Exemple #1
0
    def _get_second_stage_box_predictor(self,
                                        num_classes,
                                        is_training,
                                        predict_masks,
                                        masks_are_class_agnostic,
                                        share_box_across_classes=False,
                                        use_keras=False):
        box_predictor_proto = box_predictor_pb2.BoxPredictor()
        text_format.Merge(
            self._get_second_stage_box_predictor_text_proto(
                share_box_across_classes), box_predictor_proto)
        if predict_masks:
            text_format.Merge(
                self._add_mask_to_second_stage_box_predictor_text_proto(
                    masks_are_class_agnostic), box_predictor_proto)

        if use_keras:
            return box_predictor_builder.build_keras(
                hyperparams_builder.KerasLayerHyperparams,
                inplace_batchnorm_update=False,
                freeze_batchnorm=False,
                box_predictor_config=box_predictor_proto,
                num_classes=num_classes,
                num_predictions_per_location_list=None,
                is_training=is_training)
        else:
            return box_predictor_builder.build(hyperparams_builder.build,
                                               box_predictor_proto,
                                               num_classes=num_classes,
                                               is_training=is_training)
Exemple #2
0
def _build_faster_rcnn_model(frcnn_config, is_training, add_summaries):
    """Builds a Faster R-CNN or R-FCN detection model based on the model config.

  Builds R-FCN model if the second_stage_box_predictor in the config is of type
  `rfcn_box_predictor` else builds a Faster R-CNN model.

  Args:
    frcnn_config: A faster_rcnn.proto object containing the config for the
      desired FasterRCNNMetaArch or RFCNMetaArch.
    is_training: True if this model is being built for training purposes.
    add_summaries: Whether to add tf summaries in the model.

  Returns:
    FasterRCNNMetaArch based on the config.

  Raises:
    ValueError: If frcnn_config.type is not recognized (i.e. not registered in
      model_class_map).
  """
    num_classes = frcnn_config.num_classes
    image_resizer_fn = image_resizer_builder.build(frcnn_config.image_resizer)

    is_keras = (frcnn_config.feature_extractor.type
                in FASTER_RCNN_KERAS_FEATURE_EXTRACTOR_CLASS_MAP)

    if is_keras:
        feature_extractor = _build_faster_rcnn_keras_feature_extractor(
            frcnn_config.feature_extractor,
            is_training,
            inplace_batchnorm_update=frcnn_config.inplace_batchnorm_update)
    else:
        feature_extractor = _build_faster_rcnn_feature_extractor(
            frcnn_config.feature_extractor,
            is_training,
            inplace_batchnorm_update=frcnn_config.inplace_batchnorm_update)

    number_of_stages = frcnn_config.number_of_stages
    first_stage_anchor_generator = anchor_generator_builder.build(
        frcnn_config.first_stage_anchor_generator)

    first_stage_target_assigner = target_assigner.create_target_assigner(
        'FasterRCNN',
        'proposal',
        use_matmul_gather=frcnn_config.use_matmul_gather_in_matcher)
    first_stage_atrous_rate = frcnn_config.first_stage_atrous_rate
    if is_keras:
        first_stage_box_predictor_arg_scope_fn = (
            hyperparams_builder.KerasLayerHyperparams(
                frcnn_config.first_stage_box_predictor_conv_hyperparams))
    else:
        first_stage_box_predictor_arg_scope_fn = hyperparams_builder.build(
            frcnn_config.first_stage_box_predictor_conv_hyperparams,
            is_training)
    first_stage_box_predictor_kernel_size = (
        frcnn_config.first_stage_box_predictor_kernel_size)
    first_stage_box_predictor_depth = frcnn_config.first_stage_box_predictor_depth
    first_stage_minibatch_size = frcnn_config.first_stage_minibatch_size
    use_static_shapes = frcnn_config.use_static_shapes and (
        frcnn_config.use_static_shapes_for_eval or is_training)
    first_stage_sampler = sampler.BalancedPositiveNegativeSampler(
        positive_fraction=frcnn_config.first_stage_positive_balance_fraction,
        is_static=(frcnn_config.use_static_balanced_label_sampler
                   and use_static_shapes))
    first_stage_max_proposals = frcnn_config.first_stage_max_proposals
    if (frcnn_config.first_stage_nms_iou_threshold < 0
            or frcnn_config.first_stage_nms_iou_threshold > 1.0):
        raise ValueError('iou_threshold not in [0, 1.0].')
    if (is_training and
            frcnn_config.second_stage_batch_size > first_stage_max_proposals):
        raise ValueError('second_stage_batch_size should be no greater than '
                         'first_stage_max_proposals.')
    first_stage_non_max_suppression_fn = functools.partial(
        post_processing.batch_multiclass_non_max_suppression,
        score_thresh=frcnn_config.first_stage_nms_score_threshold,
        iou_thresh=frcnn_config.first_stage_nms_iou_threshold,
        max_size_per_class=frcnn_config.first_stage_max_proposals,
        max_total_size=frcnn_config.first_stage_max_proposals,
        use_static_shapes=use_static_shapes,
        use_partitioned_nms=frcnn_config.use_partitioned_nms_in_first_stage,
        use_combined_nms=frcnn_config.use_combined_nms_in_first_stage)
    first_stage_loc_loss_weight = (
        frcnn_config.first_stage_localization_loss_weight)
    first_stage_obj_loss_weight = frcnn_config.first_stage_objectness_loss_weight

    initial_crop_size = frcnn_config.initial_crop_size
    maxpool_kernel_size = frcnn_config.maxpool_kernel_size
    maxpool_stride = frcnn_config.maxpool_stride

    second_stage_target_assigner = target_assigner.create_target_assigner(
        'FasterRCNN',
        'detection',
        use_matmul_gather=frcnn_config.use_matmul_gather_in_matcher)
    if is_keras:
        second_stage_box_predictor = box_predictor_builder.build_keras(
            hyperparams_builder.KerasLayerHyperparams,
            freeze_batchnorm=False,
            inplace_batchnorm_update=False,
            num_predictions_per_location_list=[1],
            box_predictor_config=frcnn_config.second_stage_box_predictor,
            is_training=is_training,
            num_classes=num_classes)
    else:
        second_stage_box_predictor = box_predictor_builder.build(
            hyperparams_builder.build,
            frcnn_config.second_stage_box_predictor,
            is_training=is_training,
            num_classes=num_classes)
    second_stage_batch_size = frcnn_config.second_stage_batch_size
    second_stage_sampler = sampler.BalancedPositiveNegativeSampler(
        positive_fraction=frcnn_config.second_stage_balance_fraction,
        is_static=(frcnn_config.use_static_balanced_label_sampler
                   and use_static_shapes))
    (second_stage_non_max_suppression_fn,
     second_stage_score_conversion_fn) = post_processing_builder.build(
         frcnn_config.second_stage_post_processing)
    second_stage_localization_loss_weight = (
        frcnn_config.second_stage_localization_loss_weight)
    second_stage_classification_loss = (
        losses_builder.build_faster_rcnn_classification_loss(
            frcnn_config.second_stage_classification_loss))
    second_stage_classification_loss_weight = (
        frcnn_config.second_stage_classification_loss_weight)
    second_stage_mask_prediction_loss_weight = (
        frcnn_config.second_stage_mask_prediction_loss_weight)

    hard_example_miner = None
    if frcnn_config.HasField('hard_example_miner'):
        hard_example_miner = losses_builder.build_hard_example_miner(
            frcnn_config.hard_example_miner,
            second_stage_classification_loss_weight,
            second_stage_localization_loss_weight)

    crop_and_resize_fn = (ops.matmul_crop_and_resize
                          if frcnn_config.use_matmul_crop_and_resize else
                          ops.native_crop_and_resize)
    clip_anchors_to_image = (frcnn_config.clip_anchors_to_image)

    common_kwargs = {
        'is_training':
        is_training,
        'num_classes':
        num_classes,
        'image_resizer_fn':
        image_resizer_fn,
        'feature_extractor':
        feature_extractor,
        'number_of_stages':
        number_of_stages,
        'first_stage_anchor_generator':
        first_stage_anchor_generator,
        'first_stage_target_assigner':
        first_stage_target_assigner,
        'first_stage_atrous_rate':
        first_stage_atrous_rate,
        'first_stage_box_predictor_arg_scope_fn':
        first_stage_box_predictor_arg_scope_fn,
        'first_stage_box_predictor_kernel_size':
        first_stage_box_predictor_kernel_size,
        'first_stage_box_predictor_depth':
        first_stage_box_predictor_depth,
        'first_stage_minibatch_size':
        first_stage_minibatch_size,
        'first_stage_sampler':
        first_stage_sampler,
        'first_stage_non_max_suppression_fn':
        first_stage_non_max_suppression_fn,
        'first_stage_max_proposals':
        first_stage_max_proposals,
        'first_stage_localization_loss_weight':
        first_stage_loc_loss_weight,
        'first_stage_objectness_loss_weight':
        first_stage_obj_loss_weight,
        'second_stage_target_assigner':
        second_stage_target_assigner,
        'second_stage_batch_size':
        second_stage_batch_size,
        'second_stage_sampler':
        second_stage_sampler,
        'second_stage_non_max_suppression_fn':
        second_stage_non_max_suppression_fn,
        'second_stage_score_conversion_fn':
        second_stage_score_conversion_fn,
        'second_stage_localization_loss_weight':
        second_stage_localization_loss_weight,
        'second_stage_classification_loss':
        second_stage_classification_loss,
        'second_stage_classification_loss_weight':
        second_stage_classification_loss_weight,
        'hard_example_miner':
        hard_example_miner,
        'add_summaries':
        add_summaries,
        'crop_and_resize_fn':
        crop_and_resize_fn,
        'clip_anchors_to_image':
        clip_anchors_to_image,
        'use_static_shapes':
        use_static_shapes,
        'resize_masks':
        frcnn_config.resize_masks,
        'return_raw_detections_during_predict':
        (frcnn_config.return_raw_detections_during_predict)
    }

    if (isinstance(second_stage_box_predictor,
                   rfcn_box_predictor.RfcnBoxPredictor)
            or isinstance(second_stage_box_predictor,
                          rfcn_keras_box_predictor.RfcnKerasBoxPredictor)):
        return rfcn_meta_arch.RFCNMetaArch(
            second_stage_rfcn_box_predictor=second_stage_box_predictor,
            **common_kwargs)
    else:
        return faster_rcnn_meta_arch.FasterRCNNMetaArch(
            initial_crop_size=initial_crop_size,
            maxpool_kernel_size=maxpool_kernel_size,
            maxpool_stride=maxpool_stride,
            second_stage_mask_rcnn_box_predictor=second_stage_box_predictor,
            second_stage_mask_prediction_loss_weight=(
                second_stage_mask_prediction_loss_weight),
            **common_kwargs)
Exemple #3
0
def _build_ssd_model(ssd_config, is_training, add_summaries):
    """Builds an SSD detection model based on the model config.

  Args:
    ssd_config: A ssd.proto object containing the config for the desired
      SSDMetaArch.
    is_training: True if this model is being built for training purposes.
    add_summaries: Whether to add tf summaries in the model.
  Returns:
    SSDMetaArch based on the config.

  Raises:
    ValueError: If ssd_config.type is not recognized (i.e. not registered in
      model_class_map).
  """
    num_classes = ssd_config.num_classes

    # Feature extractor
    feature_extractor = _build_ssd_feature_extractor(
        feature_extractor_config=ssd_config.feature_extractor,
        freeze_batchnorm=ssd_config.freeze_batchnorm,
        is_training=is_training)

    box_coder = box_coder_builder.build(ssd_config.box_coder)
    matcher = matcher_builder.build(ssd_config.matcher)
    region_similarity_calculator = sim_calc.build(
        ssd_config.similarity_calculator)
    encode_background_as_zeros = ssd_config.encode_background_as_zeros
    negative_class_weight = ssd_config.negative_class_weight
    anchor_generator = anchor_generator_builder.build(
        ssd_config.anchor_generator)
    if feature_extractor.is_keras_model:
        ssd_box_predictor = box_predictor_builder.build_keras(
            hyperparams_fn=hyperparams_builder.KerasLayerHyperparams,
            freeze_batchnorm=ssd_config.freeze_batchnorm,
            inplace_batchnorm_update=False,
            num_predictions_per_location_list=anchor_generator.
            num_anchors_per_location(),
            box_predictor_config=ssd_config.box_predictor,
            is_training=is_training,
            num_classes=num_classes,
            add_background_class=ssd_config.add_background_class)
    else:
        ssd_box_predictor = box_predictor_builder.build(
            hyperparams_builder.build, ssd_config.box_predictor, is_training,
            num_classes, ssd_config.add_background_class)
    image_resizer_fn = image_resizer_builder.build(ssd_config.image_resizer)
    non_max_suppression_fn, score_conversion_fn = post_processing_builder.build(
        ssd_config.post_processing)
    (classification_loss, localization_loss, classification_weight,
     localization_weight, hard_example_miner, random_example_sampler,
     expected_loss_weights_fn) = losses_builder.build(ssd_config.loss)
    normalize_loss_by_num_matches = ssd_config.normalize_loss_by_num_matches
    normalize_loc_loss_by_codesize = ssd_config.normalize_loc_loss_by_codesize

    equalization_loss_config = ops.EqualizationLossConfig(
        weight=ssd_config.loss.equalization_loss.weight,
        exclude_prefixes=ssd_config.loss.equalization_loss.exclude_prefixes)

    target_assigner_instance = target_assigner.TargetAssigner(
        region_similarity_calculator,
        matcher,
        box_coder,
        negative_class_weight=negative_class_weight)

    ssd_meta_arch_fn = ssd_meta_arch.SSDMetaArch
    kwargs = {}

    return ssd_meta_arch_fn(
        is_training=is_training,
        anchor_generator=anchor_generator,
        box_predictor=ssd_box_predictor,
        box_coder=box_coder,
        feature_extractor=feature_extractor,
        encode_background_as_zeros=encode_background_as_zeros,
        image_resizer_fn=image_resizer_fn,
        non_max_suppression_fn=non_max_suppression_fn,
        score_conversion_fn=score_conversion_fn,
        classification_loss=classification_loss,
        localization_loss=localization_loss,
        classification_loss_weight=classification_weight,
        localization_loss_weight=localization_weight,
        normalize_loss_by_num_matches=normalize_loss_by_num_matches,
        hard_example_miner=hard_example_miner,
        target_assigner_instance=target_assigner_instance,
        add_summaries=add_summaries,
        normalize_loc_loss_by_codesize=normalize_loc_loss_by_codesize,
        freeze_batchnorm=ssd_config.freeze_batchnorm,
        inplace_batchnorm_update=ssd_config.inplace_batchnorm_update,
        add_background_class=ssd_config.add_background_class,
        explicit_background_class=ssd_config.explicit_background_class,
        random_example_sampler=random_example_sampler,
        expected_loss_weights_fn=expected_loss_weights_fn,
        use_confidences_as_targets=ssd_config.use_confidences_as_targets,
        implicit_example_weight=ssd_config.implicit_example_weight,
        equalization_loss_config=equalization_loss_config,
        return_raw_detections_during_predict=(
            ssd_config.return_raw_detections_during_predict),
        **kwargs)
Exemple #4
0
def _build_ssd_model(ssd_config, is_training, add_summaries):
  
  num_classes = ssd_config.num_classes

  # Feature extractor
  feature_extractor = _build_ssd_feature_extractor(
      feature_extractor_config=ssd_config.feature_extractor,
      freeze_batchnorm=ssd_config.freeze_batchnorm,
      is_training=is_training)

  box_coder = box_coder_builder.build(ssd_config.box_coder)
  matcher = matcher_builder.build(ssd_config.matcher)
  region_similarity_calculator = sim_calc.build(
      ssd_config.similarity_calculator)
  encode_background_as_zeros = ssd_config.encode_background_as_zeros
  negative_class_weight = ssd_config.negative_class_weight
  anchor_generator = anchor_generator_builder.build(
      ssd_config.anchor_generator)
  if feature_extractor.is_keras_model:
    ssd_box_predictor = box_predictor_builder.build_keras(
        hyperparams_fn=hyperparams_builder.KerasLayerHyperparams,
        freeze_batchnorm=ssd_config.freeze_batchnorm,
        inplace_batchnorm_update=False,
        num_predictions_per_location_list=anchor_generator
        .num_anchors_per_location(),
        box_predictor_config=ssd_config.box_predictor,
        is_training=is_training,
        num_classes=num_classes,
        add_background_class=ssd_config.add_background_class)
  else:
    ssd_box_predictor = box_predictor_builder.build(
        hyperparams_builder.build, ssd_config.box_predictor, is_training,
        num_classes, ssd_config.add_background_class)
  image_resizer_fn = image_resizer_builder.build(ssd_config.image_resizer)
  non_max_suppression_fn, score_conversion_fn = post_processing_builder.build(
      ssd_config.post_processing)
  (classification_loss, localization_loss, classification_weight,
   localization_weight, hard_example_miner, random_example_sampler,
   expected_loss_weights_fn) = losses_builder.build(ssd_config.loss)
  normalize_loss_by_num_matches = ssd_config.normalize_loss_by_num_matches
  normalize_loc_loss_by_codesize = ssd_config.normalize_loc_loss_by_codesize

  equalization_loss_config = ops.EqualizationLossConfig(
      weight=ssd_config.loss.equalization_loss.weight,
      exclude_prefixes=ssd_config.loss.equalization_loss.exclude_prefixes)

  target_assigner_instance = target_assigner.TargetAssigner(
      region_similarity_calculator,
      matcher,
      box_coder,
      negative_class_weight=negative_class_weight)

  ssd_meta_arch_fn = ssd_meta_arch.SSDMetaArch
  kwargs = {}

  return ssd_meta_arch_fn(
      is_training=is_training,
      anchor_generator=anchor_generator,
      box_predictor=ssd_box_predictor,
      box_coder=box_coder,
      feature_extractor=feature_extractor,
      encode_background_as_zeros=encode_background_as_zeros,
      image_resizer_fn=image_resizer_fn,
      non_max_suppression_fn=non_max_suppression_fn,
      score_conversion_fn=score_conversion_fn,
      classification_loss=classification_loss,
      localization_loss=localization_loss,
      classification_loss_weight=classification_weight,
      localization_loss_weight=localization_weight,
      normalize_loss_by_num_matches=normalize_loss_by_num_matches,
      hard_example_miner=hard_example_miner,
      target_assigner_instance=target_assigner_instance,
      add_summaries=add_summaries,
      normalize_loc_loss_by_codesize=normalize_loc_loss_by_codesize,
      freeze_batchnorm=ssd_config.freeze_batchnorm,
      inplace_batchnorm_update=ssd_config.inplace_batchnorm_update,
      add_background_class=ssd_config.add_background_class,
      explicit_background_class=ssd_config.explicit_background_class,
      random_example_sampler=random_example_sampler,
      expected_loss_weights_fn=expected_loss_weights_fn,
      use_confidences_as_targets=ssd_config.use_confidences_as_targets,
      implicit_example_weight=ssd_config.implicit_example_weight,
      equalization_loss_config=equalization_loss_config,
      **kwargs)
Exemple #5
0
def _build_ssd_model(ssd_config, is_training, add_summaries):
  """Builds an SSD detection model based on the model config.

  Args:
    ssd_config: A ssd.proto object containing the config for the desired
      SSDMetaArch.
    is_training: True if this model is being built for training purposes.
    add_summaries: Whether to add tf summaries in the model.
  Returns:
    SSDMetaArch based on the config.

  Raises:
    ValueError: If ssd_config.type is not recognized (i.e. not registered in
      model_class_map).
  """
  num_classes = ssd_config.num_classes

  # Feature extractor
  feature_extractor = _build_ssd_feature_extractor(
      feature_extractor_config=ssd_config.feature_extractor,
      freeze_batchnorm=ssd_config.freeze_batchnorm,
      is_training=is_training)

  box_coder = box_coder_builder.build(ssd_config.box_coder)
  matcher = matcher_builder.build(ssd_config.matcher)
  region_similarity_calculator = sim_calc.build(
      ssd_config.similarity_calculator)
  encode_background_as_zeros = ssd_config.encode_background_as_zeros
  negative_class_weight = ssd_config.negative_class_weight
  anchor_generator = anchor_generator_builder.build(
      ssd_config.anchor_generator)
  if feature_extractor.is_keras_model:
    ssd_box_predictor = box_predictor_builder.build_keras(
        conv_hyperparams_fn=hyperparams_builder.KerasLayerHyperparams,
        freeze_batchnorm=ssd_config.freeze_batchnorm,
        inplace_batchnorm_update=False,
        num_predictions_per_location_list=anchor_generator
        .num_anchors_per_location(),
        box_predictor_config=ssd_config.box_predictor,
        is_training=is_training,
        num_classes=num_classes,
        add_background_class=ssd_config.add_background_class)
  else:
    ssd_box_predictor = box_predictor_builder.build(
        hyperparams_builder.build, ssd_config.box_predictor, is_training,
        num_classes, ssd_config.add_background_class)
  image_resizer_fn = image_resizer_builder.build(ssd_config.image_resizer)
  non_max_suppression_fn, score_conversion_fn = post_processing_builder.build(
      ssd_config.post_processing)
  (classification_loss, localization_loss, classification_weight,
   localization_weight, hard_example_miner,
   random_example_sampler) = losses_builder.build(ssd_config.loss)
  normalize_loss_by_num_matches = ssd_config.normalize_loss_by_num_matches
  normalize_loc_loss_by_codesize = ssd_config.normalize_loc_loss_by_codesize
  weight_regression_loss_by_score = (ssd_config.weight_regression_loss_by_score)

  target_assigner_instance = target_assigner.TargetAssigner(
      region_similarity_calculator,
      matcher,
      box_coder,
      negative_class_weight=negative_class_weight,
      weight_regression_loss_by_score=weight_regression_loss_by_score)

  expected_classification_loss_under_sampling = None
  if ssd_config.use_expected_classification_loss_under_sampling:
    expected_classification_loss_under_sampling = functools.partial(
        ops.expected_classification_loss_under_sampling,
        min_num_negative_samples=ssd_config.min_num_negative_samples,
        desired_negative_sampling_ratio=ssd_config.
        desired_negative_sampling_ratio)

  ssd_meta_arch_fn = ssd_meta_arch.SSDMetaArch

  return ssd_meta_arch_fn(
      is_training=is_training,
      anchor_generator=anchor_generator,
      box_predictor=ssd_box_predictor,
      box_coder=box_coder,
      feature_extractor=feature_extractor,
      encode_background_as_zeros=encode_background_as_zeros,
      image_resizer_fn=image_resizer_fn,
      non_max_suppression_fn=non_max_suppression_fn,
      score_conversion_fn=score_conversion_fn,
      classification_loss=classification_loss,
      localization_loss=localization_loss,
      classification_loss_weight=classification_weight,
      localization_loss_weight=localization_weight,
      normalize_loss_by_num_matches=normalize_loss_by_num_matches,
      hard_example_miner=hard_example_miner,
      target_assigner_instance=target_assigner_instance,
      add_summaries=add_summaries,
      normalize_loc_loss_by_codesize=normalize_loc_loss_by_codesize,
      freeze_batchnorm=ssd_config.freeze_batchnorm,
      inplace_batchnorm_update=ssd_config.inplace_batchnorm_update,
      add_background_class=ssd_config.add_background_class,
      random_example_sampler=random_example_sampler,
      expected_classification_loss_under_sampling=
      expected_classification_loss_under_sampling)