Exemple #1
0
def test_FileJson_interface():
    # Given the following directory and dictionary data
    test_file, test_data = generate_file_and_data(data_type="dict")

    # When perform write it to file and read
    file_io.FileJson().write(test_data, test_file)
    read_data = file_io.FileJson().read(test_file)

    # Then it should be equal to the original test_data
    assert test_data == read_data

    # Remove test files and directory
    shutil.rmtree(os.path.dirname(test_file))
Exemple #2
0
                        "--n_test_image",
                        help="Number of Test Images",
                        default=DEFAULT_N_TEST_IMAGE,
                        type=int)
    parser.add_argument('-n',
                        "--nms",
                        help="Non Maxima Suppresiion",
                        default=DEFAULT_NMS,
                        type=int)
    parser.add_argument('-s',
                        "--show_operation",
                        help="Show Detect Running Operation",
                        default=DEFAULT_SHOW_OP,
                        type=int)
    args = vars(parser.parse_args())
    conf = file_io.FileJson().read(args["config"])

    test_image_files = file_io.list_files(conf["dataset"]["pos_data_dir"])
    test_image_files = test_image_files[:args["n_test_image"]]

    # 2. Build detector and save it
    detector = factory.Factory.create_detector(
        conf["descriptor"]["algorithm"], conf["descriptor"]["parameters"],
        conf["classifier"]["algorithm"], conf["classifier"]["parameters"],
        conf["classifier"]["output_file"])

    # 3. Run detector on Test images
    for image_file in test_image_files:
        test_image = cv2.imread(image_file)
        #test_image = cv2.cvtColor(test_image, cv2.COLOR_BGR2GRAY)
        gray = cv2.cvtColor(test_image, cv2.COLOR_BGR2GRAY)
Exemple #3
0
#-*- coding: utf-8 -*-
import subprocess
import object_detector.file_io as file_io

CONFIG_FILE = "conf/car_side.json"
#CONFIG_FILE = "conf/faces.json"

N_RUNNING_TEST_IMAGE = 1
N_EVALUATION_TEST_IMAGE = "all"
SHOW_RUNNING_OPERATION = 0

if __name__ == "__main__":

    conf = file_io.FileJson().read(CONFIG_FILE)

    print "\n[Step 1] Getting average size of the target object.\n\
            You can set or edit your detector's window size referring this result.\n\
            config_file.json[\"detector\"][\"window_dim\"]\n\
            [INFO] current setting is {}".format(
        conf["detector"]["window_dim"])

    subprocess.call("python 1_get_object_size.py -c {}".format(CONFIG_FILE))

    print "\n[Step 2] Extracting features"
    subprocess.call("python 2_extract_features.py -c {}".format(CONFIG_FILE))

    print "\n[Step 3] Training classifier. (Note: It can be time-consuming task)"
    subprocess.call("python 3_train.py -c {} -i {}".format(CONFIG_FILE, False))

    print "\n[Step 4] Gathering Hard Negative Samples"
    subprocess.call("python 4_hard_negative_mine.py -c {}".format(CONFIG_FILE))
Exemple #4
0
if __name__ == "__main__":

    # 1. Load configuration file and test images
    parser = ap.ArgumentParser()
    parser.add_argument('-c',
                        "--config",
                        help="Configuration File",
                        default=DEFAULT_CONFIG_FILE)
    parser.add_argument('-t',
                        "--n_test_image",
                        help="Number of Test Images",
                        default=DEFAULT_N_TEST_IMAGE,
                        type=str)
    args = vars(parser.parse_args())

    conf = file_io.FileJson().read(DEFAULT_CONFIG_FILE)
    test_image_files = file_io.list_files(conf["dataset"]["pos_data_dir"])

    if args["n_test_image"] == "all":
        pass
    else:
        n_test_imgs = int(args["n_test_image"])
        test_image_files = test_image_files[:n_test_imgs]
    print len(test_image_files)

    # 2. Build detector
    detector = factory.Factory.create_detector(
        conf["descriptor"]["algorithm"], conf["descriptor"]["parameters"],
        conf["classifier"]["algorithm"], conf["classifier"]["parameters"],
        conf["classifier"]["output_file"])