def process(b: int):
     # sample bootstrap from batch logged bandit feedback
     boot_bandit_feedback = obd.sample_bootstrap_bandit_feedback(
         test_size=test_size, is_timeseries_split=True, random_state=b
     )
     # train an evaluation on the training set of the logged bandit feedback data
     action_dist = counterfactual_policy.fit(
         context=boot_bandit_feedback["context"],
         action=boot_bandit_feedback["action"],
         reward=boot_bandit_feedback["reward"],
         pscore=boot_bandit_feedback["pscore"],
         position=boot_bandit_feedback["position"],
     )
     # make action selections (predictions)
     action_dist = counterfactual_policy.predict(
         context=boot_bandit_feedback["context_test"]
     )
     # estimate the policy value of a given counterfactual algorithm by the three OPE estimators.
     ipw = InverseProbabilityWeighting()
     return ipw.estimate_policy_value(
         reward=boot_bandit_feedback["reward_test"],
         action=boot_bandit_feedback["action_test"],
         position=boot_bandit_feedback["position_test"],
         pscore=boot_bandit_feedback["pscore_test"],
         action_dist=action_dist,
     )
def test_ipw_init_using_invalid_inputs(
    lambda_,
    use_estimated_pscore,
    err,
    description,
):
    with pytest.raises(err, match=f"{description}*"):
        _ = InverseProbabilityWeighting(
            lambda_=lambda_, use_estimated_pscore=use_estimated_pscore
        )
def test_ipw_using_random_evaluation_policy(
    synthetic_bandit_feedback: BanditFeedback, random_action_dist: np.ndarray
) -> None:
    """
    Test the format of ipw variants using synthetic bandit data and random evaluation policy
    """
    action_dist = random_action_dist
    # prepare input dict
    input_dict = {
        k: v
        for k, v in synthetic_bandit_feedback.items()
        if k in ["reward", "action", "pscore", "position"]
    }
    input_dict["action_dist"] = action_dist
    # ipw estimators can be used without estimated_rewards_by_reg_model
    for estimator in [ipw, snipw, ipw_tuning_mse, ipw_tuning_slope]:
        estimated_policy_value = estimator.estimate_policy_value(**input_dict)
        assert isinstance(
            estimated_policy_value, float
        ), f"invalid type response: {estimator}"

    # ipw with estimated pscore
    ipw_estimated_pscore = InverseProbabilityWeighting(use_estimated_pscore=True)
    snipw_estimated_pscore = SelfNormalizedInverseProbabilityWeighting(
        use_estimated_pscore=True
    )
    ipw_tuning_estimated_pscore = InverseProbabilityWeightingTuning(
        lambdas=[10, 1000], use_estimated_pscore=True
    )
    input_dict["estimated_pscore"] = input_dict["pscore"]
    del input_dict["pscore"]
    for estimator in [
        ipw_estimated_pscore,
        snipw_estimated_pscore,
        ipw_tuning_estimated_pscore,
    ]:
        estimated_policy_value = estimator.estimate_policy_value(**input_dict)
        assert isinstance(
            estimated_policy_value, float
        ), f"invalid type response: {estimator}"

    # remove necessary keys
    del input_dict["reward"]
    del input_dict["action"]
    for estimator in [ipw, snipw]:
        with pytest.raises(
            TypeError,
            match=re.escape(
                "estimate_policy_value() missing 2 required positional arguments: 'reward' and 'action'"
            ),
        ):
            _ = estimator.estimate_policy_value(**input_dict)
Exemple #4
0

# hyperparameter for the regression model used in model dependent OPE estimators
with open("./conf/hyperparams.yaml", "rb") as f:
    hyperparams = yaml.safe_load(f)

base_model_dict = dict(
    logistic_regression=LogisticRegression,
    lightgbm=HistGradientBoostingClassifier,
    random_forest=RandomForestClassifier,
)

# compared OPE estimators
ope_estimators = [
    DirectMethod(),
    InverseProbabilityWeighting(),
    SelfNormalizedInverseProbabilityWeighting(),
    DoublyRobust(),
    SelfNormalizedDoublyRobust(),
    SwitchDoublyRobust(tau=1.0, estimator_name="switch-dr (tau=1)"),
    SwitchDoublyRobust(tau=100.0, estimator_name="switch-dr (tau=100)"),
    DoublyRobustWithShrinkage(lambda_=1.0, estimator_name="dr-os (lambda=1)"),
    DoublyRobustWithShrinkage(lambda_=100.0, estimator_name="dr-os (lambda=100)"),
]

if __name__ == "__main__":
    parser = argparse.ArgumentParser(
        description="evaluate off-policy estimators with synthetic bandit data."
    )
    parser.add_argument(
        "--n_runs", type=int, default=1, help="number of simulations in the experiment."
Exemple #5
0
    data_path = Path("../open_bandit_dataset")

    obd = OpenBanditDataset(
        behavior_policy=behavior_policy, campaign=campaign, data_path=data_path
    )
    # hyparparameters for counterfactual policies
    kwargs = dict(
        n_actions=obd.n_actions, len_list=obd.len_list, random_state=random_state
    )
    if counterfactual_policy == "bts":
        kwargs["alpha"] = production_prior_for_bts[campaign]["alpha"]
        kwargs["beta"] = production_prior_for_bts[campaign]["beta"]
        kwargs["batch_size"] = production_batch_size_for_bts[campaign]
    policy = counterfactual_policy_dict[counterfactual_policy](**kwargs)
    # compared OPE estimators
    ope_estimators = [DirectMethod(), InverseProbabilityWeighting(), DoublyRobust()]
    # a base ML model for regression model used in Direct Method and Doubly Robust
    base_model = CalibratedClassifierCV(LogisticRegression(**hyperparams))
    # ground-truth policy value of a counterfactual policy
    # , which is estimated with factual (observed) rewards (on-policy estimation)
    ground_truth_policy_value = OpenBanditDataset.calc_on_policy_policy_value_estimate(
        behavior_policy=counterfactual_policy, campaign=campaign, data_path=data_path
    )

    evaluation_of_ope_results = {
        est.estimator_name: np.zeros(n_boot_samples) for est in ope_estimators
    }
    for b in np.arange(n_boot_samples):
        # sample bootstrap from batch logged bandit feedback
        boot_bandit_feedback = obd.sample_bootstrap_bandit_feedback(random_state=b)
        # run a counterfactual bandit algorithm on logged bandit feedback data
def test_ipw_using_invalid_input_data(
    action_dist: np.ndarray,
    action: np.ndarray,
    reward: np.ndarray,
    pscore: np.ndarray,
    position: np.ndarray,
    use_estimated_pscore: bool,
    estimated_pscore: np.ndarray,
    description: str,
) -> None:
    # prepare ipw instances
    ipw = InverseProbabilityWeighting(use_estimated_pscore=use_estimated_pscore)
    snipw = SelfNormalizedInverseProbabilityWeighting(
        use_estimated_pscore=use_estimated_pscore
    )
    sgipw = SubGaussianInverseProbabilityWeighting(
        use_estimated_pscore=use_estimated_pscore
    )
    ipw_tuning = InverseProbabilityWeightingTuning(
        lambdas=[10, 1000], use_estimated_pscore=use_estimated_pscore
    )
    sgipw_tuning = SubGaussianInverseProbabilityWeightingTuning(
        lambdas=[0.01, 0.1], use_estimated_pscore=use_estimated_pscore
    )
    with pytest.raises(ValueError, match=f"{description}*"):
        _ = ipw.estimate_policy_value(
            action_dist=action_dist,
            action=action,
            reward=reward,
            pscore=pscore,
            position=position,
            estimated_pscore=estimated_pscore,
        )
    with pytest.raises(ValueError, match=f"{description}*"):
        _ = ipw.estimate_interval(
            action_dist=action_dist,
            action=action,
            reward=reward,
            pscore=pscore,
            position=position,
            estimated_pscore=estimated_pscore,
        )
    with pytest.raises(ValueError, match=f"{description}*"):
        _ = snipw.estimate_policy_value(
            action_dist=action_dist,
            action=action,
            reward=reward,
            pscore=pscore,
            position=position,
            estimated_pscore=estimated_pscore,
        )
    with pytest.raises(ValueError, match=f"{description}*"):
        _ = snipw.estimate_interval(
            action_dist=action_dist,
            action=action,
            reward=reward,
            pscore=pscore,
            position=position,
            estimated_pscore=estimated_pscore,
        )
    with pytest.raises(ValueError, match=f"{description}*"):
        _ = ipw_tuning.estimate_policy_value(
            action_dist=action_dist,
            action=action,
            reward=reward,
            pscore=pscore,
            position=position,
            estimated_pscore=estimated_pscore,
        )
    with pytest.raises(ValueError, match=f"{description}*"):
        _ = ipw_tuning.estimate_interval(
            action_dist=action_dist,
            action=action,
            reward=reward,
            pscore=pscore,
            position=position,
            estimated_pscore=estimated_pscore,
        )
    with pytest.raises(ValueError, match=f"{description}*"):
        _ = sgipw.estimate_policy_value(
            action_dist=action_dist,
            action=action,
            reward=reward,
            pscore=pscore,
            position=position,
            estimated_pscore=estimated_pscore,
        )
    with pytest.raises(ValueError, match=f"{description}*"):
        _ = sgipw.estimate_interval(
            action_dist=action_dist,
            action=action,
            reward=reward,
            pscore=pscore,
            position=position,
            estimated_pscore=estimated_pscore,
        )
    with pytest.raises(ValueError, match=f"{description}*"):
        _ = sgipw_tuning.estimate_policy_value(
            action_dist=action_dist,
            action=action,
            reward=reward,
            pscore=pscore,
            position=position,
            estimated_pscore=estimated_pscore,
        )
    with pytest.raises(ValueError, match=f"{description}*"):
        _ = sgipw_tuning.estimate_interval(
            action_dist=action_dist,
            action=action,
            reward=reward,
            pscore=pscore,
            position=position,
            estimated_pscore=estimated_pscore,
        )
Exemple #7
0
def main(cfg: DictConfig) -> None:
    print(cfg)
    logger.info(f"The current working directory is {Path().cwd()}")
    start_time = time.time()
    logger.info("initializing experimental condition..")

    # compared ope estimators
    lambdas = list(dict(cfg.estimator_hyperparams)["lambdas"])
    ope_estimators = [
        InverseProbabilityWeighting(estimator_name="IPW"),
        SelfNormalizedInverseProbabilityWeighting(estimator_name="SNIPW"),
        DirectMethod(estimator_name="DM"),
        DoublyRobust(estimator_name="DR"),
        SelfNormalizedDoublyRobust(estimator_name="SNDR"),
        SwitchDoublyRobustTuning(lambdas=lambdas, estimator_name="Switch-DR"),
        DoublyRobustWithShrinkageTuning(lambdas=lambdas,
                                        estimator_name="DRos"),
    ]

    # configurations
    n_seeds = cfg.setting.n_seeds
    sample_size = cfg.setting.sample_size
    reg_model = cfg.setting.reg_model
    campaign = cfg.setting.campaign
    behavior_policy = cfg.setting.behavior_policy
    test_size = cfg.setting.test_size
    is_timeseries_split = cfg.setting.is_timeseries_split
    n_folds = cfg.setting.n_folds
    obd_path = (Path().cwd().parents[5] /
                "open_bandit_dataset" if cfg.setting.is_full_obd else None)
    random_state = cfg.setting.random_state
    np.random.seed(random_state)

    # define dataset
    dataset_ts = OpenBanditDataset(behavior_policy="bts",
                                   campaign=campaign,
                                   data_path=obd_path)
    dataset_ur = OpenBanditDataset(behavior_policy="random",
                                   campaign=campaign,
                                   data_path=obd_path)

    # prepare logged bandit feedback and evaluation policies
    if behavior_policy == "random":
        if is_timeseries_split:
            bandit_feedback_ur = dataset_ur.obtain_batch_bandit_feedback(
                test_size=test_size,
                is_timeseries_split=True,
            )[0]
        else:
            bandit_feedback_ur = dataset_ur.obtain_batch_bandit_feedback()
        bandit_feedbacks = [bandit_feedback_ur]
        # obtain the ground-truth policy value
        ground_truth_ts = OpenBanditDataset.calc_on_policy_policy_value_estimate(
            behavior_policy="bts",
            campaign=campaign,
            data_path=obd_path,
            test_size=test_size,
            is_timeseries_split=is_timeseries_split,
        )
        # obtain action choice probabilities and define evaluation policies
        policy_ts = BernoulliTS(
            n_actions=dataset_ts.n_actions,
            len_list=dataset_ts.len_list,
            random_state=random_state,
            is_zozotown_prior=True,
            campaign=campaign,
        )
        action_dist_ts = policy_ts.compute_batch_action_dist(n_rounds=1000000)
        evaluation_policies = [(ground_truth_ts, action_dist_ts)]
    else:
        if is_timeseries_split:
            bandit_feedback_ts = dataset_ts.obtain_batch_bandit_feedback(
                test_size=test_size,
                is_timeseries_split=True,
            )[0]
        else:
            bandit_feedback_ts = dataset_ts.obtain_batch_bandit_feedback()
        bandit_feedbacks = [bandit_feedback_ts]
        # obtain the ground-truth policy value
        ground_truth_ur = OpenBanditDataset.calc_on_policy_policy_value_estimate(
            behavior_policy="random",
            campaign=campaign,
            data_path=obd_path,
            test_size=test_size,
            is_timeseries_split=is_timeseries_split,
        )
        # obtain action choice probabilities and define evaluation policies
        policy_ur = Random(
            n_actions=dataset_ur.n_actions,
            len_list=dataset_ur.len_list,
            random_state=random_state,
        )
        action_dist_ur = policy_ur.compute_batch_action_dist(n_rounds=1000000)
        evaluation_policies = [(ground_truth_ur, action_dist_ur)]

    # regression models used in ope estimators
    hyperparams = dict(cfg.reg_model_hyperparams)[reg_model]
    regression_models = [reg_model_dict[reg_model](**hyperparams)]

    # define an evaluator class
    evaluator = InterpretableOPEEvaluator(
        random_states=np.arange(n_seeds),
        bandit_feedbacks=bandit_feedbacks,
        evaluation_policies=evaluation_policies,
        ope_estimators=ope_estimators,
        regression_models=regression_models,
    )

    # conduct an evaluation of OPE experiment
    logger.info("experiment started")
    _ = evaluator.estimate_policy_value(sample_size=sample_size,
                                        n_folds_=n_folds)
    # calculate statistics
    mean = evaluator.calculate_mean(root=True)
    mean_scaled = evaluator.calculate_mean(scale=True, root=True)

    # save results of the evaluation of off-policy estimators
    log_path = Path("./outputs")
    log_path.mkdir(exist_ok=True, parents=True)
    # save root mse
    root_mse_df = DataFrame()
    root_mse_df["estimator"] = list(mean.keys())
    root_mse_df["mean"] = list(mean.values())
    root_mse_df["mean(scaled)"] = list(mean_scaled.values())
    root_mse_df.to_csv(log_path / "root_mse.csv")
    # conduct pairwise t-tests
    se_df = DataFrame(evaluator.calculate_squared_error())
    se_df = DataFrame(se_df.stack()).reset_index(1)
    se_df.rename(columns={"level_1": "estimators", 0: "se"}, inplace=True)
    nonparam_ttests = (pg.pairwise_ttests(
        data=se_df,
        dv="se",
        parametric=False,
        between="estimators",
    ).round(4).drop(["Contrast", "Parametric", "Paired"], axis=1))
    nonparam_ttests.to_csv(log_path / "nonparam_ttests.csv")
    # save reg model metrics
    DataFrame(evaluator.reg_model_metrics).describe().to_csv(
        log_path / "reg_model_metrics.csv")
    # print result
    print(root_mse_df)
    experiment = f"{campaign}-{behavior_policy}-{sample_size}"
    elapsed_time = np.round((time.time() - start_time) / 60, 2)
    logger.info(f"finish experiment {experiment} in {elapsed_time}min")
        # sample bootstrap from batch logged bandit feedback
        boot_bandit_feedback = obd.sample_bootstrap_bandit_feedback(
            test_size=test_size, is_timeseries_split=True, random_state=b)
        # train an evaluation on the training set of the logged bandit feedback data
        action_dist = evaluation_policy.fit(
            context=boot_bandit_feedback["context"],
            action=boot_bandit_feedback["action"],
            reward=boot_bandit_feedback["reward"],
            pscore=boot_bandit_feedback["pscore"],
            position=boot_bandit_feedback["position"],
        )
        # make action selections (predictions)
        action_dist = evaluation_policy.predict(
            context=boot_bandit_feedback["context_test"])
        # estimate the policy value of a given counterfactual algorithm by the three OPE estimators.
        ipw = InverseProbabilityWeighting()
        ope_results[b] = (ipw.estimate_policy_value(
            reward=boot_bandit_feedback["reward_test"],
            action=boot_bandit_feedback["action_test"],
            position=boot_bandit_feedback["position_test"],
            pscore=boot_bandit_feedback["pscore_test"],
            action_dist=action_dist,
        ) / ground_truth)

        print(
            f"{b+1}th iteration: {np.round((time.time() - start) / 60, 2)}min")
    ope_results_dict = estimate_confidence_interval_by_bootstrap(
        samples=ope_results, random_state=random_state)
    ope_results_dict["mean(no-boot)"] = ope_results.mean()
    ope_results_dict["std"] = np.std(ope_results, ddof=1)
    ope_results_df = pd.DataFrame(ope_results_dict, index=["ipw"])