def check_fields(self):
        if self.focal_length_calc == 1:
            congruence.checkPositiveNumber(self.ghy_focallength,
                                           "Focal Length value")

        if self.distance_to_image_calc == 1:
            congruence.checkPositiveNumber(self.ghy_distance,
                                           "Distance to image value")

        if self.ghy_diff_plane == 0 or self.ghy_diff_plane == 2:
            congruence.checkStrictlyPositiveNumber(
                self.ghy_nbins_x, "Number of bins for I(Sagittal) histogram")
        if self.ghy_diff_plane == 1 or self.ghy_diff_plane == 2:
            congruence.checkStrictlyPositiveNumber(
                self.ghy_nbins_z, "Number of bins for I(Tangential) histogram")

        if self.ghy_files is None or len(
                self.ghy_files) == 0 or (len(self.ghy_files) == 1
                                         and self.ghy_files[0] == ""):
            raise ValueError("Height Error Profiles list is empty")

        congruence.checkStrictlyPositiveNumber(self.ghy_npeak,
                                               "Number of diffraction peaks")
        congruence.checkStrictlyPositiveNumber(self.ghy_fftnpts,
                                               "Number of points for FFT")
Exemple #2
0
    def check_fields(self):
        self.DESCRIPTOR = congruence.checkEmptyString(self.DESCRIPTOR,
                                                      "formula")
        if self.MAT_FLAG == 1:
            self.DENSITY = congruence.checkStrictlyPositiveNumber(
                self.DENSITY, "density")

        if self.GRID > 0:
            self.GRIDSTART = congruence.checkPositiveNumber(
                self.GRIDSTART, "Starting Energy")

            if self.GRID == 1:
                self.GRIDEND = congruence.checkStrictlyPositiveNumber(
                    self.GRIDEND, "Energy to")
                congruence.checkLessThan(self.GRIDSTART, self.GRIDEND,
                                         "Starting Energy", "Energy to")
                self.GRIDN = congruence.checkStrictlyPositiveNumber(
                    self.GRIDN, "Number of points")

        if self.CALCULATE >= 7 and self.CALCULATE <= 9:
            self.ROUGH = congruence.checkPositiveNumber(
                self.ROUGH, "Roughness")
            self.THETA1 = congruence.checkPositiveNumber(
                self.THETA1, "Starting Graz angle")

            if self.THETAGRID == 1:
                self.THETA2 = congruence.checkStrictlyPositiveNumber(
                    self.THETA2, "Graz angle to")
                congruence.checkLessThan(self.THETA1, self.THETA2,
                                         "Starting Graz angle",
                                         "Graz angle to")
                self.THETAN = congruence.checkStrictlyPositiveNumber(
                    self.THETAN, "Number of angular points")
        else:
            self.THETAGRID = 0
Exemple #3
0
    def checkFields(self):

        # FLUX
        congruence.checkStrictlyPositiveNumber(self.spe_photon_energy_min,
                                               "Photon Energy Min")
        congruence.checkStrictlyPositiveNumber(self.spe_photon_energy_max,
                                               "Photon Energy Max")
        congruence.checkGreaterOrEqualThan(self.spe_photon_energy_max,
                                           self.spe_photon_energy_min,
                                           "Photon Energy Max",
                                           "Photon Energy Min")
        congruence.checkStrictlyPositiveNumber(self.spe_photon_energy_points,
                                               "Photon Energy Points")

        congruence.checkStrictlyPositiveNumber(self.spe_h_slit_gap,
                                               "H Slit Gap")
        congruence.checkStrictlyPositiveNumber(self.spe_v_slit_gap,
                                               "V Slit Gap")
        congruence.checkGreaterOrEqualThan(
            self.spe_distance, self.get_minimum_propagation_distance(),
            "Distance", "Minimum Distance out of the Source: " +
            str(self.get_minimum_propagation_distance()))

        congruence.checkStrictlyPositiveNumber(self.spe_relative_precision,
                                               "Relative Precision")
        congruence.checkStrictlyPositiveNumber(
            self.spe_number_of_points_for_trajectory_calculation,
            "Number of points for trajectory calculation")
        congruence.checkPositiveNumber(
            self.spe_sampling_factor_for_adjusting_nx_ny,
            "Sampling Factor for adjusting nx/ny")

        self.checkFluxSpecificFields()
Exemple #4
0
 def check_fields(self):
     self.ENERGY = congruence.checkStrictlyPositiveNumber(
         self.ENERGY, "Beam Energy")
     self.CUR = congruence.checkStrictlyPositiveNumber(
         self.CUR, "Beam Current")
     self.PERIOD = congruence.checkStrictlyPositiveNumber(
         self.PERIOD, "Period")
     self.N = congruence.checkStrictlyPositiveNumber(
         self.N, "Number of Periods")
     self.KX = congruence.checkNumber(self.KX, "Kx")
     self.KY = congruence.checkNumber(self.KY, "Ky")
     self.EMIN = congruence.checkPositiveNumber(self.EMIN, "Min Energy")
     self.EMAX = congruence.checkStrictlyPositiveNumber(
         self.EMAX, "Max Energy")
     congruence.checkLessThan(self.EMIN, self.EMAX, "Min Energy",
                              "Max Energy")
     self.NEE = congruence.checkStrictlyPositiveNumber(
         self.NEE, "Number of energy steps")
     self.D = congruence.checkPositiveNumber(self.D, "Distance")
     self.XPC = congruence.checkNumber(self.XPC, "X-pos")
     self.YPC = congruence.checkNumber(self.YPC, "Y-pos")
     self.XPS = congruence.checkNumber(self.XPS, "X slit")
     self.YPS = congruence.checkNumber(self.YPS, "Y Slit")
     self.NXP = congruence.checkStrictlyPositiveNumber(
         self.NXP, "Integration points X")
     self.NYP = congruence.checkStrictlyPositiveNumber(
         self.NYP, "Integration points Y")
    def checkFields(self):
        congruence.checkPositiveNumber(self.source_plane_distance, "Distance from Source")
        congruence.checkPositiveNumber(self.image_plane_distance, "Image Plane Distance")
        congruence.checkStrictlyPositiveNumber(self.input_diameter, "Input Diameter")
        congruence.checkStrictlyPositiveAngle(self.angular_acceptance, "Angular Acceptance")
        congruence.checkStrictlyPositiveNumber(self.output_diameter, "Output Diameter")
        congruence.checkStrictlyPositiveNumber(self.inner_diameter, "Central Diameter")
        congruence.checkStrictlyPositiveNumber(self.focal_length, "Focal Length")
        congruence.checkStrictlyPositiveNumber(self.focus_dimension, "Focus Dimension")
        congruence.checkStrictlyPositiveNumber(self.lens_length, "Lens Total Length")

        if self.inner_diameter <= self.input_diameter:
            raise Exception("Central Diameter should be greater than Input diameter")

        if self.inner_diameter <= self.output_diameter:
            raise Exception("Central Diameter should be greater than Output diameter")

        if self.focal_length < self.output_diameter:
            raise Exception("Focal Length should be greater than or equal to Output diameter")

        first_slit_distance = self.get_first_slits_distance()
        second_slit_distance = self.get_second_slits_distance()

        slit_distance = first_slit_distance + second_slit_distance

        if self.lens_length < slit_distance:
            raise Exception("Lens total Length should be greater than or equal to " + str(slit_distance))

        congruence.checkStrictlyPositiveNumber(self.transmittance, "Lens Transmittance")
Exemple #6
0
    def checkFields(self):
        congruence.checkPositiveNumber(self.source_plane_distance, "Distance from Source")
        congruence.checkPositiveNumber(self.image_plane_distance, "Image Plane Distance")
        congruence.checkStrictlyPositiveNumber(self.input_diameter, "Input Diameter")
        congruence.checkStrictlyPositiveAngle(self.angular_acceptance, "Angular Acceptance")
        congruence.checkStrictlyPositiveNumber(self.output_diameter, "Output Diameter")
        congruence.checkStrictlyPositiveNumber(self.inner_diameter, "Central Diameter")
        congruence.checkStrictlyPositiveNumber(self.focal_length, "Focal Length")
        congruence.checkStrictlyPositiveNumber(self.focus_dimension, "Focus Dimension")
        congruence.checkStrictlyPositiveNumber(self.lens_length, "Lens Total Length")

        if self.inner_diameter <= self.input_diameter:
            raise Exception("Central Diameter should be greater than Input diameter")

        if self.inner_diameter <= self.output_diameter:
            raise Exception("Central Diameter should be greater than Output diameter")

        if self.focal_length < self.output_diameter:
            raise Exception("Focal Length should be greater than or equal to Output diameter")

        first_slit_distance = self.get_first_slits_distance()
        second_slit_distance = self.get_second_slits_distance()

        slit_distance = first_slit_distance + second_slit_distance

        if self.lens_length < slit_distance:
            raise Exception("Lens total Length should be greater than or equal to " + str(slit_distance))

        congruence.checkStrictlyPositiveNumber(self.transmittance, "Lens Transmittance")
Exemple #7
0
    def get_strain_parameters(self):
        if self.active == 1:
            if not self.rho_function == 1:
                congruence.checkStrictlyPositiveNumber(self.rho, "\u03c1")
            if not self.Re_function == 1:
                congruence.checkStrictlyPositiveNumber(self.Re, "Re")
            if not self.mix_function == 1:
                congruence.checkPositiveNumber(self.mix, "mix")
            if not self.b_function == 1:
                congruence.checkStrictlyPositiveNumber(self.b, "b")

        return KrivoglazWilkensModel(
            rho=OWGenericWidget.get_fit_parameter_from_widget(
                self, "rho", self.get_parameters_prefix()),
            Re=OWGenericWidget.get_fit_parameter_from_widget(
                self, "Re", self.get_parameters_prefix()),
            Ae=OWGenericWidget.get_fit_parameter_from_widget(
                self, "Ae", self.get_parameters_prefix()),
            Be=OWGenericWidget.get_fit_parameter_from_widget(
                self, "Be", self.get_parameters_prefix()),
            As=OWGenericWidget.get_fit_parameter_from_widget(
                self, "As", self.get_parameters_prefix()),
            Bs=OWGenericWidget.get_fit_parameter_from_widget(
                self, "Bs", self.get_parameters_prefix()),
            mix=OWGenericWidget.get_fit_parameter_from_widget(
                self, "mix", self.get_parameters_prefix()),
            b=OWGenericWidget.get_fit_parameter_from_widget(
                self, "b", self.get_parameters_prefix()),
            active=self.active == 1)
    def check_fields(self):
        congruence.checkPositiveNumber(self.qnC, "e-bunch charge")
        congruence.checkStrictlyPositiveNumber(self.ekev, "energy")

        congruence.checkStrictlyPositiveNumber(self.pulse_duration, "Pulse Duration")
        congruence.checkStrictlyPositiveNumber(self.pulseEnergy, "Pulse Energy")
        congruence.checkStrictlyPositiveNumber(self.coh_time, "Coherence time")

        congruence.checkPositiveNumber(self.distance, "Distance to next")
Exemple #9
0
 def check_fields(self):
     self.VOLTAGE = congruence.checkStrictlyPositiveNumber(
         self.VOLTAGE, "Voltage")
     if self.VOLTAGE < 30 or self.VOLTAGE > 140:
         raise Exception("Voltage out of range")
     self.RIPPLE = congruence.checkPositiveNumber(self.RIPPLE,
                                                  "Voltage ripple")
     self.AL_FILTER = congruence.checkPositiveNumber(
         self.AL_FILTER, "Al filter")
    def checkFields(self):
        self.r_a = congruence.checkPositiveNumber(self.r_a, "Distance Source-Grating")
        self.r_b = congruence.checkPositiveNumber(self.r_b, "Distance Grating-Exit Slits")
        self.k = congruence.checkStrictlyPositiveNumber(self.k, "Line Densityg")

        if self.units_in_use == 0:
            self.photon_energy = congruence.checkPositiveNumber(self.photon_energy, "Photon Energy")
        elif self.units_in_use == 1:
            self.photon_wavelength = congruence.checkPositiveNumber(self.photon_wavelength, "Photon Wavelength")
Exemple #11
0
 def check_fields(self):
     self.TEMPERATURE = congruence.checkPositiveNumber(
         self.TEMPERATURE, "Temperature")
     self.E_MIN = congruence.checkPositiveNumber(self.E_MIN, "Min Energy")
     self.E_MAX = congruence.checkStrictlyPositiveNumber(
         self.E_MAX, "Max Energy")
     congruence.checkLessThan(self.E_MIN, self.E_MAX, "Min Energy",
                              "Max Energy")
     self.NPOINTS = congruence.checkStrictlyPositiveNumber(
         self.NPOINTS, "Number of Points")
Exemple #12
0
 def checkLightSourceSpecificFields(self):
     congruence.checkStrictlyPositiveNumber(self.magnetic_radius,
                                            "Magnetic Radius")
     congruence.checkStrictlyPositiveNumber(self.magnetic_field,
                                            "Magnetic Field")
     congruence.checkStrictlyPositiveNumber(self.length, "Length")
     congruence.checkPositiveNumber(self.transition_steepness,
                                    "Transition Steepness")
     congruence.checkGreaterThan(self.z_end, self.z_start, "z end",
                                 "z start")
Exemple #13
0
 def check_fields(self):
     self.ELECTRONENERGY = congruence.checkStrictlyPositiveNumber(
         self.ELECTRONENERGY, "Electron Energy")
     if not self.METHOD == 1:
         self.ELECTRONENERGYSPREAD = congruence.checkPositiveNumber(
             self.ELECTRONENERGYSPREAD, "Electron Energy Spread")
     self.ELECTRONCURRENT = congruence.checkStrictlyPositiveNumber(
         self.ELECTRONCURRENT, "Electron Current")
     self.ELECTRONBEAMSIZEH = congruence.checkPositiveNumber(
         self.ELECTRONBEAMSIZEH, "Electron Beam Size H")
     self.ELECTRONBEAMSIZEV = congruence.checkPositiveNumber(
         self.ELECTRONBEAMSIZEV, "Electron Beam Size V")
     self.ELECTRONBEAMDIVERGENCEH = congruence.checkPositiveNumber(
         self.ELECTRONBEAMDIVERGENCEH, "Electron Beam Divergence H")
     self.ELECTRONBEAMDIVERGENCEV = congruence.checkPositiveNumber(
         self.ELECTRONBEAMDIVERGENCEV, "Electron Beam Divergence V")
     self.PERIODID = congruence.checkStrictlyPositiveNumber(
         self.PERIODID, "Period ID")
     self.NPERIODS = congruence.checkStrictlyPositiveNumber(
         self.NPERIODS, "Number of Periods")
     self.DISTANCE = congruence.checkPositiveNumber(self.DISTANCE,
                                                    "Distance to slit")
     self.GAPH = congruence.checkPositiveNumber(self.GAPH, "Slit gap H")
     self.GAPV = congruence.checkPositiveNumber(self.GAPV, "Slit gap V")
     self.KMIN = congruence.checkPositiveNumber(self.KMIN, "K Min")
     self.KMAX = congruence.checkStrictlyPositiveNumber(self.KMAX, "K Max")
     congruence.checkLessThan(self.KMIN, self.KMAX, "K Min", "K Max")
     self.KPOINTS = congruence.checkStrictlyPositiveNumber(
         self.KPOINTS, "Number of K Points")
 def check_fields_aux(self):
     if len(self.crl_error_profiles) == 0:
         raise ValueError("No Thickness error profile specified")
     if self.crl_material_data == 0:
         self.crl_material = congruence.checkEmptyString(
             self.crl_material, "Chemical Formula")
     else:
         congruence.checkStrictlyPositiveNumber(
             self.crl_delta, "Refractive Index (\u03b4)")
     congruence.checkPositiveNumber(self.crl_scaling_factor,
                                    "Thickness Error Scaling Factor")
Exemple #15
0
    def checkFields(self):
        congruence.checkPositiveNumber(self.p, "Distance Source - KB center")
        congruence.checkPositiveNumber(self.q, "Distance KB center - Image plane")

        congruence.checkPositiveNumber(self.separation, "Separation between the Mirrors")
        congruence.checkPositiveAngle(self.mirror_orientation_angle, "Mirror orientation angle")

        if self.use_different_focal_positions == 1:
            congruence.checkPositiveNumber(self.focal_positions_p, "Focal Position P")
            congruence.checkPositiveNumber(self.focal_positions_q, "Focal Position Q")

        self.v_box.checkFields()
        self.h_box.checkFields()
    def checkFields(self):
        self.r_a = congruence.checkPositiveNumber(self.r_a,
                                                  "Distance Source-Grating")
        self.r_b = congruence.checkPositiveNumber(
            self.r_b, "Distance Grating-Exit Slits")
        self.k = congruence.checkStrictlyPositiveNumber(self.k, "Line Density")

        if self.units_in_use == 0:
            self.photon_energy = congruence.checkPositiveNumber(
                self.photon_energy, "Photon Energy")
        elif self.units_in_use == 1:
            self.photon_wavelength = congruence.checkPositiveNumber(
                self.photon_wavelength, "Photon Wavelength")
 def checkFields(self):
     self.number_of_rays = congruence.checkPositiveNumber(self.number_of_rays, "Number of rays")
     self.seed = congruence.checkPositiveNumber(self.seed, "Seed")
     self.energy = congruence.checkPositiveNumber(self.energy, "Energy")
     self.delta_e = congruence.checkPositiveNumber(self.delta_e, "Delta Energy")
     self.sigma_x = congruence.checkPositiveNumber(self.sigma_x, "Size RMS H")
     self.sigma_z = congruence.checkPositiveNumber(self.sigma_z, "Size RMS V")
     self.sigma_divergence_x = congruence.checkPositiveNumber(self.sigma_divergence_x, "Divergence RMS H")
     self.sigma_divergence_z = congruence.checkPositiveNumber(self.sigma_divergence_z, "Divergence RMS V")
     self.undulator_length = congruence.checkPositiveNumber(self.undulator_length, "Undulator Length")
Exemple #18
0
    def check_fields(self):
        self.number_of_points_x = congruence.checkStrictlyPositiveNumber(self.number_of_points_x, "Number of Points X")
        self.number_of_points_y = congruence.checkStrictlyPositiveNumber(self.number_of_points_y, "Number of Points Y")

        self.dimension_x = congruence.checkStrictlyPositiveNumber(self.dimension_x, "Dimension X")
        self.dimension_y = congruence.checkStrictlyPositiveNumber(self.dimension_y, "Dimension Y")

        self.estimated_slope_error = congruence.checkPositiveNumber(self.estimated_slope_error, "Estimated slope error")
        self.montecarlo_seed = congruence.checkPositiveNumber(self.montecarlo_seed, "Monte Carlo initial seed")

        self.harmonic_maximum_index = congruence.checkPositiveNumber(self.harmonic_maximum_index,
                                                                    "Harmonic Maximum Index")

        congruence.checkDir(self.waviness_file_name)
Exemple #19
0
    def checkFields(self):
        self.source_plane_distance = congruence.checkNumber(self.source_plane_distance, "Source plane distance")
        self.image_plane_distance = congruence.checkNumber(self.image_plane_distance, "Image plane distance")

        congruence.checkStrictlyPositiveNumber(self.delta_rn, u"\u03B4" + "rn" )
        congruence.checkStrictlyPositiveNumber(self.diameter, "Z.P. Diameter")
        if (self.source_distance_flag == 1):
            congruence.checkPositiveNumber(self.source_distance, "Source Distance" )

        if self.type_of_zp == PHASE_ZP:
            congruence.checkEmptyString(self.zone_plate_material, "Zone Plate Material")
            congruence.checkStrictlyPositiveNumber(self.zone_plate_thickness, "Zone Plate Thickness")
            congruence.checkEmptyString(self.substrate_material, "Substrate Material")
            congruence.checkStrictlyPositiveNumber(self.substrate_thickness, "Substrate Thickness")
Exemple #20
0
    def check_fields(self):
        congruence.checkStrictlyPositiveNumber(self.nCRL, "Number of Lenses")
        congruence.checkPositiveNumber(self.delta, "delta")
        congruence.checkPositiveNumber(self.attenLen, "Attenuation length")
        congruence.checkPositiveNumber(self.diamCRL, "CRL diameter")

        congruence.checkPositiveNumber(self.distance, "Distance to next")
    def check_fields(self):
        if self.kind_of_profile_y < 2:
            self.dimension_y = congruence.checkStrictlyPositiveNumber(self.dimension_y, "Dimension Y")
            self.step_y = congruence.checkStrictlyPositiveNumber(self.step_y, "Step Y")
            if self.kind_of_profile_y == 0: self.power_law_exponent_beta_y = congruence.checkPositiveNumber(self.power_law_exponent_beta_y, "Beta Value Y")
            if self.kind_of_profile_y == 1: self.correlation_length_y = congruence.checkStrictlyPositiveNumber(self.correlation_length_y, "Correlation Length Y")
            self.rms_y = congruence.checkPositiveNumber(self.rms_y, "Rms Y")
            self.montecarlo_seed_y = congruence.checkPositiveNumber(self.montecarlo_seed_y, "Monte Carlo initial seed y")
        else:
            congruence.checkFile(self.heigth_profile_1D_file_name_y)
            self.conversion_factor_y_x = congruence.checkStrictlyPositiveNumber(self.conversion_factor_y_x, "Conversion from file to workspace units(Abscissa)")
            self.conversion_factor_y_y = congruence.checkStrictlyPositiveNumber(self.conversion_factor_y_y, "Conversion from file to workspace units (Height Profile Values)")
            if self.renormalize_y == 1:
                self.rms_y = congruence.checkPositiveNumber(self.rms_y, "Rms Y")

        if self.kind_of_profile_x < 2:
            self.dimension_x = congruence.checkStrictlyPositiveNumber(self.dimension_x, "Dimension X")
            self.step_x = congruence.checkStrictlyPositiveNumber(self.step_x, "Step X")
            if self.kind_of_profile_x == 0: self.power_law_exponent_beta_x = congruence.checkPositiveNumber(self.power_law_exponent_beta_x, "Beta Value X")
            if self.kind_of_profile_x == 1: self.correlation_length_x = congruence.checkStrictlyPositiveNumber(self.correlation_length_x, "Correlation Length X")
            self.rms_x = congruence.checkPositiveNumber(self.rms_x, "Rms X")
            self.montecarlo_seed_x = congruence.checkPositiveNumber(self.montecarlo_seed_x, "Monte Carlo initial seed X")
        else:
            congruence.checkFile(self.heigth_profile_1D_file_name_x)
            self.conversion_factor_x_x = congruence.checkStrictlyPositiveNumber(self.conversion_factor_x_x, "Conversion from file to workspace units(Abscissa)")
            self.conversion_factor_x_y = congruence.checkStrictlyPositiveNumber(self.conversion_factor_x_y, "Conversion from file to workspace units (Height Profile Values)")
            if self.renormalize_x == 1:
                self.rms_x = congruence.checkPositiveNumber(self.rms_x, "Rms X")

        congruence.checkDir(self.heigth_profile_file_name)
Exemple #22
0
    def check_fields(self):
        if self.focal_length_calc == 1:
            congruence.checkPositiveNumber(self.ghy_focallength, "Focal Length value")

        if self.distance_to_image_calc == 1:
            congruence.checkPositiveNumber(self.ghy_distance, "Distance to image value")

        if self.ghy_diff_plane == 0 or self.ghy_diff_plane == 2:
            congruence.checkStrictlyPositiveNumber(self.ghy_nbins_x, "Number of bins for I(Sagittal) histogram")
        if self.ghy_diff_plane == 1 or self.ghy_diff_plane == 2:
            congruence.checkStrictlyPositiveNumber(self.ghy_nbins_z, "Number of bins for I(Tangential) histogram")

        congruence.checkStrictlyPositiveNumber(self.ghy_npeak, "Number of diffraction peaks")
        congruence.checkStrictlyPositiveNumber(self.ghy_fftnpts, "Number of points for FFT")
Exemple #23
0
    def checkFields(self):
        congruence.checkPositiveNumber(self.grazing_angles_mrad, "Grazing Angle")

        if self.has_finite_dimensions == 0:
            congruence.checkStrictlyPositiveNumber(self.mirror_width, "Mirror Width")
            congruence.checkStrictlyPositiveNumber(self.mirror_length, "Mirror Length")
        elif self.has_surface_error != 0:
            raise Exception("With surface error file, dimensions cannot be infinite")

        if self.reflectivity_kind != 0:
            congruence.checkFile(self.reflectivity_files)

        if self.has_surface_error == 1:
            congruence.checkFile(self.surface_error_files)
Exemple #24
0
    def checkFields(self):
        congruence.checkPositiveNumber(self.p, "P")
        congruence.checkPositiveNumber(self.q, "Q")

        if self.has_finite_diameter == 0:
            congruence.checkStrictlyPositiveNumber(self.diameter, "Diameter")

        if self.ri_calculation_mode == 1:
            congruence.checkFile(self.prerefl_file)
        else:
            congruence.checkPositiveNumber(self.refraction_index, "Refraction Index")
            congruence.checkPositiveNumber(self.attenuation_coefficient, "Attenuation Coefficient")

        congruence.checkStrictlyPositiveNumber(self.radius, "Radius")
        congruence.checkPositiveNumber(self.interthickness, "Lens Thickness")
Exemple #25
0
    def check_data(self):
        super().check_data()

        congruence.checkStrictlyPositiveNumber(self.tangential_size,
                                               "Tangential Size")
        congruence.checkStrictlyPositiveNumber(self.sagittal_size,
                                               "Sagittal Size")

        if self.has_height_profile:
            congruence.checkFile(self.height_profile_data_file)

        congruence.checkPositiveNumber(self.diffraction_order,
                                       "Diffraction Order")
        congruence.checkStrictlyPositiveNumber(self.grooving_density_0,
                                               "Groove density")
Exemple #26
0
    def checkFields(self):
        congruence.checkPositiveNumber(self.p, "P")
        congruence.checkPositiveNumber(self.q, "Q")

        if self.has_finite_diameter == 0:
            congruence.checkStrictlyPositiveNumber(self.diameter, "Diameter")

        if self.ri_calculation_mode == 1:
            congruence.checkFile(self.prerefl_file)
        else:
            congruence.checkPositiveNumber(self.refraction_index, "Refraction Index")
            congruence.checkPositiveNumber(self.attenuation_coefficient, "Attenuation Coefficient")

        congruence.checkStrictlyPositiveNumber(self.radius, "Radius")
        congruence.checkPositiveNumber(self.interthickness, "Lens Thickness")
Exemple #27
0
    def check_fields(self):
        self.NPERIODS = congruence.checkStrictlyPositiveNumber(
            self.NPERIODS, "Number of Periods")
        self.ENERGY = congruence.checkStrictlyPositiveNumber(
            self.ENERGY, "Beam Energy")
        self.PHOT_ENERGY_MIN = congruence.checkPositiveNumber(
            self.PHOT_ENERGY_MIN, "Min Photon Energy")
        self.PHOT_ENERGY_MAX = congruence.checkStrictlyPositiveNumber(
            self.PHOT_ENERGY_MAX, "Max Photon Energy")
        congruence.checkLessThan(self.PHOT_ENERGY_MIN, self.PHOT_ENERGY_MAX,
                                 "Min Photon Energy", "Max Photon Energy")
        self.NPOINTS = congruence.checkStrictlyPositiveNumber(
            self.NPOINTS, "Number of Energy Points")
        self.CURRENT = congruence.checkStrictlyPositiveNumber(
            self.CURRENT, "Electron Beam Current")

        if self.FIELD == 0:
            self.ULAMBDA = congruence.checkStrictlyPositiveNumber(
                self.ULAMBDA, "Wiggler period")
            self.K = congruence.checkStrictlyPositiveNumber(self.K, "K")
            self.NTRAJPOINTS = congruence.checkStrictlyPositiveNumber(
                self.NTRAJPOINTS, "Number of traj points per period")
        elif self.FIELD == 1:
            self.ULAMBDA = congruence.checkStrictlyPositiveNumber(
                self.ULAMBDA, "Wiggler period")
            self.NTRAJPOINTS = congruence.checkStrictlyPositiveNumber(
                self.NTRAJPOINTS, "Number of traj points per period")
            congruence.checkFile(self.FILE)
        elif self.FIELD == 2:
            congruence.checkFile(self.FILE)
Exemple #28
0
    def check_fields(self):
        self.ELECTRONENERGY = congruence.checkStrictlyPositiveNumber(
            self.ELECTRONENERGY, "Electron Energy")
        self.ELECTRONCURRENT = congruence.checkStrictlyPositiveNumber(
            self.ELECTRONCURRENT, "Electron Current")

        self.PERIODID = congruence.checkStrictlyPositiveNumber(
            self.PERIODID, "Period ID")
        self.NPERIODS = congruence.checkStrictlyPositiveNumber(
            self.NPERIODS, "Number of Periods")
        self.KV = congruence.checkPositiveNumber(self.KV, "Kv")
        self.DISTANCE = congruence.checkStrictlyPositiveNumber(
            self.DISTANCE, "Distance to slit")

        self.PHOTONENERGYMIN = congruence.checkNumber(self.PHOTONENERGYMIN,
                                                      "Photon Energy Min")
        self.PHOTONENERGYMAX = congruence.checkNumber(self.PHOTONENERGYMAX,
                                                      "Photon Energy Max")
        congruence.checkGreaterOrEqualThan(self.PHOTONENERGYPOINTS, 2,
                                           "Number of Photon Energy Points",
                                           " 2")

        self.HSLITPOINTS = congruence.checkStrictlyPositiveNumber(
            self.HSLITPOINTS, "Number of slit mesh points in H")
        self.VSLITPOINTS = congruence.checkStrictlyPositiveNumber(
            self.VSLITPOINTS, "Number of slit mesh points in V")

        self.NTRAJPOINTS = congruence.checkStrictlyPositiveNumber(
            self.NTRAJPOINTS, "Number Trajectory points")

        self.PASSEPARTOUT = congruence.checkStrictlyPositiveNumber(
            self.PASSEPARTOUT, "Passepartout in units of sigma' at Emin")
Exemple #29
0
    def check_fields(self):
        self.dimension_y = congruence.checkStrictlyPositiveNumber(
            self.dimension_y, "Dimension")
        self.step_y = congruence.checkStrictlyPositiveNumber(
            self.step_y, "Step")
        if self.kind_of_profile_y == 0:
            self.power_law_exponent_beta_y = congruence.checkPositiveNumber(
                self.power_law_exponent_beta_y, "Beta Value")
        if self.kind_of_profile_y == 1:
            self.correlation_length_y = congruence.checkStrictlyPositiveNumber(
                self.correlation_length_y, "Correlation Length")
        self.rms_y = congruence.checkPositiveNumber(self.rms_y, "Rms")
        self.montecarlo_seed_y = congruence.checkPositiveNumber(
            self.montecarlo_seed_y, "Monte Carlo initial seed")

        congruence.checkDir(self.heigth_profile_file_name)
Exemple #30
0
 def checkFields(self):
     self.SYMBOL = ShadowPhysics.checkCompoundName(self.SYMBOL)
     self.DENSITY = congruence.checkStrictlyPositiveNumber(self.DENSITY, "Density")
     self.E_MIN  = congruence.checkPositiveNumber(self.E_MIN , "Minimum Energy")
     self.E_MAX  = congruence.checkStrictlyPositiveNumber(self.E_MAX , "Maximum Energy")
     self.E_STEP = congruence.checkStrictlyPositiveNumber(self.E_STEP, "Energy step")
     if self.E_MIN > self.E_MAX: raise Exception("Minimum Energy cannot be bigger than Maximum Energy")
     congruence.checkDir(self.SHADOW_FILE)
Exemple #31
0
 def checkFields(self):
     self.SYMBOL = ShadowPhysics.checkCompoundName(self.SYMBOL)
     self.DENSITY = congruence.checkStrictlyPositiveNumber(self.DENSITY, "Density")
     self.E_MIN  = congruence.checkPositiveNumber(self.E_MIN , "Minimum Energy")
     self.E_MAX  = congruence.checkStrictlyPositiveNumber(self.E_MAX , "Maximum Energy")
     self.E_STEP = congruence.checkStrictlyPositiveNumber(self.E_STEP, "Energy step")
     congruence.checkLessOrEqualThan(self.E_MIN, self.E_MAX, "Minimum Energy", "Maximum Energy")
     congruence.checkDir(self.SHADOW_FILE)
Exemple #32
0
    def checkFields(self):
        congruence.checkPositiveNumber(self.grazing_angles_mrad,
                                       "Grazing Angle")

        if self.has_finite_dimensions == 0:
            congruence.checkStrictlyPositiveNumber(self.mirror_width,
                                                   "Mirror Width")
            congruence.checkStrictlyPositiveNumber(self.mirror_length,
                                                   "Mirror Length")
        elif self.has_surface_error != 0:
            raise Exception(
                "With surface error file, dimensions cannot be infinite")

        if self.reflectivity_kind != 0:
            congruence.checkFile(self.reflectivity_files)

        if self.has_surface_error == 1:
            congruence.checkFile(self.surface_error_files)
Exemple #33
0
    def check_fields(self):
        self.MILLER_INDEX_H = congruence.checkNumber(self.MILLER_INDEX_H,
                                                     "Miller index H")
        self.MILLER_INDEX_K = congruence.checkNumber(self.MILLER_INDEX_K,
                                                     "Miller index K")
        self.MILLER_INDEX_L = congruence.checkNumber(self.MILLER_INDEX_L,
                                                     "Miller index L")
        self.TEMPER = congruence.checkNumber(self.TEMPER, "Temperature factor")

        if self.SCAN == 0 or self.SCAN == 3:
            self.SCANFROM = congruence.checkPositiveNumber(
                self.SCANFROM, "Min Scan value")
            self.SCANTO = congruence.checkStrictlyPositiveNumber(
                self.SCANTO, "Max Scan value")
        else:
            self.SCANFROM = congruence.checkNumber(self.SCANFROM,
                                                   "Min Scan value")
            self.SCANTO = congruence.checkNumber(self.SCANTO, "Max Scan value")

        congruence.checkLessThan(self.SCANFROM, self.SCANTO, "Min Scan value",
                                 "Max Scan value")
        self.SCANPOINTS = congruence.checkStrictlyPositiveNumber(
            self.SCANPOINTS, "Scan points")

        if self.SCAN < 4:
            self.ENERGY = congruence.checkStrictlyPositiveNumber(
                self.ENERGY, "Fix value")
        else:
            self.ENERGY = congruence.checkNumber(self.ENERGY, "Fix value")

        if self.MOSAIC == 0:  #perfect
            self.ASYMMETRY_ANGLE = congruence.checkNumber(
                self.ASYMMETRY_ANGLE, "Asymmetry angle")
            self.THICKNESS = congruence.checkStrictlyPositiveNumber(
                self.THICKNESS, "Crystal thickness")
        elif self.MOSAIC == 1:  #mosaic
            self.THICKNESS = congruence.checkStrictlyPositiveNumber(
                self.THICKNESS, "Crystal thickness")
            self.MOSAIC_FWHM = congruence.checkNumber(self.MOSAIC_FWHM,
                                                      "Mosaicity")
        elif self.MOSAIC == 2 or self.MOSAIC == 3:  #bent ML/PP
            self.ASYMMETRY_ANGLE = congruence.checkNumber(
                self.ASYMMETRY_ANGLE, "Asymmetry angle")
            self.THICKNESS = congruence.checkStrictlyPositiveNumber(
                self.THICKNESS, "Crystal thickness")
            self.RSAG = congruence.checkStrictlyPositiveNumber(
                self.RSAG, "R Sagittal")
            self.RMER = congruence.checkStrictlyPositiveNumber(
                self.RMER, "R meridional")

            if self.ANISOTROPY == 0:
                self.POISSON = congruence.checkStrictlyPositiveNumber(
                    self.POISSON, "Poisson Ratio")
            elif self.ANISOTROPY == 2:
                congruence.checkEmptyString(self.CUT, "Valong; Vnorm; Vperp")
            elif self.ANISOTROPY == 3:
                congruence.checkFile(self.FILECOMPLIANCE)
Exemple #34
0
    def checkFields(self):
        congruence.checkPositiveNumber(self.p, "Distance Source - KB center")
        congruence.checkPositiveNumber(self.q,
                                       "Distance KB center - Image plane")

        congruence.checkPositiveNumber(self.separation,
                                       "Separation between the Mirrors")
        congruence.checkPositiveAngle(self.mirror_orientation_angle,
                                      "Mirror orientation angle")

        if self.use_different_focal_positions == 1:
            congruence.checkPositiveNumber(self.focal_positions_p,
                                           "Focal Position P")
            congruence.checkPositiveNumber(self.focal_positions_q,
                                           "Focal Position Q")

        self.v_box.checkFields()
        self.h_box.checkFields()
    def check_fields(self):
        if self.modify_y == 1 or self.modify_y == 2:
            self.new_length = congruence.checkStrictlyPositiveNumber(
                self.new_length, "New Length")

        if self.renormalize_y == 1:
            self.rms_y = congruence.checkPositiveNumber(self.rms_y, "Rms Y")

        congruence.checkDir(self.heigth_profile_file_name)
Exemple #36
0
 def check_fields(self):
     self.ENERGY = congruence.checkStrictlyPositiveNumber(self.ENERGY, "Beam Energy")
     self.CUR = congruence.checkStrictlyPositiveNumber(self.CUR, "Beam Current")
     self.PERIOD = congruence.checkStrictlyPositiveNumber(self.PERIOD, "Period")
     self.N = congruence.checkStrictlyPositiveNumber(self.N, "Number of Periods")
     self.KX = congruence.checkNumber(self.KX, "Kx")
     self.KY = congruence.checkNumber(self.KY, "Ky")
     self.EMIN = congruence.checkPositiveNumber(self.EMIN, "Min Energy")
     self.EMAX = congruence.checkStrictlyPositiveNumber(self.EMAX, "Max Energy")
     congruence.checkLessThan(self.EMIN, self.EMAX, "Min Energy", "Max Energy")
     self.NEE = congruence.checkStrictlyPositiveNumber(self.NEE, "Number of energy steps")
     self.D = congruence.checkPositiveNumber(self.D, "Distance")
     self.XPC = congruence.checkNumber(self.XPC, "X-pos")
     self.YPC = congruence.checkNumber(self.YPC, "Y-pos")
     self.XPS = congruence.checkNumber(self.XPS, "X slit")
     self.YPS = congruence.checkNumber(self.YPS, "Y Slit")
     self.NXP = congruence.checkStrictlyPositiveNumber(self.NXP, "Integration points X")
     self.NYP = congruence.checkStrictlyPositiveNumber(self.NYP, "Integration points Y")
Exemple #37
0
    def checkFields(self):
        congruence.checkDir(self.FILE)
        self.E_MIN = congruence.checkPositiveNumber(self.E_MIN, "Min Energy")
        self.E_MAX = congruence.checkStrictlyPositiveNumber(
            self.E_MAX, "Max Energy")
        congruence.checkLessOrEqualThan(self.E_MIN, self.E_MAX,
                                        "Minimum Energy", "Maximum Energy")
        self.S_MATERIAL = ShadowPhysics.checkCompoundName(self.S_MATERIAL)
        self.S_DENSITY = congruence.checkStrictlyPositiveNumber(
            float(self.S_DENSITY), "Density (substrate)")
        self.E_MATERIAL = ShadowPhysics.checkCompoundName(self.E_MATERIAL)
        self.E_DENSITY = congruence.checkStrictlyPositiveNumber(
            float(self.E_DENSITY), "Density (even sublayer)")
        self.O_MATERIAL = ShadowPhysics.checkCompoundName(self.O_MATERIAL)
        self.O_DENSITY = congruence.checkStrictlyPositiveNumber(
            float(self.O_DENSITY), "Density (odd sublayer)")

        if self.GRADE_DEPTH == 0:
            self.N_PAIRS = congruence.checkStrictlyPositiveNumber(
                int(self.N_PAIRS), "Number of bilayers")
            self.THICKNESS = congruence.checkStrictlyPositiveNumber(
                float(self.THICKNESS), "bilayer thickness t")
            self.GAMMA = congruence.checkStrictlyPositiveNumber(
                float(self.GAMMA), "gamma ratio")
            self.ROUGHNESS_EVEN = congruence.checkPositiveNumber(
                float(self.ROUGHNESS_EVEN), "Roughness even layer")
            self.ROUGHNESS_ODD = congruence.checkPositiveNumber(
                float(self.ROUGHNESS_ODD), "Roughness odd layer")
        else:
            congruence.checkDir(self.FILE_DEPTH)

        if self.GRADE_SURFACE == 1:
            congruence.checkDir(self.FILE_SHADOW)
            congruence.checkDir(self.FILE_THICKNESS)
            congruence.checkDir(self.FILE_GAMMA)
        elif self.GRADE_SURFACE == 2:
            self.AA0 = congruence.checkNumber(float(self.AA0),
                                              "zero-order coefficient")
            self.AA1 = congruence.checkNumber(float(self.AA1),
                                              "linear coefficient")
            self.AA2 = congruence.checkNumber(float(self.AA2),
                                              "2nd degree coefficient")
            self.AA3 = congruence.checkNumber(float(self.AA3),
                                              "3rd degree coefficient")
Exemple #38
0
    def check_fields(self):
        self.DESCRIPTOR = congruence.checkEmptyString(self.DESCRIPTOR, "formula")

        if self.GRID > 0:
            self.GRIDSTART = congruence.checkPositiveNumber(self.GRIDSTART, "Starting Energy")

            if self.GRID == 1:
                self.GRIDEND = congruence.checkStrictlyPositiveNumber(self.GRIDEND, "Energy to")
                congruence.checkLessThan(self.GRIDSTART, self.GRIDEND, "Starting Energy", "Energy to")
                self.GRIDN = congruence.checkStrictlyPositiveNumber(self.GRIDN, "Number of points")
Exemple #39
0
    def checkLightSourceSpecificFields(self):
        if self.magnetic_field_from == 0:
            congruence.checkPositiveNumber(self.K_horizontal, "Horizontal K")
            congruence.checkPositiveNumber(self.K_vertical, "Vertical K")
        else:
            congruence.checkPositiveNumber(self.B_horizontal, "Horizontal B")
            congruence.checkPositiveNumber(self.B_vertical, "Vertical B")

        congruence.checkStrictlyPositiveNumber(self.period_length,
                                               "Period Length")
        congruence.checkStrictlyPositiveNumber(self.number_of_periods,
                                               "Number of Periods")
Exemple #40
0
    def check_fields(self):
        self.HMILLER = congruence.checkNumber(self.HMILLER, "h miller index")
        self.KMILLER = congruence.checkNumber(self.KMILLER, "k miller index")
        self.LMILLER = congruence.checkNumber(self.LMILLER, "l miller index")

        self.TEMPER = congruence.checkNumber(self.TEMPER, "Temperature factor")

        self.ENERGY = congruence.checkPositiveNumber(self.ENERGY, "Energy from")
        self.ENERGY_END = congruence.checkStrictlyPositiveNumber(self.ENERGY_END, "Energy to")
        congruence.checkLessThan(self.ENERGY, self.ENERGY_END, "Energy from", "Energy to")
        self.NPOINTS = congruence.checkStrictlyPositiveNumber(self.NPOINTS, "Number of Points")
Exemple #41
0
    def checkFields(self):
        self.r_a = congruence.checkPositiveNumber(self.r_a,
                                                  "Distance Source-Grating")
        self.r_b = congruence.checkPositiveNumber(
            self.r_b, "Distance Grating-Exit Slits")
        self.last_element_distance = congruence.checkPositiveNumber(
            self.last_element_distance,
            "Distance Source-Last Image Plane before Mirror")
        congruence.checkLessOrEqualThan(
            self.last_element_distance, self.r_a,
            "Distance Source-Last Image Plane before Mirror",
            "Distance Source-Grating")
        self.k = congruence.checkStrictlyPositiveNumber(self.k, "Line Density")

        if self.units_in_use == 0:
            self.photon_energy = congruence.checkPositiveNumber(
                self.photon_energy, "Photon Energy")
        elif self.units_in_use == 1:
            self.photon_wavelength = congruence.checkPositiveNumber(
                self.photon_wavelength, "Photon Wavelength")
Exemple #42
0
 def check_fields(self):
     self.ELECTRONENERGY = congruence.checkStrictlyPositiveNumber(self.ELECTRONENERGY, "Electron Energy")
     if not self.METHOD == 1: self.ELECTRONENERGYSPREAD = congruence.checkPositiveNumber(self.ELECTRONENERGYSPREAD, "Electron Energy Spread")
     self.ELECTRONCURRENT = congruence.checkStrictlyPositiveNumber(self.ELECTRONCURRENT, "Electron Current")
     self.ELECTRONBEAMSIZEH = congruence.checkPositiveNumber(self.ELECTRONBEAMSIZEH, "Electron Beam Size H")
     self.ELECTRONBEAMSIZEV = congruence.checkPositiveNumber(self.ELECTRONBEAMSIZEV, "Electron Beam Size V")
     self.ELECTRONBEAMDIVERGENCEH = congruence.checkPositiveNumber(self.ELECTRONBEAMDIVERGENCEH, "Electron Beam Divergence H")
     self.ELECTRONBEAMDIVERGENCEV = congruence.checkPositiveNumber(self.ELECTRONBEAMDIVERGENCEV, "Electron Beam Divergence V")
     self.PERIODID = congruence.checkStrictlyPositiveNumber(self.PERIODID, "Period ID")
     self.NPERIODS = congruence.checkStrictlyPositiveNumber(self.NPERIODS, "Number of Periods")
     self.DISTANCE = congruence.checkPositiveNumber(self.DISTANCE, "Distance to slit")
     self.GAPH = congruence.checkPositiveNumber(self.GAPH, "Slit gap H")
     self.GAPV = congruence.checkPositiveNumber(self.GAPV, "Slit gap V")
     self.KMIN = congruence.checkPositiveNumber(self.KMIN, "K Min")
     self.KMAX = congruence.checkStrictlyPositiveNumber(self.KMAX, "K Max")
     congruence.checkLessThan(self.KMIN, self.KMAX, "K Min", "K Max")
     self.KPOINTS = congruence.checkStrictlyPositiveNumber(self.KPOINTS, "Number of K Points")
Exemple #43
0
    def check_fields(self):
        self.DESCRIPTOR = congruence.checkEmptyString(self.DESCRIPTOR, "formula")
        if self.MAT_FLAG == 1:
            self.DENSITY = congruence.checkStrictlyPositiveNumber(self.DENSITY, "density")

        if self.GRID > 0:
            self.GRIDSTART = congruence.checkPositiveNumber(self.GRIDSTART, "Starting Energy")

            if self.GRID == 1:
                self.GRIDEND = congruence.checkStrictlyPositiveNumber(self.GRIDEND, "Energy to")
                congruence.checkLessThan(self.GRIDSTART, self.GRIDEND, "Starting Energy", "Energy to")
                self.GRIDN = congruence.checkStrictlyPositiveNumber(self.GRIDN, "Number of points")
    def check_fields(self):
        self.ELECTRONENERGY = congruence.checkStrictlyPositiveNumber(self.ELECTRONENERGY, "Electron Energy")
        if not self.METHOD == 1: self.ELECTRONENERGYSPREAD = congruence.checkPositiveNumber(self.ELECTRONENERGYSPREAD, "Electron Energy Spread")
        self.ELECTRONCURRENT = congruence.checkStrictlyPositiveNumber(self.ELECTRONCURRENT, "Electron Current")
        self.ELECTRONBEAMSIZEH = congruence.checkPositiveNumber(self.ELECTRONBEAMSIZEH, "Electron Beam Size H")
        self.ELECTRONBEAMSIZEV = congruence.checkPositiveNumber(self.ELECTRONBEAMSIZEV, "Electron Beam Size V")
        self.ELECTRONBEAMDIVERGENCEH = congruence.checkPositiveNumber(self.ELECTRONBEAMDIVERGENCEH, "Electron Beam Divergence H")
        self.ELECTRONBEAMDIVERGENCEV = congruence.checkPositiveNumber(self.ELECTRONBEAMDIVERGENCEV, "Electron Beam Divergence V")
        self.PERIODID = congruence.checkStrictlyPositiveNumber(self.PERIODID, "Period ID")
        self.NPERIODS = congruence.checkStrictlyPositiveNumber(self.NPERIODS, "Number of Periods")
        self.KV = congruence.checkPositiveNumber(self.KV, "Kv")
        self.DISTANCE = congruence.checkPositiveNumber(self.DISTANCE, "Distance to slit")
        self.GAPH = congruence.checkPositiveNumber(self.GAPH, "Slit gap H")
        self.GAPV = congruence.checkPositiveNumber(self.GAPV, "Slit gap V")
        self.PHOTONENERGYMIN = congruence.checkPositiveNumber(self.PHOTONENERGYMIN, "photon Energy Min")
        self.PHOTONENERGYMAX = congruence.checkStrictlyPositiveNumber(self.PHOTONENERGYMAX, "photon Energy Max")
        congruence.checkLessThan(self.PHOTONENERGYMIN, self.PHOTONENERGYMAX, "photon Energy Min", "photon Energy Max")
        self.PHOTONENERGYPOINTS = congruence.checkStrictlyPositiveNumber(self.PHOTONENERGYPOINTS, "photon Energy Points")

        if sys.platform == 'linux' and self.METHOD == 2:
            raise Exception("SRW calculation code not supported under Linux")
    def check_fields(self):
        self.ELECTRONENERGY = congruence.checkStrictlyPositiveNumber(self.ELECTRONENERGY, "Electron Energy")
        if not self.METHOD == 1: self.ELECTRONENERGYSPREAD = congruence.checkPositiveNumber(self.ELECTRONENERGYSPREAD, "Electron Energy Spread")
        self.ELECTRONCURRENT = congruence.checkStrictlyPositiveNumber(self.ELECTRONCURRENT, "Electron Current")
        self.ELECTRONBEAMSIZEH = congruence.checkPositiveNumber(self.ELECTRONBEAMSIZEH, "Electron Beam Size H")
        self.ELECTRONBEAMSIZEV = congruence.checkPositiveNumber(self.ELECTRONBEAMSIZEV, "Electron Beam Size V")
        self.ELECTRONBEAMDIVERGENCEH = congruence.checkNumber(self.ELECTRONBEAMDIVERGENCEH, "Electron Beam Divergence H")
        self.ELECTRONBEAMDIVERGENCEV = congruence.checkNumber(self.ELECTRONBEAMDIVERGENCEV, "Electron Beam Divergence V")

        self.PERIODID = congruence.checkStrictlyPositiveNumber(self.PERIODID, "Period ID")
        self.NPERIODS = congruence.checkStrictlyPositiveNumber(self.NPERIODS, "Number of Periods")
        self.KV = congruence.checkPositiveNumber(self.KV, "Kv")
        self.DISTANCE = congruence.checkStrictlyPositiveNumber(self.DISTANCE, "Distance to slit")

        if self.SETRESONANCE == 0:
            self.GAPH = congruence.checkPositiveNumber(self.GAPH, "Slit gap H")
            self.GAPV = congruence.checkPositiveNumber(self.GAPV, "Slit gap V")
            self.PHOTONENERGYMIN = congruence.checkNumber(self.PHOTONENERGYMIN, "Photon Energy Min")
            self.PHOTONENERGYMAX = congruence.checkNumber(self.PHOTONENERGYMAX, "Photon Energy Max")
            congruence.checkGreaterOrEqualThan(self.PHOTONENERGYPOINTS, 2, "Number of Photon Energy Points", " 2")
        else:
            self.HARMONICNUMBER = congruence.checkStrictlyPositiveNumber(self.HARMONICNUMBER, "Harmonic number")

        self.HSLITPOINTS = congruence.checkStrictlyPositiveNumber(self.HSLITPOINTS, "Number of slit mesh points in H")
        self.VSLITPOINTS = congruence.checkStrictlyPositiveNumber(self.VSLITPOINTS, "Number of slit mesh points in V")

        if  self.METHOD == 1: # URGENT
            congruence.checkLessOrEqualThan(self.HSLITPOINTS, 51, "Number of slit mesh points for URGENT "," 51")
            congruence.checkLessOrEqualThan(self.VSLITPOINTS, 51, "Number of slit mesh points for URGENT "," 51")
Exemple #46
0
    def check_fields(self):
        self.DESCRIPTOR = congruence.checkEmptyString(self.DESCRIPTOR, "formula")
        if self.MAT_FLAG == 1:
            self.DENSITY = congruence.checkStrictlyPositiveNumber(self.DENSITY, "density")

        if self.GRID > 0:
            self.GRIDSTART = congruence.checkPositiveNumber(self.GRIDSTART, "Starting Energy")

            if self.GRID == 1:
                self.GRIDEND = congruence.checkStrictlyPositiveNumber(self.GRIDEND, "Energy to")
                congruence.checkLessThan(self.GRIDSTART, self.GRIDEND, "Starting Energy", "Energy to")
                self.GRIDN = congruence.checkStrictlyPositiveNumber(self.GRIDN, "Number of points")

        if self.CALCULATE >= 7 and self.CALCULATE <= 9:
            self.ROUGH = congruence.checkPositiveNumber(self.ROUGH, "Roughness")
            self.THETA1 = congruence.checkPositiveNumber(self.THETA1, "Starting Graz angle")

            if self.THETAGRID == 1:
                self.THETA2 = congruence.checkStrictlyPositiveNumber(self.THETA2, "Graz angle to")
                congruence.checkLessThan(self.THETA1, self.THETA2, "Starting Graz angle", "Graz angle to")
                self.THETAN = congruence.checkStrictlyPositiveNumber(self.THETAN, "Number of angular points")
        else:
            self.THETAGRID = 0
Exemple #47
0
    def check_fields(self):
        if self.RB_CHOICE == 0:
            self.MACHINE_R_M = congruence.checkStrictlyPositiveNumber(self.MACHINE_R_M, "Magnetic Radius")
        else:
            self.BFIELD_T = congruence.checkStrictlyPositiveNumber(self.BFIELD_T, "Magnetic Field")

        self.BEAM_ENERGY_GEV = congruence.checkStrictlyPositiveNumber(self.BEAM_ENERGY_GEV, "Beam Energy")
        self.CURRENT_A = congruence.checkStrictlyPositiveNumber(self.CURRENT_A, "Beam Current")
        self.HOR_DIV_MRAD = congruence.checkPositiveNumber(self.HOR_DIV_MRAD, "Horizontal div Theta")

        self.PHOT_ENERGY_MIN = congruence.checkPositiveNumber(self.PHOT_ENERGY_MIN, "Min Photon Energy")
        self.PHOT_ENERGY_MAX = congruence.checkStrictlyPositiveNumber(self.PHOT_ENERGY_MAX, "Max Photon Energy")
        congruence.checkLessThan(self.PHOT_ENERGY_MIN, self.PHOT_ENERGY_MAX, "Min Photon Energy", "Max Photon Energy")
        self.NPOINTS = congruence.checkStrictlyPositiveNumber(self.NPOINTS, "Number of Energy Points")

        self.PSI_MRAD_PLOT = congruence.checkNumber(self.PSI_MRAD_PLOT, "Max Psi for angular plots")

        if self.VER_DIV == 2:
            self.PSI_MIN = congruence.checkNumber(self.PSI_MIN, "Min Photon Energy")
            self.PSI_MAX = congruence.checkNumber(self.PSI_MAX, "Max Photon  Max")
            congruence.checkLessThan(self.PSI_MIN, self.PSI_MAX, "Psi Min", "Psi Max")
        elif self.VER_DIV == 3:
            self.PSI_MIN = congruence.checkNumber(self.PSI_MIN, "Min Photon Energy")
    def check_fields(self):
        self.dimension_x = congruence.checkStrictlyPositiveNumber(self.dimension_x, "Dimension X")
        self.step_x = congruence.checkStrictlyPositiveNumber(self.step_x, "Step X")
        if self.step_x > self.dimension_x/2:
            raise Exception("Step Width should be smaller than or equal to Width/2")
        if self.modify_y == 1:
            self.scale_factor_y = congruence.checkStrictlyPositiveNumber(self.scale_factor_y, "Scale Factor")
        elif self.modify_y == 2:
            self.new_length = congruence.checkStrictlyPositiveNumber(self.new_length, "New Length")

        if self.renormalize_y == 1:
            self.rms_y = congruence.checkPositiveNumber(self.rms_y, "Rms Y")

        congruence.checkDir(self.heigth_profile_file_name)
    def check_fields(self):

        self.ELECTRONENERGY = congruence.checkStrictlyPositiveNumber(self.ELECTRONENERGY, "Electron Energy")
        if not self.METHOD == 1: self.ELECTRONENERGYSPREAD = congruence.checkPositiveNumber(self.ELECTRONENERGYSPREAD, "Electron Energy Spread")
        self.ELECTRONCURRENT = congruence.checkStrictlyPositiveNumber(self.ELECTRONCURRENT, "Electron Current")
        self.ELECTRONBEAMSIZEH = congruence.checkPositiveNumber(self.ELECTRONBEAMSIZEH, "Electron Beam Size H")
        self.ELECTRONBEAMSIZEV = congruence.checkPositiveNumber(self.ELECTRONBEAMSIZEV, "Electron Beam Size V")
        self.ELECTRONBEAMDIVERGENCEH = congruence.checkPositiveNumber(self.ELECTRONBEAMDIVERGENCEH, "Electron Beam Divergence H")
        self.ELECTRONBEAMDIVERGENCEV = congruence.checkPositiveNumber(self.ELECTRONBEAMDIVERGENCEV, "Electron Beam Divergence V")
        self.PERIODID = congruence.checkStrictlyPositiveNumber(self.PERIODID, "Period ID")
        self.NPERIODS = congruence.checkStrictlyPositiveNumber(self.NPERIODS, "Number of Periods")
        self.KV = congruence.checkPositiveNumber(self.KV, "Kv")
        self.DISTANCE = congruence.checkPositiveNumber(self.DISTANCE, "Distance to slit")
        self.GAPH = congruence.checkPositiveNumber(self.GAPH, "Slit gap H")
        self.GAPV = congruence.checkPositiveNumber(self.GAPV, "Slit gap V")
        self.HSLITPOINTS = congruence.checkStrictlyPositiveNumber(self.HSLITPOINTS, "Number of slit mesh points in H")
        self.VSLITPOINTS = congruence.checkStrictlyPositiveNumber(self.VSLITPOINTS, "Number of slit mesh points in V")

        if  self.METHOD == 1: # URGENT
            congruence.checkLessOrEqualThan(self.HSLITPOINTS, 51, "Number of slit mesh points for URGENT "," 51")
            congruence.checkLessOrEqualThan(self.VSLITPOINTS, 51, "Number of slit mesh points for URGENT "," 51")
Exemple #50
0
    def checkFields(self):
        if type(self.DESCRIPTOR) == str: # back compatibility with old version
            try:
                self.DESCRIPTOR = self.crystals.index(self.DESCRIPTOR)
            except:
                self.DESCRIPTOR = 0

        self.H_MILLER_INDEX = congruence.checkNumber(self.H_MILLER_INDEX, "H miller index")
        self.K_MILLER_INDEX = congruence.checkNumber(self.K_MILLER_INDEX, "K miller index")
        self.L_MILLER_INDEX = congruence.checkNumber(self.L_MILLER_INDEX, "L miller index")
        self.TEMPERATURE_FACTOR = congruence.checkNumber(self.TEMPERATURE_FACTOR, "Temperature factor")
        self.E_MIN  = congruence.checkPositiveNumber(self.E_MIN , "Minimum energy")
        self.E_MAX  = congruence.checkStrictlyPositiveNumber(self.E_MAX , "Maximum Energy")
        self.E_STEP = congruence.checkStrictlyPositiveNumber(self.E_STEP, "Energy step")
        if self.E_MIN > self.E_MAX: raise Exception("From Energy cannot be bigger than To Energy")
        congruence.checkDir(self.SHADOW_FILE)
Exemple #51
0
    def checkFields(self):
        congruence.checkPositiveNumber(self.p, "Distance Source - KB center")
        congruence.checkPositiveNumber(self.q, "Distance KB center - Image plane")

        congruence.checkPositiveNumber(self.separation, "Separation between the Mirrors")
        congruence.checkStrictlyPositiveNumber(self.photon_energy_ev, "Photon Energy")

        congruence.checkFile(self.reflectivity_file)

        self.crystal_1_box.checkFields()
        self.crystal_2_box.checkFields()
Exemple #52
0
    def check_fields(self):
        self.NPERIODS = congruence.checkStrictlyPositiveNumber(self.NPERIODS, "Number of Periods")
        self.ENERGY = congruence.checkStrictlyPositiveNumber(self.ENERGY, "Beam Energy")
        self.PHOT_ENERGY_MIN = congruence.checkPositiveNumber(self.PHOT_ENERGY_MIN, "Min Photon Energy")
        self.PHOT_ENERGY_MAX = congruence.checkStrictlyPositiveNumber(self.PHOT_ENERGY_MAX, "Max Photon Energy")
        congruence.checkLessThan(self.PHOT_ENERGY_MIN, self.PHOT_ENERGY_MAX, "Min Photon Energy", "Max Photon Energy")
        self.NPOINTS = congruence.checkStrictlyPositiveNumber(self.NPOINTS, "Number of Energy Points")
        self.CURRENT = congruence.checkStrictlyPositiveNumber(self.CURRENT, "Electron Beam Current")

        if self.FIELD == 0:
            self.ULAMBDA = congruence.checkStrictlyPositiveNumber(self.ULAMBDA, "Wiggler period")
            self.K = congruence.checkStrictlyPositiveNumber(self.K, "K")
            self.NTRAJPOINTS = congruence.checkStrictlyPositiveNumber(self.NTRAJPOINTS, "Number of traj points per period")
        elif self.FIELD == 1:
            self.ULAMBDA = congruence.checkStrictlyPositiveNumber(self.ULAMBDA, "Wiggler period")
            self.NTRAJPOINTS = congruence.checkStrictlyPositiveNumber(self.NTRAJPOINTS, "Number of traj points per period")
            congruence.checkUrl(self.FILE)
        elif self.FIELD == 2:
            congruence.checkUrl(self.FILE)
Exemple #53
0
    def check_fields(self):
        self.MILLER_INDEX_H = congruence.checkNumber(self.MILLER_INDEX_H, "Miller index H")
        self.MILLER_INDEX_K = congruence.checkNumber(self.MILLER_INDEX_K, "Miller index K")
        self.MILLER_INDEX_L = congruence.checkNumber(self.MILLER_INDEX_L, "Miller index L")
        self.TEMPER = congruence.checkNumber(self.TEMPER, "Temperature factor")

        if self.SCAN == 0 or self.SCAN == 3:
            self.SCANFROM = congruence.checkPositiveNumber(self.SCANFROM, "Min Scan value")
            self.SCANTO = congruence.checkStrictlyPositiveNumber(self.SCANTO, "Max Scan value")
        else:
            self.SCANFROM = congruence.checkNumber(self.SCANFROM, "Min Scan value")
            self.SCANTO = congruence.checkNumber(self.SCANTO, "Max Scan value")

        congruence.checkLessThan(self.SCANFROM, self.SCANTO, "Min Scan value", "Max Scan value")
        self.SCANPOINTS = congruence.checkStrictlyPositiveNumber(self.SCANPOINTS, "Scan points")

        if self.SCAN < 4:
            self.ENERGY = congruence.checkStrictlyPositiveNumber(self.ENERGY , "Fix value")
        else:
            self.ENERGY = congruence.checkNumber(self.ENERGY , "Fix value")

        if self.MOSAIC == 0: #perfect
            self.ASYMMETRY_ANGLE = congruence.checkNumber(self.ASYMMETRY_ANGLE, "Asymmetry angle")
            self.THICKNESS = congruence.checkStrictlyPositiveNumber(self.THICKNESS, "Crystal thickness")
        elif self.MOSAIC == 1: #mosaic
            self.THICKNESS = congruence.checkStrictlyPositiveNumber(self.THICKNESS, "Crystal thickness")
            self.MOSAIC_FWHM = congruence.checkNumber(self.MOSAIC_FWHM, "Mosaicity")
        elif self.MOSAIC == 2 or self.MOSAIC == 3: #bent ML/PP
            self.ASYMMETRY_ANGLE = congruence.checkNumber(self.ASYMMETRY_ANGLE, "Asymmetry angle")
            self.THICKNESS = congruence.checkStrictlyPositiveNumber(self.THICKNESS, "Crystal thickness")
            self.RSAG = congruence.checkStrictlyPositiveNumber(self.RSAG, "R Sagittal")
            self.RMER = congruence.checkStrictlyPositiveNumber(self.RMER, "R meridional")

            if self.ANISOTROPY == 0:
                self.POISSON = congruence.checkStrictlyPositiveNumber(self.POISSON, "Poisson Ratio")
            elif self.ANISOTROPY == 2:
                congruence.checkEmptyString(self.CUT, "Valong; Vnorm; Vperp")
            elif self.ANISOTROPY == 3:
                congruence.checkFile(self.FILECOMPLIANCE)
Exemple #54
0
    def plot_results(self):
        # self.error(self.error_id)

        try:
            plotted = False

            sys.stdout = EmittingStream(textWritten=self.writeStdOut)

            if self.trace_shadow:
                grabber = TTYGrabber()
                grabber.start()

            if ShadowCongruence.checkEmptyBeam(self.input_beam):
                ShadowPlot.set_conversion_active(self.getConversionActive())

                self.number_of_bins = congruence.checkPositiveNumber(self.number_of_bins, "Number of Bins")

                x, auto_title, xum = self.get_titles()

                self.plot_histo(x, title=self.title, xtitle=auto_title, ytitle="Number of Rays", xum=xum)

                plotted = True
            if self.trace_shadow:
                grabber.stop()

                for row in grabber.ttyData:
                    self.writeStdOut(row)

            time.sleep(0.5)  # prevents a misterious dead lock in the Orange cycle when refreshing the histogram

            return plotted
        except Exception as exception:
            QtGui.QMessageBox.critical(self, "Error", str(exception), QtGui.QMessageBox.Ok)

            # self.error_id = self.error_id + 1
            # self.error(self.error_id, "Exception occurred: " + str(exception))

            return False
    def checkFields(self):
        congruence.checkPositiveNumber(self.source_plane_distance, "Distance from Source")
        congruence.checkPositiveNumber(self.image_plane_distance, "Image Plane Distance")
        congruence.checkStrictlyPositiveNumber(self.input_diameter, "Input Diameter")
        congruence.checkStrictlyPositiveAngle(self.angular_acceptance, "Angular Acceptance")
        congruence.checkStrictlyPositiveNumber(self.output_diameter, "Output Diameter")
        congruence.checkPositiveNumber(self.residual_divergence, "Residual Output Divergence")
        congruence.checkStrictlyPositiveNumber(self.lens_length, "Lens Total Length")

        if self.output_diameter <= self.input_diameter:
            raise Exception("Output Diameter should be greater than Input diameter")

        slit_distance = self.get_slits_distance()

        if self.lens_length < slit_distance:
            raise Exception("Lens total Length should be greater than or equal to " + str(slit_distance))

        congruence.checkStrictlyPositiveNumber(self.transmittance, "Lens Transmittance")
Exemple #56
0
 def check_fields(self):
     self.ENERGY = congruence.checkStrictlyPositiveNumber(self.ENERGY, "Electron Energy")
     self.CURRENT = congruence.checkStrictlyPositiveNumber(self.CURRENT, "Current")
     self.ENERGY_SPREAD = congruence.checkStrictlyPositiveNumber(self.ENERGY_SPREAD, "Energy Spread")
     self.SIGX  = congruence.checkPositiveNumber(self.SIGX , "Sigma X")
     self.SIGY  = congruence.checkPositiveNumber(self.SIGY , "Sigma Y")
     self.SIGX1 = congruence.checkPositiveNumber(self.SIGX1, "Sigma X'")
     self.SIGY1 = congruence.checkPositiveNumber(self.SIGY1, "Sigma Y'")
     self.PERIOD = congruence.checkStrictlyPositiveNumber(self.PERIOD, "Period length")
     self.NP = congruence.checkStrictlyPositiveNumber(self.NP, "Number of periods")
     self.EMIN = congruence.checkPositiveNumber(self.EMIN, "E1 minimum energy")
     self.EMAX = congruence.checkStrictlyPositiveNumber(self.EMAX, "E1 maximum energy")
     congruence.checkLessThan(self.EMIN, self.EMAX, "E1 minimum energy", "E1 maximum energy")
     self.N = congruence.checkStrictlyPositiveNumber(self.N, "Number of Energy Points")
     self.HARMONIC_FROM = congruence.checkStrictlyPositiveNumber(self.HARMONIC_FROM, "Minimum harmonic number")
     self.HARMONIC_TO = congruence.checkStrictlyPositiveNumber(self.HARMONIC_TO, "Maximum harmonic number")
     congruence.checkLessThan(self.HARMONIC_FROM, self.HARMONIC_TO, "Minimum harmonic number", "Maximum harmonic number")
     self.HARMONIC_STEP = congruence.checkStrictlyPositiveNumber(self.HARMONIC_STEP, "Harmonic step size")
     self.NEKS  = congruence.checkPositiveNumber(self.NEKS , "Intrinsic NEKS")
Exemple #57
0
 def check_fields(self):
     self.DESCRIPTOR = congruence.checkEmptyString(self.DESCRIPTOR, "formula")
     self.GRIDSTART = congruence.checkPositiveNumber(self.GRIDSTART, "Q from")
     self.GRIDEND = congruence.checkStrictlyPositiveNumber(self.GRIDEND, "Q to")
     congruence.checkLessThan(self.GRIDSTART, self.GRIDEND, "Q from", "Q to")
     self.GRIDN = congruence.checkStrictlyPositiveNumber(self.GRIDN, "Number of q Points")
Exemple #58
0
 def check_fields(self):
     self.VOLTAGE = congruence.checkStrictlyPositiveNumber(self.VOLTAGE, "Voltage")
     if self.VOLTAGE < 30 or self.VOLTAGE > 140: raise Exception("Voltage out of range")
     self.RIPPLE = congruence.checkPositiveNumber(self.RIPPLE, "Voltage ripple")
     self.AL_FILTER = congruence.checkPositiveNumber(self.AL_FILTER, "Al filter")
Exemple #59
0
    def check_fields(self):

        if self.SOURCE == 1:
            self.ENER_MIN = congruence.checkPositiveNumber(self.ENER_MIN, "Energy from")
            self.ENER_MAX = congruence.checkStrictlyPositiveNumber(self.ENER_MAX, "Energy to")
            congruence.checkLessThan(self.ENER_MIN, self.ENER_MAX, "Energy from", "Energy to")
            self.NPOINTS = congruence.checkStrictlyPositiveNumber(self.ENER_N, "Energy Points")
        elif self.SOURCE == 2:
            congruence.checkFile(self.SOURCE_FILE)

        if self.NELEMENTS >= 1:
            self.EL1_FOR = congruence.checkEmptyString(self.EL1_FOR, "1st oe formula")

            if self.EL1_FLAG == 0: # filter
                self.EL1_THI = congruence.checkStrictlyPositiveNumber(self.EL1_THI, "1st oe filter thickness")
            elif self.EL1_FLAG == 1: # mirror
                self.EL1_ANG = congruence.checkStrictlyPositiveNumber(self.EL1_ANG, "1st oe mirror angle")
                self.EL1_ROU = congruence.checkPositiveNumber(self.EL1_ROU, "1st oe mirror roughness")

            if not self.EL1_DEN.strip() == "?":
                self.EL1_DEN = str(congruence.checkStrictlyPositiveNumber(float(congruence.checkNumber(self.EL1_DEN, "1st oe density")), "1st oe density"))

        if self.NELEMENTS >= 2:
            self.EL2_FOR = congruence.checkEmptyString(self.EL2_FOR, "2nd oe formula")

            if self.EL2_FLAG == 0: # filter
                self.EL2_THI = congruence.checkStrictlyPositiveNumber(self.EL2_THI, "2nd oe filter thickness")
            elif self.EL2_FLAG == 1: # mirror
                self.EL2_ANG = congruence.checkStrictlyPositiveNumber(self.EL2_ANG, "2nd oe mirror angle")
                self.EL2_ROU = congruence.checkPositiveNumber(self.EL2_ROU, "2nd oe mirror roughness")

            if not self.EL2_DEN.strip() == "?":
                self.EL2_DEN = str(congruence.checkStrictlyPositiveNumber(float(congruence.checkNumber(self.EL2_DEN, "2nd oe density")), "2nd oe density"))

        if self.NELEMENTS >= 3:
            self.EL3_FOR = congruence.checkEmptyString(self.EL3_FOR, "3rd oe formula")

            if self.EL3_FLAG == 0: # filter
                self.EL3_THI = congruence.checkStrictlyPositiveNumber(self.EL3_THI, "3rd oe filter thickness")
            elif self.EL3_FLAG == 1: # mirror
                self.EL3_ANG = congruence.checkStrictlyPositiveNumber(self.EL3_ANG, "3rd oe mirror angle")
                self.EL3_ROU = congruence.checkPositiveNumber(self.EL3_ROU, "3rd oe mirror roughness")

            if not self.EL3_DEN.strip() == "?":
                self.EL3_DEN = str(congruence.checkStrictlyPositiveNumber(float(congruence.checkNumber(self.EL3_DEN, "3rd oe density")), "3rd oe density"))

        if self.NELEMENTS >= 4:
            self.EL4_FOR = congruence.checkEmptyString(self.EL4_FOR, "4th oe formula")

            if self.EL4_FLAG == 0: # filter
                self.EL4_THI = congruence.checkStrictlyPositiveNumber(self.EL4_THI, "4th oe filter thickness")
            elif self.EL4_FLAG == 1: # mirror
                self.EL4_ANG = congruence.checkStrictlyPositiveNumber(self.EL4_ANG, "4th oe mirror angle")
                self.EL4_ROU = congruence.checkPositiveNumber(self.EL4_ROU, "4th oe mirror roughness")

            if not self.EL4_DEN.strip() == "?":

                self.EL4_DEN = str(congruence.checkStrictlyPositiveNumber(float(congruence.checkNumber(self.EL4_DEN, "4th oe density")), "4th oe density"))

        if self.NELEMENTS >= 5:
            self.EL5_FOR = congruence.checkEmptyString(self.EL5_FOR, "5th oe formula")

            if self.EL5_FLAG == 0: # filter
                self.EL5_THI = congruence.checkStrictlyPositiveNumber(self.EL5_THI, "5th oe filter thickness")
            elif self.EL5_FLAG == 1: # mirror
                self.EL5_ANG = congruence.checkStrictlyPositiveNumber(self.EL5_ANG, "5th oe mirror angle")
                self.EL5_ROU = congruence.checkPositiveNumber(self.EL5_ROU, "5th oe mirror roughness")

            if not self.EL5_DEN.strip() == "?":
                self.EL5_DEN = str(congruence.checkStrictlyPositiveNumber(float(congruence.checkNumber(self.EL5_DEN, "5th oe density")), "5th oe density"))
    def checkFields(self):
        self.number_of_rays = congruence.checkPositiveNumber(self.number_of_rays, "Number of rays")
        self.seed = congruence.checkPositiveNumber(self.seed, "Seed")
        self.e_min = congruence.checkPositiveNumber(self.e_min, "Minimum energy")
        self.e_max = congruence.checkPositiveNumber(self.e_max, "Maximum energy")
        congruence.checkLessThan(self.e_min, self.e_max,  "Minimum energy",  "Maximum energy")

        self.sigma_x = congruence.checkPositiveNumber(self.sigma_x, "Sigma x")
        self.sigma_z = congruence.checkPositiveNumber(self.sigma_z, "Sigma z")
        self.emittance_x = congruence.checkPositiveNumber(self.emittance_x, "Emittance x")
        self.emittance_z = congruence.checkPositiveNumber(self.emittance_z, "Emittance z")
        self.distance_from_waist_x = congruence.checkPositiveNumber(self.distance_from_waist_x, "Distance from waist x")
        self.distance_from_waist_z = congruence.checkPositiveNumber(self.distance_from_waist_z, "Distance from waist z")
        self.energy = congruence.checkPositiveNumber(self.energy, "Energy")
        self.magnetic_radius = congruence.checkPositiveNumber(self.magnetic_radius, "Magnetic radius")
        self.horizontal_half_divergence_from = congruence.checkPositiveNumber(self.horizontal_half_divergence_from,
                                                                             "Horizontal half-divergence from [+]")
        self.horizontal_half_divergence_to = congruence.checkPositiveNumber(self.horizontal_half_divergence_to,
                                                                           "Horizontal half-divergence to [-]")
        self.max_vertical_half_divergence_from = congruence.checkPositiveNumber(self.max_vertical_half_divergence_from,
                                                                               "Max vertical half-divergence from [+]")
        self.max_vertical_half_divergence_to = congruence.checkPositiveNumber(self.max_vertical_half_divergence_to,
                                                                             "Max vertical half-divergence to [-]")
        if self.optimize_source > 0:
            self.max_number_of_rejected_rays = congruence.checkPositiveNumber(self.max_number_of_rejected_rays,
                                                                             "Max number of rejected rays")
            congruence.checkFile(self.optimize_file_name)