########

    def getErrorMessage(spikecounts, activations):
        """Generate an error message for failed test.

        The error message contains a code snippet to reproduce failure.

        :param np.ndarray spikecounts: SNN spike counts of layer.
        :param np.ndarray activations: ANN activations of layer.
        :return: Error message.
        :rtype: str
        """

        return ("SNN spikecounts not equal to ANN activations.\n" +
                "Spikecounts: \n{}\n\n".format(spikecounts) +
                "Activations: \n{}\n\n".format(activations) +
                "Use the following code to reproduce the error.\n\n" +
                "def test_correlation{}():\n".format('' if n is None else n) +
                "\targsInput = {}\n".format(argsInput) +
                "\targsHidden = {}\n".format(argsHidden) +
                "\targsOutput = {}\n".format(argsOutput) +
                "\trunModelFromConfig(argsInput, argsHidden, argsOutput)\n\n")

    assert np.array_equal(spikecount1, activations1), \
        getErrorMessage(spikecount1, activations1)
    assert np.array_equal(spikecount2, activations2), \
        getErrorMessage(spikecount2, activations2)