def __toPick(parser, pick_el, evaluation_mode):
    """
    """
    pick = Pick()
    waveform = pick_el.xpath("waveform")[0]
    pick.waveform_id = WaveformStreamID(\
                                network_code=waveform.get("networkCode"),
                                station_code=waveform.get("stationCode"),
                                channel_code=waveform.get("channelCode"),
                                location_code=waveform.get("locationCode"))
    pick.time, pick.time_errors = __toTimeQuantity(parser, pick_el, "time")
    pick.phase_hint = parser.xpath2obj('phaseHint', pick_el)
    onset = parser.xpath2obj('onset', pick_el)
    if onset and onset.lower() in ["emergent", "impulsive", "questionable"]:
        pick.onset = onset.lower()
    # Evaluation mode of a pick is global in the SeisHub Event file format.
    pick.evaluation_mode = evaluation_mode
    # The polarity needs to be mapped.
    polarity = parser.xpath2obj('polarity', pick_el)
    pol_map_dict = {'up': 'positive', 'positive': 'positive',
                    'down': 'negative', 'negative': 'negative',
                    'undecidable': 'undecidable'}
    if polarity and polarity.lower() in pol_map_dict:
        pick.polarity = pol_map_dict[polarity.lower()]
    # Convert azimuth to backazmith
    azimuth = __toFloatQuantity(parser, pick_el, "azimuth")
    if len(azimuth) == 2 and azimuth[0] and azimuth[1]:
        # Convert to backazimuth
        pick.backazimuth = (azimuth[0] + 180.0) % 360.0
        pick.backzimuth_errors = azimuth[1]
    return pick
Exemple #2
0
def _read_single_hypocenter(lines, coordinate_converter, original_picks):
    """
    Given a list of lines (starting with a 'NLLOC' line and ending with a
    'END_NLLOC' line), parse them into an Event.
    """
    try:
        # some paranoid checks..
        assert lines[0].startswith("NLLOC ")
        assert lines[-1].startswith("END_NLLOC")
        for line in lines[1:-1]:
            assert not line.startswith("NLLOC ")
            assert not line.startswith("END_NLLOC")
    except Exception:
        msg = ("This should not have happened, please report this as a bug at "
               "https://github.com/obspy/obspy/issues.")
        raise Exception(msg)

    indices_phases = [None, None]
    for i, line in enumerate(lines):
        if line.startswith("PHASE "):
            indices_phases[0] = i
        elif line.startswith("END_PHASE"):
            indices_phases[1] = i

    # extract PHASES lines (if any)
    if any(indices_phases):
        if not all(indices_phases):
            msg = ("NLLOC HYP file seems corrupt, 'PHASE' block is corrupt.")
            raise RuntimeError(msg)
        i1, i2 = indices_phases
        lines, phases_lines = lines[:i1] + lines[i2 + 1:], lines[i1 + 1:i2]
    else:
        phases_lines = []

    lines = dict([line.split(None, 1) for line in lines[:-1]])
    line = lines["SIGNATURE"]

    line = line.rstrip().split('"')[1]
    signature, version, date, time = line.rsplit(" ", 3)
    # new NLLoc > 6.0 seems to add prefix 'run:' before date
    if date.startswith('run:'):
        date = date[4:]
    signature = signature.strip()
    creation_time = UTCDateTime.strptime(date + time, str("%d%b%Y%Hh%Mm%S"))

    if coordinate_converter:
        # maximum likelihood origin location in km info line
        line = lines["HYPOCENTER"]
        x, y, z = coordinate_converter(*map(float, line.split()[1:7:2]))
    else:
        # maximum likelihood origin location lon lat info line
        line = lines["GEOGRAPHIC"]
        y, x, z = map(float, line.split()[8:13:2])

    # maximum likelihood origin time info line
    line = lines["GEOGRAPHIC"]

    year, mon, day, hour, min = map(int, line.split()[1:6])
    seconds = float(line.split()[6])
    time = UTCDateTime(year, mon, day, hour, min, seconds, strict=False)

    # distribution statistics line
    line = lines["STATISTICS"]
    covariance_xx = float(line.split()[7])
    covariance_yy = float(line.split()[13])
    covariance_zz = float(line.split()[17])
    stats_info_string = str(
        "Note: Depth/Latitude/Longitude errors are calculated from covariance "
        "matrix as 1D marginal (Lon/Lat errors as great circle degrees) "
        "while OriginUncertainty min/max horizontal errors are calculated "
        "from 2D error ellipsoid and are therefore seemingly higher compared "
        "to 1D errors. Error estimates can be reconstructed from the "
        "following original NonLinLoc error statistics line:\nSTATISTICS " +
        lines["STATISTICS"])

    # goto location quality info line
    line = lines["QML_OriginQuality"].split()

    (assoc_phase_count, used_phase_count, assoc_station_count,
     used_station_count, depth_phase_count) = map(int, line[1:11:2])
    stderr, az_gap, sec_az_gap = map(float, line[11:17:2])
    gt_level = line[17]
    min_dist, max_dist, med_dist = map(float, line[19:25:2])

    # goto location quality info line
    line = lines["QML_OriginUncertainty"]

    if "COMMENT" in lines:
        comment = lines["COMMENT"].strip()
        comment = comment.strip('\'"')
        comment = comment.strip()

    hor_unc, min_hor_unc, max_hor_unc, hor_unc_azim = \
        map(float, line.split()[1:9:2])

    # assign origin info
    event = Event()
    o = Origin()
    event.origins = [o]
    event.preferred_origin_id = o.resource_id
    o.origin_uncertainty = OriginUncertainty()
    o.quality = OriginQuality()
    ou = o.origin_uncertainty
    oq = o.quality
    o.comments.append(Comment(text=stats_info_string, force_resource_id=False))
    event.comments.append(Comment(text=comment, force_resource_id=False))

    # SIGNATURE field's first item is LOCSIG, which is supposed to be
    # 'Identification of an individual, institiution or other entity'
    # according to
    # http://alomax.free.fr/nlloc/soft6.00/control.html#_NLLoc_locsig_
    # so use it as author in creation info
    event.creation_info = CreationInfo(creation_time=creation_time,
                                       version=version,
                                       author=signature)
    o.creation_info = CreationInfo(creation_time=creation_time,
                                   version=version,
                                   author=signature)

    # negative values can appear on diagonal of covariance matrix due to a
    # precision problem in NLLoc implementation when location coordinates are
    # large compared to the covariances.
    o.longitude = x
    try:
        o.longitude_errors.uncertainty = kilometer2degrees(sqrt(covariance_xx))
    except ValueError:
        if covariance_xx < 0:
            msg = ("Negative value in XX value of covariance matrix, not "
                   "setting longitude error (epicentral uncertainties will "
                   "still be set in origin uncertainty).")
            warnings.warn(msg)
        else:
            raise
    o.latitude = y
    try:
        o.latitude_errors.uncertainty = kilometer2degrees(sqrt(covariance_yy))
    except ValueError:
        if covariance_yy < 0:
            msg = ("Negative value in YY value of covariance matrix, not "
                   "setting longitude error (epicentral uncertainties will "
                   "still be set in origin uncertainty).")
            warnings.warn(msg)
        else:
            raise
    o.depth = z * 1e3  # meters!
    o.depth_errors.uncertainty = sqrt(covariance_zz) * 1e3  # meters!
    o.depth_errors.confidence_level = 68
    o.depth_type = str("from location")
    o.time = time

    ou.horizontal_uncertainty = hor_unc
    ou.min_horizontal_uncertainty = min_hor_unc
    ou.max_horizontal_uncertainty = max_hor_unc
    # values of -1 seem to be used for unset values, set to None
    for field in ("horizontal_uncertainty", "min_horizontal_uncertainty",
                  "max_horizontal_uncertainty"):
        if ou.get(field, -1) == -1:
            ou[field] = None
        else:
            ou[field] *= 1e3  # meters!
    ou.azimuth_max_horizontal_uncertainty = hor_unc_azim
    ou.preferred_description = str("uncertainty ellipse")
    ou.confidence_level = 68  # NonLinLoc in general uses 1-sigma (68%) level

    oq.standard_error = stderr
    oq.azimuthal_gap = az_gap
    oq.secondary_azimuthal_gap = sec_az_gap
    oq.used_phase_count = used_phase_count
    oq.used_station_count = used_station_count
    oq.associated_phase_count = assoc_phase_count
    oq.associated_station_count = assoc_station_count
    oq.depth_phase_count = depth_phase_count
    oq.ground_truth_level = gt_level
    oq.minimum_distance = kilometer2degrees(min_dist)
    oq.maximum_distance = kilometer2degrees(max_dist)
    oq.median_distance = kilometer2degrees(med_dist)

    # go through all phase info lines
    for line in phases_lines:
        line = line.split()
        arrival = Arrival()
        o.arrivals.append(arrival)
        station = str(line[0])
        phase = str(line[4])
        arrival.phase = phase
        arrival.distance = kilometer2degrees(float(line[21]))
        arrival.azimuth = float(line[23])
        arrival.takeoff_angle = float(line[24])
        arrival.time_residual = float(line[16])
        arrival.time_weight = float(line[17])
        pick = Pick()
        # network codes are not used by NonLinLoc, so they can not be known
        # when reading the .hyp file.. to conform with QuakeML standard set an
        # empty network code
        wid = WaveformStreamID(network_code="", station_code=station)
        # have to split this into ints for overflow to work correctly
        date, hourmin, sec = map(str, line[6:9])
        ymd = [int(date[:4]), int(date[4:6]), int(date[6:8])]
        hm = [int(hourmin[:2]), int(hourmin[2:4])]
        t = UTCDateTime(*(ymd + hm), strict=False) + float(sec)
        pick.waveform_id = wid
        pick.time = t
        pick.time_errors.uncertainty = float(line[10])
        pick.phase_hint = phase
        pick.onset = ONSETS.get(line[3].lower(), None)
        pick.polarity = POLARITIES.get(line[5].lower(), None)
        # try to determine original pick for each arrival
        for pick_ in original_picks:
            wid = pick_.waveform_id
            if station == wid.station_code and phase == pick_.phase_hint:
                pick = pick_
                break
        else:
            # warn if original picks were specified and we could not associate
            # the arrival correctly
            if original_picks:
                msg = ("Could not determine corresponding original pick for "
                       "arrival. "
                       "Falling back to pick information in NonLinLoc "
                       "hypocenter-phase file.")
                warnings.warn(msg)
        event.picks.append(pick)
        arrival.pick_id = pick.resource_id

    event.scope_resource_ids()

    return event
Exemple #3
0
def _read_picks(f, new_event):
    """
    Internal pick reader. Use read_nordic instead.

    :type f: file
    :param f: File open in read mode
    :type wav_names: list
    :param wav_names: List of waveform files in the sfile
    :type new_event: :class:`~obspy.core.event.event.Event`
    :param new_event: event to associate picks with.

    :returns: :class:`~obspy.core.event.event.Event`
    """
    f.seek(0)
    evtime = new_event.origins[0].time
    pickline = []
    # Set a default, ignored later unless overwritten
    snr = None
    for lineno, line in enumerate(f):
        if line[79] == '7':
            header = line
            break
    for lineno, line in enumerate(f):
        if len(line.rstrip('\n').rstrip('\r')) in [80, 79] and \
           line[79] in ' 4\n':
            pickline += [line]
    for line in pickline:
        if line[18:28].strip() == '':  # If line is empty miss it
            continue
        weight = line[14]
        if weight == '_':
            phase = line[10:17]
            weight = 0
            polarity = ''
        else:
            phase = line[10:14].strip()
            polarity = line[16]
            if weight == ' ':
                weight = 0
        polarity_maps = {"": "undecidable", "C": "positive", "D": "negative"}
        try:
            polarity = polarity_maps[polarity]
        except KeyError:
            polarity = "undecidable"
        # It is valid nordic for the origin to be hour 23 and picks to be hour
        # 00 or 24: this signifies a pick over a day boundary.
        if int(line[18:20]) == 0 and evtime.hour == 23:
            day_add = 86400
            pick_hour = 0
        elif int(line[18:20]) == 24:
            day_add = 86400
            pick_hour = 0
        else:
            day_add = 0
            pick_hour = int(line[18:20])
        try:
            time = UTCDateTime(evtime.year, evtime.month, evtime.day,
                               pick_hour, int(line[20:22]),
                               float(line[23:28])) + day_add
        except ValueError:
            time = UTCDateTime(evtime.year, evtime.month, evtime.day,
                               int(line[18:20]), pick_hour,
                               float("0." + line[23:38].split('.')[1])) +\
                60 + day_add
            # Add 60 seconds on to the time, this copes with s-file
            # preference to write seconds in 1-60 rather than 0-59 which
            # datetime objects accept
        if header[57:60] == 'AIN':
            ain = _float_conv(line[57:60])
            warnings.warn('AIN: %s in header, currently unsupported' % ain)
        elif header[57:60] == 'SNR':
            snr = _float_conv(line[57:60])
        else:
            warnings.warn('%s is not currently supported' % header[57:60])
        # finalweight = _int_conv(line[68:70])
        # Create a new obspy.event.Pick class for this pick
        _waveform_id = WaveformStreamID(station_code=line[1:6].strip(),
                                        channel_code=line[6:8].strip(),
                                        network_code='NA')
        pick = Pick(waveform_id=_waveform_id, phase_hint=phase,
                    polarity=polarity, time=time)
        try:
            pick.onset = onsets[line[9]]
        except KeyError:
            pass
        if line[15] == 'A':
            pick.evaluation_mode = 'automatic'
        else:
            pick.evaluation_mode = 'manual'
        # Note these two are not always filled - velocity conversion not yet
        # implemented, needs to be converted from km/s to s/deg
        # if not velocity == 999.0:
            # new_event.picks[pick_index].horizontal_slowness = 1.0 / velocity
        if _float_conv(line[46:51]) is not None:
            pick.backazimuth = _float_conv(line[46:51])
        # Create new obspy.event.Amplitude class which references above Pick
        # only if there is an amplitude picked.
        if _float_conv(line[33:40]) is not None:
            _amplitude = Amplitude(generic_amplitude=_float_conv(line[33:40]),
                                   period=_float_conv(line[41:45]),
                                   pick_id=pick.resource_id,
                                   waveform_id=pick.waveform_id)
            if pick.phase_hint == 'IAML':
                # Amplitude for local magnitude
                _amplitude.type = 'AML'
                # Set to be evaluating a point in the trace
                _amplitude.category = 'point'
                # Default AML unit in seisan is nm (Page 139 of seisan
                # documentation, version 10.0)
                _amplitude.generic_amplitude /= 1e9
                _amplitude.unit = 'm'
                _amplitude.magnitude_hint = 'ML'
            else:
                # Generic amplitude type
                _amplitude.type = 'A'
            if snr:
                _amplitude.snr = snr
            new_event.amplitudes.append(_amplitude)
        elif _int_conv(line[28:33]) is not None:
            # Create an amplitude instance for code duration also
            _amplitude = Amplitude(generic_amplitude=_int_conv(line[28:33]),
                                   pick_id=pick.resource_id,
                                   waveform_id=pick.waveform_id)
            # Amplitude for coda magnitude
            _amplitude.type = 'END'
            # Set to be evaluating a point in the trace
            _amplitude.category = 'duration'
            _amplitude.unit = 's'
            _amplitude.magnitude_hint = 'Mc'
            if snr is not None:
                _amplitude.snr = snr
            new_event.amplitudes.append(_amplitude)
        # Create new obspy.event.Arrival class referencing above Pick
        if _float_conv(line[33:40]) is None:
            arrival = Arrival(phase=pick.phase_hint, pick_id=pick.resource_id)
            if weight is not None:
                arrival.time_weight = weight
            if _int_conv(line[60:63]) is not None:
                arrival.backazimuth_residual = _int_conv(line[60:63])
            if _float_conv(line[63:68]) is not None:
                arrival.time_residual = _float_conv(line[63:68])
            if _float_conv(line[70:75]) is not None:
                arrival.distance = kilometers2degrees(_float_conv(line[70:75]))
            if _int_conv(line[76:79]) is not None:
                arrival.azimuth = _int_conv(line[76:79])
            new_event.origins[0].arrivals.append(arrival)
        new_event.picks.append(pick)
    return new_event
Exemple #4
0
    def _parseRecordS(self, line, event, p_pick, p_arrival):
        """
        Parses the 'secondary phases' record S

        Secondary phases are following phases of the reading,
        and can be P-type or S-type.
        """
        arrivals = []
        phase = line[7:15].strip()
        arrival_time = line[15:24]
        if phase:
            arrivals.append((phase, arrival_time))
        phase = line[25:33].strip()
        arrival_time = line[33:42]
        if phase:
            arrivals.append((phase, arrival_time))
        phase = line[43:51].strip()
        arrival_time = line[51:60]
        if phase:
            arrivals.append((phase, arrival_time))

        evid = event.resource_id.id.split('/')[-1]
        station_string =\
            p_pick.waveform_id.getSEEDString()\
            .replace(' ', '-').replace('.', '_').lower()
        origin = event.origins[0]
        for phase, arrival_time in arrivals:
            if phase[0:2] == 'D=':
                #unused: depth = self._float(phase[2:7])
                try:
                    depth_usage_flag = phase[7]
                except IndexError:
                    #usage flag is not defined
                    depth_usage_flag = None
                #FIXME: I'm not sure that 'X' actually
                #means 'used'
                if depth_usage_flag == 'X':
                    #FIXME: is this enough to say that
                    #the event is constained by depth pahses?
                    origin.depth_type = 'constrained by depth phases'
                    origin.quality.depth_phase_count += 1
            else:
                pick = Pick()
                prefix = '/'.join(
                    (res_id_prefix, 'pick', evid, station_string))
                pick.resource_id = ResourceIdentifier(prefix=prefix)
                date = origin.time.strftime('%Y%m%d')
                pick.time = UTCDateTime(date + arrival_time)
                #Check if pick is on the next day:
                if pick.time < origin.time:
                    pick.time += timedelta(days=1)
                pick.waveform_id = p_pick.waveform_id
                pick.backazimuth = p_pick.backazimuth
                onset = phase[0]
                if onset == 'e':
                    pick.onset = 'emergent'
                    phase = phase[1:]
                elif onset == 'i':
                    pick.onset = 'impulsive'
                    phase = phase[1:]
                elif onset == 'q':
                    pick.onset = 'questionable'
                    phase = phase[1:]
                pick.phase_hint = phase.strip()
                event.picks.append(pick)
                arrival = Arrival()
                prefix = '/'.join(
                    (res_id_prefix, 'arrival', evid, station_string))
                arrival.resource_id = ResourceIdentifier(prefix=prefix)
                arrival.pick_id = pick.resource_id
                arrival.phase = pick.phase_hint
                arrival.azimuth = p_arrival.azimuth
                arrival.distance = p_arrival.distance
                origin.quality.associated_phase_count += 1
                origin.arrivals.append(arrival)
Exemple #5
0
    def _parseRecordP(self, line, event):
        """
        Parses the 'primary phase record' P

        The primary phase is the first phase of the reading,
        regardless its type.
        """
        station = line[2:7].strip()
        phase = line[7:15]
        arrival_time = line[15:24]
        residual = self._float(line[25:30])
        #unused: residual_flag = line[30]
        distance = self._float(line[32:38])  # degrees
        azimuth = self._float(line[39:44])
        backazimuth = round(azimuth % -360 + 180, 1)
        mb_period = self._float(line[44:48])
        mb_amplitude = self._float(line[48:55])  # nanometers
        mb_magnitude = self._float(line[56:59])
        #unused: mb_usage_flag = line[59]

        origin = event.origins[0]
        evid = event.resource_id.id.split('/')[-1]
        waveform_id = WaveformStreamID()
        waveform_id.station_code = station
        #network_code is required for QuakeML validation
        waveform_id.network_code = '  '
        station_string =\
            waveform_id.getSEEDString()\
            .replace(' ', '-').replace('.', '_').lower()
        prefix = '/'.join(
            (res_id_prefix, 'waveformstream', evid, station_string))
        waveform_id.resource_uri = ResourceIdentifier(prefix=prefix)
        pick = Pick()
        prefix = '/'.join((res_id_prefix, 'pick', evid, station_string))
        pick.resource_id = ResourceIdentifier(prefix=prefix)
        date = origin.time.strftime('%Y%m%d')
        pick.time = UTCDateTime(date + arrival_time)
        #Check if pick is on the next day:
        if pick.time < origin.time:
            pick.time += timedelta(days=1)
        pick.waveform_id = waveform_id
        pick.backazimuth = backazimuth
        onset = phase[0]
        if onset == 'e':
            pick.onset = 'emergent'
            phase = phase[1:]
        elif onset == 'i':
            pick.onset = 'impulsive'
            phase = phase[1:]
        elif onset == 'q':
            pick.onset = 'questionable'
            phase = phase[1:]
        pick.phase_hint = phase.strip()
        event.picks.append(pick)
        if mb_amplitude is not None:
            amplitude = Amplitude()
            prefix = '/'.join((res_id_prefix, 'amp', evid, station_string))
            amplitude.resource_id = ResourceIdentifier(prefix=prefix)
            amplitude.generic_amplitude = mb_amplitude * 1E-9
            amplitude.unit = 'm'
            amplitude.period = mb_period
            amplitude.type = 'AB'
            amplitude.magnitude_hint = 'Mb'
            amplitude.pick_id = pick.resource_id
            amplitude.waveform_id = pick.waveform_id
            event.amplitudes.append(amplitude)
            station_magnitude = StationMagnitude()
            prefix = '/'.join(
                (res_id_prefix, 'stationmagntiude', evid, station_string))
            station_magnitude.resource_id = ResourceIdentifier(prefix=prefix)
            station_magnitude.origin_id = origin.resource_id
            station_magnitude.mag = mb_magnitude
            #station_magnitude.mag_errors['uncertainty'] = 0.0
            station_magnitude.station_magnitude_type = 'Mb'
            station_magnitude.amplitude_id = amplitude.resource_id
            station_magnitude.waveform_id = pick.waveform_id
            res_id = '/'.join(
                (res_id_prefix, 'magnitude/generic/body_wave_magnitude'))
            station_magnitude.method_id =\
                ResourceIdentifier(id=res_id)
            event.station_magnitudes.append(station_magnitude)
        arrival = Arrival()
        prefix = '/'.join((res_id_prefix, 'arrival', evid, station_string))
        arrival.resource_id = ResourceIdentifier(prefix=prefix)
        arrival.pick_id = pick.resource_id
        arrival.phase = pick.phase_hint
        arrival.azimuth = azimuth
        arrival.distance = distance
        arrival.time_residual = residual
        res_id = '/'.join((res_id_prefix, 'earthmodel/ak135'))
        arrival.earth_model_id = ResourceIdentifier(id=res_id)
        origin.arrivals.append(arrival)
        origin.quality.minimum_distance = min(
            d for d in (arrival.distance, origin.quality.minimum_distance)
            if d is not None)
        origin.quality.maximum_distance =\
            max(arrival.distance, origin.quality.minimum_distance)
        origin.quality.associated_phase_count += 1
        return pick, arrival
Exemple #6
0
def read_nlloc_hyp(filename, coordinate_converter=None, picks=None, **kwargs):
    """
    Reads a NonLinLoc Hypocenter-Phase file to a
    :class:`~obspy.core.event.Catalog` object.

    .. note::

        Coordinate conversion from coordinate frame of NonLinLoc model files /
        location run to WGS84 has to be specified explicitly by the user if
        necessary.

    .. note::

        An example can be found on the :mod:`~obspy.nlloc` submodule front
        page in the documentation pages.

    :param filename: File or file-like object in text mode.
    :type coordinate_converter: func
    :param coordinate_converter: Function to convert (x, y, z)
        coordinates of NonLinLoc output to geographical coordinates and depth
        in meters (longitude, latitude, depth in kilometers).
        If left `None` NonLinLoc (x, y, z) output is left unchanged (e.g. if
        it is in geographical coordinates already like for NonLinLoc in
        global mode).
        The function should accept three arguments x, y, z and return a
        tuple of three values (lon, lat, depth in kilometers).
    :type picks: list of :class:`~obspy.core.event.Pick`
    :param picks: Original picks used to generate the NonLinLoc location.
        If provided, the output event will include the original picks and the
        arrivals in the output origin will link to them correctly (with their
        `pick_id` attribute). If not provided, the output event will include
        (the rather basic) pick information that can be reconstructed from the
        NonLinLoc hypocenter-phase file.
    :rtype: :class:`~obspy.core.event.Catalog`
    """
    if not hasattr(filename, "read"):
        # Check if it exists, otherwise assume its a string.
        try:
            with open(filename, "rt") as fh:
                data = fh.read()
        except:
            try:
                data = filename.decode()
            except:
                data = str(filename)
            data = data.strip()
    else:
        data = filename.read()
        if hasattr(data, "decode"):
            data = data.decode()

    lines = data.splitlines()

    # remember picks originally used in location, if provided
    original_picks = picks
    if original_picks is None:
        original_picks = []

    # determine indices of block start/end of the NLLOC output file
    indices_hyp = [None, None]
    indices_phases = [None, None]
    for i, line in enumerate(lines):
        if line.startswith("NLLOC "):
            indices_hyp[0] = i
        elif line.startswith("END_NLLOC"):
            indices_hyp[1] = i
        elif line.startswith("PHASE "):
            indices_phases[0] = i
        elif line.startswith("END_PHASE"):
            indices_phases[1] = i
    if any([i is None for i in indices_hyp]):
        msg = ("NLLOC HYP file seems corrupt,"
               " could not detect 'NLLOC' and 'END_NLLOC' lines.")
        raise RuntimeError(msg)
    # strip any other lines around NLLOC block
    lines = lines[indices_hyp[0]:indices_hyp[1]]

    # extract PHASES lines (if any)
    if any(indices_phases):
        if not all(indices_phases):
            msg = ("NLLOC HYP file seems corrupt, 'PHASE' block is corrupt.")
            raise RuntimeError(msg)
        i1, i2 = indices_phases
        lines, phases_lines = lines[:i1] + lines[i2 + 1:], lines[i1 + 1:i2]
    else:
        phases_lines = []

    lines = dict([line.split(None, 1) for line in lines])
    line = lines["SIGNATURE"]

    line = line.rstrip().split('"')[1]
    signature, version, date, time = line.rsplit(" ", 3)
    creation_time = UTCDateTime().strptime(date + time, str("%d%b%Y%Hh%Mm%S"))

    # maximum likelihood origin location info line
    line = lines["HYPOCENTER"]

    x, y, z = map(float, line.split()[1:7:2])

    if coordinate_converter:
        x, y, z = coordinate_converter(x, y, z)

    # origin time info line
    line = lines["GEOGRAPHIC"]

    year, month, day, hour, minute = map(int, line.split()[1:6])
    seconds = float(line.split()[6])
    time = UTCDateTime(year, month, day, hour, minute, seconds)

    # distribution statistics line
    line = lines["STATISTICS"]
    covariance_XX = float(line.split()[7])
    covariance_YY = float(line.split()[13])
    covariance_ZZ = float(line.split()[17])
    stats_info_string = str(
        "Note: Depth/Latitude/Longitude errors are calculated from covariance "
        "matrix as 1D marginal (Lon/Lat errors as great circle degrees) "
        "while OriginUncertainty min/max horizontal errors are calculated "
        "from 2D error ellipsoid and are therefore seemingly higher compared "
        "to 1D errors. Error estimates can be reconstructed from the "
        "following original NonLinLoc error statistics line:\nSTATISTICS " +
        lines["STATISTICS"])

    # goto location quality info line
    line = lines["QML_OriginQuality"].split()

    (assoc_phase_count, used_phase_count, assoc_station_count,
     used_station_count, depth_phase_count) = map(int, line[1:11:2])
    stderr, az_gap, sec_az_gap = map(float, line[11:17:2])
    gt_level = line[17]
    min_dist, max_dist, med_dist = map(float, line[19:25:2])

    # goto location quality info line
    line = lines["QML_OriginUncertainty"]

    hor_unc, min_hor_unc, max_hor_unc, hor_unc_azim = \
        map(float, line.split()[1:9:2])

    # assign origin info
    event = Event()
    cat = Catalog(events=[event])
    o = Origin()
    event.origins = [o]
    o.origin_uncertainty = OriginUncertainty()
    o.quality = OriginQuality()
    ou = o.origin_uncertainty
    oq = o.quality
    o.comments.append(Comment(text=stats_info_string))

    cat.creation_info.creation_time = UTCDateTime()
    cat.creation_info.version = "ObsPy %s" % __version__
    event.creation_info = CreationInfo(creation_time=creation_time,
                                       version=version)
    event.creation_info.version = version
    o.creation_info = CreationInfo(creation_time=creation_time,
                                   version=version)

    # negative values can appear on diagonal of covariance matrix due to a
    # precision problem in NLLoc implementation when location coordinates are
    # large compared to the covariances.
    o.longitude = x
    try:
        o.longitude_errors.uncertainty = kilometer2degrees(sqrt(covariance_XX))
    except ValueError:
        if covariance_XX < 0:
            msg = ("Negative value in XX value of covariance matrix, not "
                   "setting longitude error (epicentral uncertainties will "
                   "still be set in origin uncertainty).")
            warnings.warn(msg)
        else:
            raise
    o.latitude = y
    try:
        o.latitude_errors.uncertainty = kilometer2degrees(sqrt(covariance_YY))
    except ValueError:
        if covariance_YY < 0:
            msg = ("Negative value in YY value of covariance matrix, not "
                   "setting longitude error (epicentral uncertainties will "
                   "still be set in origin uncertainty).")
            warnings.warn(msg)
        else:
            raise
    o.depth = z * 1e3  # meters!
    o.depth_errors.uncertainty = sqrt(covariance_ZZ) * 1e3  # meters!
    o.depth_errors.confidence_level = 68
    o.depth_type = str("from location")
    o.time = time

    ou.horizontal_uncertainty = hor_unc
    ou.min_horizontal_uncertainty = min_hor_unc
    ou.max_horizontal_uncertainty = max_hor_unc
    # values of -1 seem to be used for unset values, set to None
    for field in ("horizontal_uncertainty", "min_horizontal_uncertainty",
                  "max_horizontal_uncertainty"):
        if ou.get(field, -1) == -1:
            ou[field] = None
        else:
            ou[field] *= 1e3  # meters!
    ou.azimuth_max_horizontal_uncertainty = hor_unc_azim
    ou.preferred_description = str("uncertainty ellipse")
    ou.confidence_level = 68  # NonLinLoc in general uses 1-sigma (68%) level

    oq.standard_error = stderr
    oq.azimuthal_gap = az_gap
    oq.secondary_azimuthal_gap = sec_az_gap
    oq.used_phase_count = used_phase_count
    oq.used_station_count = used_station_count
    oq.associated_phase_count = assoc_phase_count
    oq.associated_station_count = assoc_station_count
    oq.depth_phase_count = depth_phase_count
    oq.ground_truth_level = gt_level
    oq.minimum_distance = kilometer2degrees(min_dist)
    oq.maximum_distance = kilometer2degrees(max_dist)
    oq.median_distance = kilometer2degrees(med_dist)

    # go through all phase info lines
    for line in phases_lines:
        line = line.split()
        arrival = Arrival()
        o.arrivals.append(arrival)
        station = str(line[0])
        phase = str(line[4])
        arrival.phase = phase
        arrival.distance = kilometer2degrees(float(line[21]))
        arrival.azimuth = float(line[23])
        arrival.takeoff_angle = float(line[24])
        arrival.time_residual = float(line[16])
        arrival.time_weight = float(line[17])
        pick = Pick()
        wid = WaveformStreamID(station_code=station)
        date, hourmin, sec = map(str, line[6:9])
        t = UTCDateTime().strptime(date + hourmin, "%Y%m%d%H%M") + float(sec)
        pick.waveform_id = wid
        pick.time = t
        pick.time_errors.uncertainty = float(line[10])
        pick.phase_hint = phase
        pick.onset = ONSETS.get(line[3].lower(), None)
        pick.polarity = POLARITIES.get(line[5].lower(), None)
        # try to determine original pick for each arrival
        for pick_ in original_picks:
            wid = pick_.waveform_id
            if station == wid.station_code and phase == pick_.phase_hint:
                pick = pick_
                break
        else:
            # warn if original picks were specified and we could not associate
            # the arrival correctly
            if original_picks:
                msg = ("Could not determine corresponding original pick for "
                       "arrival. "
                       "Falling back to pick information in NonLinLoc "
                       "hypocenter-phase file.")
                warnings.warn(msg)
        event.picks.append(pick)
        arrival.pick_id = pick.resource_id

    return cat
Exemple #7
0
    def _parse_arrivals(self, event, origin, origin_res_id):
        # Skip header of arrivals
        next(self.lines)

        # Stop the loop after 2 empty lines (according to the standard).
        previous_line_empty = False

        for line in self.lines:
            line_empty = not line or line.isspace()

            if not self.event_point_separator:
                # Event are separated by two empty lines
                if line_empty and previous_line_empty:
                    break
            else:
                # Event are separated by '.'
                if line.startswith('.'):
                    break

            previous_line_empty = line_empty

            if line_empty:
                # Skip empty lines when the loop should be stopped by
                # point
                continue

            magnitude_types = []
            magnitude_values = []

            fields = self.fields['arrival']

            station = line[fields['sta']].strip()
            distance = line[fields['dist']].strip()
            event_azimuth = line[fields['ev_az']].strip()
            evaluation_mode = line[fields['picktype']].strip()
            direction = line[fields['direction']].strip()
            onset = line[fields['detchar']].strip()
            phase = line[fields['phase']].strip()
            time = line[fields['time']].strip().replace('/', '-')
            time_residual = line[fields['t_res']].strip()
            arrival_azimuth = line[fields['azim']].strip()
            azimuth_residual = line[fields['az_res']].strip()
            slowness = line[fields['slow']].strip()
            slowness_residual = line[fields['s_res']].strip()
            time_defining_flag = line[fields['t_def']].strip()
            azimuth_defining_flag = line[fields['a_def']].strip()
            slowness_defining_flag = line[fields['s_def']].strip()
            snr = line[fields['snr']].strip()
            amplitude_value = line[fields['amp']].strip()
            period = line[fields['per']].strip()
            magnitude_types.append(line[fields['mag_type_1']].strip())
            magnitude_values.append(line[fields['mag_1']].strip())
            magnitude_types.append(line[fields['mag_type_2']].strip())
            magnitude_values.append(line[fields['mag_2']].strip())
            line_id = line[fields['id']].strip()

            # Don't take pick and arrival with wrong time residual
            if '*' in time_residual:
                continue

            try:
                pick = Pick()
                pick.creation_info = self._get_creation_info()
                pick.waveform_id = WaveformStreamID()
                pick.waveform_id.station_code = station
                pick.time = UTCDateTime(time)

                network_code = self.default_network_code
                location_code = self.default_location_code
                channel_code = self.default_channel_code

                try:
                    network_code, channel = self._get_channel(
                        station, pick.time)
                    if channel:
                        channel_code = channel.code
                        location_code = channel.location_code
                except TypeError:
                    pass

                pick.waveform_id.network_code = network_code
                pick.waveform_id.channel_code = channel_code
                if location_code:
                    pick.waveform_id.location_code = location_code

                try:
                    ev_mode = EVALUATION_MODES[evaluation_mode]
                    pick.evaluation_mode = ev_mode
                except KeyError:
                    pass
                try:
                    pick.polarity = PICK_POLARITIES[direction]
                except KeyError:
                    pass
                try:
                    pick.onset = PICK_ONSETS[onset]
                except KeyError:
                    pass
                pick.phase_hint = phase
                try:
                    pick.backazimuth = float(arrival_azimuth)
                except ValueError:
                    pass
                try:
                    pick.horizontal_slowness = float(slowness)
                except ValueError:
                    pass

                public_id = "pick/%s" % line_id
                pick.resource_id = self._get_res_id(public_id)
                event.picks.append(pick)
            except (TypeError, ValueError, AttributeError):
                # Can't parse pick, skip arrival and amplitude parsing
                continue

            arrival = Arrival()
            arrival.creation_info = self._get_creation_info()

            try:
                arrival.pick_id = pick.resource_id.id
            except AttributeError:
                pass
            arrival.phase = phase
            try:
                arrival.azimuth = float(event_azimuth)
            except ValueError:
                pass
            try:
                arrival.distance = float(distance)
            except ValueError:
                pass
            try:
                arrival.time_residual = float(time_residual)
            except ValueError:
                pass
            try:
                arrival.backazimuth_residual = float(azimuth_residual)
            except ValueError:
                pass
            try:
                arrival.horizontal_slowness_residual = float(slowness_residual)
            except ValueError:
                pass

            if time_defining_flag == 'T':
                arrival.time_weight = 1

            if azimuth_defining_flag == 'A':
                arrival.backazimuth_weight = 1

            if slowness_defining_flag == 'S':
                arrival.horizontal_slowness_weight = 1

            public_id = "arrival/%s" % line_id
            arrival.resource_id = self._get_res_id(public_id,
                                                   parent_res_id=origin_res_id)
            origin.arrivals.append(arrival)

            try:
                amplitude = Amplitude()
                amplitude.creation_info = self._get_creation_info()
                amplitude.generic_amplitude = float(amplitude_value)
                try:
                    amplitude.pick_id = pick.resource_id
                    amplitude.waveform_id = pick.waveform_id
                except AttributeError:
                    pass
                try:
                    amplitude.period = float(period)
                except ValueError:
                    pass
                try:
                    amplitude.snr = float(snr)
                except ValueError:
                    pass

                for i in [0, 1]:
                    if magnitude_types[i] and not magnitude_types[i].isspace():
                        amplitude.magnitude_hint = magnitude_types[i]

                public_id = "amplitude/%s" % line_id
                amplitude.resource_id = self._get_res_id(public_id)
                event.amplitudes.append(amplitude)

                for i in [0, 1]:
                    sta_mag = StationMagnitude()
                    sta_mag.creation_info = self._get_creation_info()
                    sta_mag.origin_id = origin_res_id
                    sta_mag.amplitude_id = amplitude.resource_id
                    sta_mag.station_magnitude_type = magnitude_types[i]
                    sta_mag.mag = magnitude_values[i]
                    sta_mag.waveform_id = pick.waveform_id
                    public_id = "magnitude/station/%s/%s" % (line_id, i)
                    sta_mag.resource_id = self._get_res_id(public_id)
                    event.station_magnitudes.append(sta_mag)

                    # Associate station mag with network mag of same type
                    mag = self._find_magnitude_by_type(event, origin_res_id,
                                                       magnitude_types[i])
                    if mag:
                        contrib = StationMagnitudeContribution()
                        contrib.station_magnitude_id = sta_mag.resource_id
                        contrib.weight = 1.0
                        mag.station_magnitude_contributions.append(contrib)
            except ValueError:
                pass
Exemple #8
0
def _read_single_hypocenter(lines, coordinate_converter, original_picks):
    """
    Given a list of lines (starting with a 'NLLOC' line and ending with a
    'END_NLLOC' line), parse them into an Event.
    """
    try:
        # some paranoid checks..
        assert lines[0].startswith("NLLOC ")
        assert lines[-1].startswith("END_NLLOC")
        for line in lines[1:-1]:
            assert not line.startswith("NLLOC ")
            assert not line.startswith("END_NLLOC")
    except Exception:
        msg = ("This should not have happened, please report this as a bug at "
               "https://github.com/obspy/obspy/issues.")
        raise Exception(msg)

    indices_phases = [None, None]
    for i, line in enumerate(lines):
        if line.startswith("PHASE "):
            indices_phases[0] = i
        elif line.startswith("END_PHASE"):
            indices_phases[1] = i

    # extract PHASES lines (if any)
    if any(indices_phases):
        if not all(indices_phases):
            msg = ("NLLOC HYP file seems corrupt, 'PHASE' block is corrupt.")
            raise RuntimeError(msg)
        i1, i2 = indices_phases
        lines, phases_lines = lines[:i1] + lines[i2 + 1:], lines[i1 + 1:i2]
    else:
        phases_lines = []

    lines = dict([line.split(None, 1) for line in lines[:-1]])
    line = lines["SIGNATURE"]

    line = line.rstrip().split('"')[1]
    signature, version, date, time = line.rsplit(" ", 3)
    # new NLLoc > 6.0 seems to add prefix 'run:' before date
    if date.startswith('run:'):
        date = date[4:]
    signature = signature.strip()
    creation_time = UTCDateTime.strptime(date + time, str("%d%b%Y%Hh%Mm%S"))

    if coordinate_converter:
        # maximum likelihood origin location in km info line
        line = lines["HYPOCENTER"]
        x, y, z = coordinate_converter(*map(float, line.split()[1:7:2]))
    else:
        # maximum likelihood origin location lon lat info line
        line = lines["GEOGRAPHIC"]
        y, x, z = map(float, line.split()[8:13:2])

    # maximum likelihood origin time info line
    line = lines["GEOGRAPHIC"]

    year, mon, day, hour, min = map(int, line.split()[1:6])
    seconds = float(line.split()[6])
    time = UTCDateTime(year, mon, day, hour, min, seconds, strict=False)

    # distribution statistics line
    line = lines["STATISTICS"]
    covariance_xx = float(line.split()[7])
    covariance_yy = float(line.split()[13])
    covariance_zz = float(line.split()[17])
    stats_info_string = str(
        "Note: Depth/Latitude/Longitude errors are calculated from covariance "
        "matrix as 1D marginal (Lon/Lat errors as great circle degrees) "
        "while OriginUncertainty min/max horizontal errors are calculated "
        "from 2D error ellipsoid and are therefore seemingly higher compared "
        "to 1D errors. Error estimates can be reconstructed from the "
        "following original NonLinLoc error statistics line:\nSTATISTICS " +
        lines["STATISTICS"])

    # goto location quality info line
    line = lines["QML_OriginQuality"].split()

    (assoc_phase_count, used_phase_count, assoc_station_count,
     used_station_count, depth_phase_count) = map(int, line[1:11:2])
    stderr, az_gap, sec_az_gap = map(float, line[11:17:2])
    gt_level = line[17]
    min_dist, max_dist, med_dist = map(float, line[19:25:2])

    # goto location quality info line
    line = lines["QML_OriginUncertainty"]

    if "COMMENT" in lines:
        comment = lines["COMMENT"].strip()
        comment = comment.strip('\'"')
        comment = comment.strip()

    hor_unc, min_hor_unc, max_hor_unc, hor_unc_azim = \
        map(float, line.split()[1:9:2])

    # assign origin info
    event = Event()
    o = Origin()
    event.origins = [o]
    event.preferred_origin_id = o.resource_id
    o.origin_uncertainty = OriginUncertainty()
    o.quality = OriginQuality()
    ou = o.origin_uncertainty
    oq = o.quality
    o.comments.append(Comment(text=stats_info_string, force_resource_id=False))
    event.comments.append(Comment(text=comment, force_resource_id=False))

    # SIGNATURE field's first item is LOCSIG, which is supposed to be
    # 'Identification of an individual, institiution or other entity'
    # according to
    # http://alomax.free.fr/nlloc/soft6.00/control.html#_NLLoc_locsig_
    # so use it as author in creation info
    event.creation_info = CreationInfo(creation_time=creation_time,
                                       version=version,
                                       author=signature)
    o.creation_info = CreationInfo(creation_time=creation_time,
                                   version=version,
                                   author=signature)

    # negative values can appear on diagonal of covariance matrix due to a
    # precision problem in NLLoc implementation when location coordinates are
    # large compared to the covariances.
    o.longitude = x
    try:
        o.longitude_errors.uncertainty = kilometer2degrees(sqrt(covariance_xx))
    except ValueError:
        if covariance_xx < 0:
            msg = ("Negative value in XX value of covariance matrix, not "
                   "setting longitude error (epicentral uncertainties will "
                   "still be set in origin uncertainty).")
            warnings.warn(msg)
        else:
            raise
    o.latitude = y
    try:
        o.latitude_errors.uncertainty = kilometer2degrees(sqrt(covariance_yy))
    except ValueError:
        if covariance_yy < 0:
            msg = ("Negative value in YY value of covariance matrix, not "
                   "setting longitude error (epicentral uncertainties will "
                   "still be set in origin uncertainty).")
            warnings.warn(msg)
        else:
            raise
    o.depth = z * 1e3  # meters!
    o.depth_errors.uncertainty = sqrt(covariance_zz) * 1e3  # meters!
    o.depth_errors.confidence_level = 68
    o.depth_type = str("from location")
    o.time = time

    ou.horizontal_uncertainty = hor_unc
    ou.min_horizontal_uncertainty = min_hor_unc
    ou.max_horizontal_uncertainty = max_hor_unc
    # values of -1 seem to be used for unset values, set to None
    for field in ("horizontal_uncertainty", "min_horizontal_uncertainty",
                  "max_horizontal_uncertainty"):
        if ou.get(field, -1) == -1:
            ou[field] = None
        else:
            ou[field] *= 1e3  # meters!
    ou.azimuth_max_horizontal_uncertainty = hor_unc_azim
    ou.preferred_description = str("uncertainty ellipse")
    ou.confidence_level = 68  # NonLinLoc in general uses 1-sigma (68%) level

    oq.standard_error = stderr
    oq.azimuthal_gap = az_gap
    oq.secondary_azimuthal_gap = sec_az_gap
    oq.used_phase_count = used_phase_count
    oq.used_station_count = used_station_count
    oq.associated_phase_count = assoc_phase_count
    oq.associated_station_count = assoc_station_count
    oq.depth_phase_count = depth_phase_count
    oq.ground_truth_level = gt_level
    oq.minimum_distance = kilometer2degrees(min_dist)
    oq.maximum_distance = kilometer2degrees(max_dist)
    oq.median_distance = kilometer2degrees(med_dist)

    # go through all phase info lines
    for line in phases_lines:
        line = line.split()
        arrival = Arrival()
        o.arrivals.append(arrival)
        station = str(line[0])
        phase = str(line[4])
        arrival.phase = phase
        arrival.distance = kilometer2degrees(float(line[21]))
        arrival.azimuth = float(line[23])
        arrival.takeoff_angle = float(line[24])
        arrival.time_residual = float(line[16])
        arrival.time_weight = float(line[17])
        pick = Pick()
        # network codes are not used by NonLinLoc, so they can not be known
        # when reading the .hyp file.. to conform with QuakeML standard set an
        # empty network code
        wid = WaveformStreamID(network_code="", station_code=station)
        # have to split this into ints for overflow to work correctly
        date, hourmin, sec = map(str, line[6:9])
        ymd = [int(date[:4]), int(date[4:6]), int(date[6:8])]
        hm = [int(hourmin[:2]), int(hourmin[2:4])]
        t = UTCDateTime(*(ymd + hm), strict=False) + float(sec)
        pick.waveform_id = wid
        pick.time = t
        pick.time_errors.uncertainty = float(line[10])
        pick.phase_hint = phase
        pick.onset = ONSETS.get(line[3].lower(), None)
        pick.polarity = POLARITIES.get(line[5].lower(), None)
        # try to determine original pick for each arrival
        for pick_ in original_picks:
            wid = pick_.waveform_id
            if station == wid.station_code and phase == pick_.phase_hint:
                pick = pick_
                break
        else:
            # warn if original picks were specified and we could not associate
            # the arrival correctly
            if original_picks:
                msg = ("Could not determine corresponding original pick for "
                       "arrival. "
                       "Falling back to pick information in NonLinLoc "
                       "hypocenter-phase file.")
                warnings.warn(msg)
        event.picks.append(pick)
        arrival.pick_id = pick.resource_id

    event.scope_resource_ids()

    return event
Exemple #9
0
def read_nlloc_hyp(filename, coordinate_converter=None, picks=None, **kwargs):
    """
    Reads a NonLinLoc Hypocenter-Phase file to a
    :class:`~obspy.core.event.Catalog` object.

    .. note::

        Coordinate conversion from coordinate frame of NonLinLoc model files /
        location run to WGS84 has to be specified explicitly by the user if
        necessary.

    .. note::

        An example can be found on the :mod:`~obspy.io.nlloc` submodule front
        page in the documentation pages.

    :param filename: File or file-like object in text mode.
    :type coordinate_converter: func
    :param coordinate_converter: Function to convert (x, y, z)
        coordinates of NonLinLoc output to geographical coordinates and depth
        in meters (longitude, latitude, depth in kilometers).
        If left ``None``, NonLinLoc (x, y, z) output is left unchanged (e.g. if
        it is in geographical coordinates already like for NonLinLoc in
        global mode).
        The function should accept three arguments x, y, z (each of type
        :class:`numpy.ndarray`) and return a tuple of three
        :class:`numpy.ndarray` (lon, lat, depth in kilometers).
    :type picks: list of :class:`~obspy.core.event.Pick`
    :param picks: Original picks used to generate the NonLinLoc location.
        If provided, the output event will include the original picks and the
        arrivals in the output origin will link to them correctly (with their
        ``pick_id`` attribute). If not provided, the output event will include
        (the rather basic) pick information that can be reconstructed from the
        NonLinLoc hypocenter-phase file.
    :rtype: :class:`~obspy.core.event.Catalog`
    """
    if not hasattr(filename, "read"):
        # Check if it exists, otherwise assume its a string.
        try:
            with open(filename, "rt") as fh:
                data = fh.read()
        except:
            try:
                data = filename.decode()
            except:
                data = str(filename)
            data = data.strip()
    else:
        data = filename.read()
        if hasattr(data, "decode"):
            data = data.decode()

    lines = data.splitlines()

    # remember picks originally used in location, if provided
    original_picks = picks
    if original_picks is None:
        original_picks = []

    # determine indices of block start/end of the NLLOC output file
    indices_hyp = [None, None]
    indices_phases = [None, None]
    for i, line in enumerate(lines):
        if line.startswith("NLLOC "):
            indices_hyp[0] = i
        elif line.startswith("END_NLLOC"):
            indices_hyp[1] = i
        elif line.startswith("PHASE "):
            indices_phases[0] = i
        elif line.startswith("END_PHASE"):
            indices_phases[1] = i
    if any([i is None for i in indices_hyp]):
        msg = ("NLLOC HYP file seems corrupt,"
               " could not detect 'NLLOC' and 'END_NLLOC' lines.")
        raise RuntimeError(msg)
    # strip any other lines around NLLOC block
    lines = lines[indices_hyp[0]:indices_hyp[1]]

    # extract PHASES lines (if any)
    if any(indices_phases):
        if not all(indices_phases):
            msg = ("NLLOC HYP file seems corrupt, 'PHASE' block is corrupt.")
            raise RuntimeError(msg)
        i1, i2 = indices_phases
        lines, phases_lines = lines[:i1] + lines[i2 + 1:], lines[i1 + 1:i2]
    else:
        phases_lines = []

    lines = dict([line.split(None, 1) for line in lines])
    line = lines["SIGNATURE"]

    line = line.rstrip().split('"')[1]
    signature, version, date, time = line.rsplit(" ", 3)
    creation_time = UTCDateTime().strptime(date + time, str("%d%b%Y%Hh%Mm%S"))

    # maximum likelihood origin location info line
    line = lines["HYPOCENTER"]

    x, y, z = map(float, line.split()[1:7:2])

    if coordinate_converter:
        x, y, z = coordinate_converter(x, y, z)

    # origin time info line
    line = lines["GEOGRAPHIC"]

    year, month, day, hour, minute = map(int, line.split()[1:6])
    seconds = float(line.split()[6])
    time = UTCDateTime(year, month, day, hour, minute, seconds)

    # distribution statistics line
    line = lines["STATISTICS"]
    covariance_xx = float(line.split()[7])
    covariance_yy = float(line.split()[13])
    covariance_zz = float(line.split()[17])
    stats_info_string = str(
        "Note: Depth/Latitude/Longitude errors are calculated from covariance "
        "matrix as 1D marginal (Lon/Lat errors as great circle degrees) "
        "while OriginUncertainty min/max horizontal errors are calculated "
        "from 2D error ellipsoid and are therefore seemingly higher compared "
        "to 1D errors. Error estimates can be reconstructed from the "
        "following original NonLinLoc error statistics line:\nSTATISTICS " +
        lines["STATISTICS"])

    # goto location quality info line
    line = lines["QML_OriginQuality"].split()

    (assoc_phase_count, used_phase_count, assoc_station_count,
     used_station_count, depth_phase_count) = map(int, line[1:11:2])
    stderr, az_gap, sec_az_gap = map(float, line[11:17:2])
    gt_level = line[17]
    min_dist, max_dist, med_dist = map(float, line[19:25:2])

    # goto location quality info line
    line = lines["QML_OriginUncertainty"]

    hor_unc, min_hor_unc, max_hor_unc, hor_unc_azim = \
        map(float, line.split()[1:9:2])

    # assign origin info
    event = Event()
    cat = Catalog(events=[event])
    o = Origin()
    event.origins = [o]
    o.origin_uncertainty = OriginUncertainty()
    o.quality = OriginQuality()
    ou = o.origin_uncertainty
    oq = o.quality
    o.comments.append(Comment(text=stats_info_string))

    cat.creation_info.creation_time = UTCDateTime()
    cat.creation_info.version = "ObsPy %s" % __version__
    event.creation_info = CreationInfo(creation_time=creation_time,
                                       version=version)
    event.creation_info.version = version
    o.creation_info = CreationInfo(creation_time=creation_time,
                                   version=version)

    # negative values can appear on diagonal of covariance matrix due to a
    # precision problem in NLLoc implementation when location coordinates are
    # large compared to the covariances.
    o.longitude = x
    try:
        o.longitude_errors.uncertainty = kilometer2degrees(sqrt(covariance_xx))
    except ValueError:
        if covariance_xx < 0:
            msg = ("Negative value in XX value of covariance matrix, not "
                   "setting longitude error (epicentral uncertainties will "
                   "still be set in origin uncertainty).")
            warnings.warn(msg)
        else:
            raise
    o.latitude = y
    try:
        o.latitude_errors.uncertainty = kilometer2degrees(sqrt(covariance_yy))
    except ValueError:
        if covariance_yy < 0:
            msg = ("Negative value in YY value of covariance matrix, not "
                   "setting longitude error (epicentral uncertainties will "
                   "still be set in origin uncertainty).")
            warnings.warn(msg)
        else:
            raise
    o.depth = z * 1e3  # meters!
    o.depth_errors.uncertainty = sqrt(covariance_zz) * 1e3  # meters!
    o.depth_errors.confidence_level = 68
    o.depth_type = str("from location")
    o.time = time

    ou.horizontal_uncertainty = hor_unc
    ou.min_horizontal_uncertainty = min_hor_unc
    ou.max_horizontal_uncertainty = max_hor_unc
    # values of -1 seem to be used for unset values, set to None
    for field in ("horizontal_uncertainty", "min_horizontal_uncertainty",
                  "max_horizontal_uncertainty"):
        if ou.get(field, -1) == -1:
            ou[field] = None
        else:
            ou[field] *= 1e3  # meters!
    ou.azimuth_max_horizontal_uncertainty = hor_unc_azim
    ou.preferred_description = str("uncertainty ellipse")
    ou.confidence_level = 68  # NonLinLoc in general uses 1-sigma (68%) level

    oq.standard_error = stderr
    oq.azimuthal_gap = az_gap
    oq.secondary_azimuthal_gap = sec_az_gap
    oq.used_phase_count = used_phase_count
    oq.used_station_count = used_station_count
    oq.associated_phase_count = assoc_phase_count
    oq.associated_station_count = assoc_station_count
    oq.depth_phase_count = depth_phase_count
    oq.ground_truth_level = gt_level
    oq.minimum_distance = kilometer2degrees(min_dist)
    oq.maximum_distance = kilometer2degrees(max_dist)
    oq.median_distance = kilometer2degrees(med_dist)

    # go through all phase info lines
    for line in phases_lines:
        line = line.split()
        arrival = Arrival()
        o.arrivals.append(arrival)
        station = str(line[0])
        phase = str(line[4])
        arrival.phase = phase
        arrival.distance = kilometer2degrees(float(line[21]))
        arrival.azimuth = float(line[23])
        arrival.takeoff_angle = float(line[24])
        arrival.time_residual = float(line[16])
        arrival.time_weight = float(line[17])
        pick = Pick()
        wid = WaveformStreamID(station_code=station)
        date, hourmin, sec = map(str, line[6:9])
        t = UTCDateTime().strptime(date + hourmin, "%Y%m%d%H%M") + float(sec)
        pick.waveform_id = wid
        pick.time = t
        pick.time_errors.uncertainty = float(line[10])
        pick.phase_hint = phase
        pick.onset = ONSETS.get(line[3].lower(), None)
        pick.polarity = POLARITIES.get(line[5].lower(), None)
        # try to determine original pick for each arrival
        for pick_ in original_picks:
            wid = pick_.waveform_id
            if station == wid.station_code and phase == pick_.phase_hint:
                pick = pick_
                break
        else:
            # warn if original picks were specified and we could not associate
            # the arrival correctly
            if original_picks:
                msg = ("Could not determine corresponding original pick for "
                       "arrival. "
                       "Falling back to pick information in NonLinLoc "
                       "hypocenter-phase file.")
                warnings.warn(msg)
        event.picks.append(pick)
        arrival.pick_id = pick.resource_id

    return cat
Exemple #10
0
    def _parse_arrivals(self, event, origin, origin_res_id):
        # Skip header of arrivals
        next(self.lines)

        # Stop the loop after 2 empty lines (according to the standard).
        previous_line_empty = False

        for line in self.lines:
            line_empty = not line or line.isspace()

            if not self.event_point_separator:
                # Event are separated by two empty lines
                if line_empty and previous_line_empty:
                    break
            else:
                # Event are separated by '.'
                if line.startswith('.'):
                    break

            previous_line_empty = line_empty

            if line_empty:
                # Skip empty lines when the loop should be stopped by
                # point
                continue

            magnitude_types = []
            magnitude_values = []

            fields = self.fields['arrival']

            station = line[fields['sta']].strip()
            distance = line[fields['dist']].strip()
            event_azimuth = line[fields['ev_az']].strip()
            evaluation_mode = line[fields['picktype']].strip()
            direction = line[fields['direction']].strip()
            onset = line[fields['detchar']].strip()
            phase = line[fields['phase']].strip()
            time = line[fields['time']].strip().replace('/', '-')
            time_residual = line[fields['t_res']].strip()
            arrival_azimuth = line[fields['azim']].strip()
            azimuth_residual = line[fields['az_res']].strip()
            slowness = line[fields['slow']].strip()
            slowness_residual = line[fields['s_res']].strip()
            time_defining_flag = line[fields['t_def']].strip()
            azimuth_defining_flag = line[fields['a_def']].strip()
            slowness_defining_flag = line[fields['s_def']].strip()
            snr = line[fields['snr']].strip()
            amplitude_value = line[fields['amp']].strip()
            period = line[fields['per']].strip()
            magnitude_types.append(line[fields['mag_type_1']].strip())
            magnitude_values.append(line[fields['mag_1']].strip())
            magnitude_types.append(line[fields['mag_type_2']].strip())
            magnitude_values.append(line[fields['mag_2']].strip())
            line_id = line[fields['id']].strip()

            # Don't take pick and arrival with wrong time residual
            if '*' in time_residual:
                continue

            try:
                pick = Pick()
                pick.creation_info = self._get_creation_info()
                pick.waveform_id = WaveformStreamID()
                pick.waveform_id.station_code = station
                pick.time = UTCDateTime(time)

                network_code = self.default_network_code
                location_code = self.default_location_code
                channel_code = self.default_channel_code

                try:
                    network_code, channel = self._get_channel(station,
                                                              pick.time)
                    if channel:
                        channel_code = channel.code
                        location_code = channel.location_code
                except TypeError:
                    pass

                pick.waveform_id.network_code = network_code
                pick.waveform_id.channel_code = channel_code
                if location_code:
                    pick.waveform_id.location_code = location_code

                try:
                    ev_mode = EVALUATION_MODES[evaluation_mode]
                    pick.evaluation_mode = ev_mode
                except KeyError:
                    pass
                try:
                    pick.polarity = PICK_POLARITIES[direction]
                except KeyError:
                    pass
                try:
                    pick.onset = PICK_ONSETS[onset]
                except KeyError:
                    pass
                pick.phase_hint = phase
                try:
                    pick.backazimuth = float(arrival_azimuth)
                except ValueError:
                    pass
                try:
                    pick.horizontal_slowness = float(slowness)
                except ValueError:
                    pass

                public_id = "pick/%s" % line_id
                pick.resource_id = self._get_res_id(public_id)
                event.picks.append(pick)
            except (TypeError, ValueError, AttributeError):
                # Can't parse pick, skip arrival and amplitude parsing
                continue

            arrival = Arrival()
            arrival.creation_info = self._get_creation_info()

            try:
                arrival.pick_id = pick.resource_id.id
            except AttributeError:
                pass
            arrival.phase = phase
            try:
                arrival.azimuth = float(event_azimuth)
            except ValueError:
                pass
            try:
                arrival.distance = float(distance)
            except ValueError:
                pass
            try:
                arrival.time_residual = float(time_residual)
            except ValueError:
                pass
            try:
                arrival.backazimuth_residual = float(azimuth_residual)
            except ValueError:
                pass
            try:
                arrival.horizontal_slowness_residual = float(slowness_residual)
            except ValueError:
                pass

            if time_defining_flag == 'T':
                arrival.time_weight = 1

            if azimuth_defining_flag == 'A':
                arrival.backazimuth_weight = 1

            if slowness_defining_flag == 'S':
                arrival.horizontal_slowness_weight = 1

            public_id = "arrival/%s" % line_id
            arrival.resource_id = self._get_res_id(public_id,
                                                   parent_res_id=origin_res_id)
            origin.arrivals.append(arrival)

            try:
                amplitude = Amplitude()
                amplitude.creation_info = self._get_creation_info()
                amplitude.generic_amplitude = float(amplitude_value)
                try:
                    amplitude.pick_id = pick.resource_id
                    amplitude.waveform_id = pick.waveform_id
                except AttributeError:
                    pass
                try:
                    amplitude.period = float(period)
                except ValueError:
                    pass
                try:
                    amplitude.snr = float(snr)
                except ValueError:
                    pass

                for i in [0, 1]:
                    if magnitude_types[i] and not magnitude_types[i].isspace():
                        amplitude.magnitude_hint = magnitude_types[i]

                public_id = "amplitude/%s" % line_id
                amplitude.resource_id = self._get_res_id(public_id)
                event.amplitudes.append(amplitude)

                for i in [0, 1]:
                    sta_mag = StationMagnitude()
                    sta_mag.creation_info = self._get_creation_info()
                    sta_mag.origin_id = origin_res_id
                    sta_mag.amplitude_id = amplitude.resource_id
                    sta_mag.station_magnitude_type = magnitude_types[i]
                    sta_mag.mag = magnitude_values[i]
                    public_id = "magnitude/station/%s/%s" % (line_id, i)
                    sta_mag.resource_id = self._get_res_id(public_id)
                    event.station_magnitudes.append(sta_mag)
            except ValueError:
                pass
def __toPick(parser, pick_el, evaluation_mode):
    """
    """
    pick = Pick()
    pick.resource_id = ResourceIdentifier(prefix="/".join([RESOURCE_ROOT, "pick"]))

    # Raise a warnings if there is a phase delay
    phase_delay = parser.xpath2obj("phase_delay", pick_el, float)
    if phase_delay is not None:
        msg = "The pick has a phase_delay!"
        raise Exception(msg)

    waveform = pick_el.xpath("waveform")[0]
    network = waveform.get("networkCode")
    station = fix_station_name(waveform.get("stationCode"))
    # Map some station names.
    if station in STATION_DICT:
        station = STATION_DICT[station]
    if not network:
        network = NETWORK_DICT[station]

    location = waveform.get("locationCode") or ""
    channel = waveform.get("channelCode") or ""
    pick.waveform_id = WaveformStreamID(
                                network_code=network,
                                station_code=station,
                                channel_code=channel,
                                location_code=location)
    pick.time, pick.time_errors = __toTimeQuantity(parser, pick_el, "time")
    # Picks without time are not quakeml conform
    if pick.time is None:
        print "Pick has no time and is ignored: %s" % station
        return None
    pick.phase_hint = parser.xpath2obj('phaseHint', pick_el, str)
    onset = parser.xpath2obj('onset', pick_el)
    # Fixing bad and old typo ...
    if onset == "implusive":
        onset = "impulsive"
    if onset:
        pick.onset = onset.lower()
    # Evaluation mode of a pick is global in the SeisHub Event file format.
    #pick.evaluation_mode = evaluation_mode
    # The polarity needs to be mapped.
    polarity = parser.xpath2obj('polarity', pick_el)
    pol_map_dict = {'up': 'positive', 'positive': 'positive',
                    'forward': 'positive',
                    'forwards': 'positive',
                    'right': 'positive',
                    'backward': 'negative',
                    'backwards': 'negative',
                    'left': 'negative',
                    'down': 'negative', 'negative': 'negative',
                    'undecidable': 'undecidable',
                    'poorup': 'positive',
                    'poordown': 'negative'}
    if polarity:
        if polarity.lower() in pol_map_dict:
            pick.polarity = pol_map_dict[polarity.lower()]
        else:
            pick.polarity = polarity.lower()

    pick_weight = parser.xpath2obj('weight', pick_el, int)
    if pick_weight is not None:
        pick.extra = AttribDict()
        pick.extra.weight = {'value': pick_weight, 'namespace': NAMESPACE}
    return pick
Exemple #12
0
    def _parse_record_s(self, line, event, p_pick, p_arrival):
        """
        Parses the 'secondary phases' record S

        Secondary phases are following phases of the reading,
        and can be P-type or S-type.
        """
        arrivals = []
        phase = line[7:15].strip()
        arrival_time = line[15:24]
        if phase:
            arrivals.append((phase, arrival_time))
        phase = line[25:33].strip()
        arrival_time = line[33:42]
        if phase:
            arrivals.append((phase, arrival_time))
        phase = line[43:51].strip()
        arrival_time = line[51:60]
        if phase:
            arrivals.append((phase, arrival_time))

        evid = event.resource_id.id.split('/')[-1]
        station_string = \
            p_pick.waveform_id.get_seed_string()\
            .replace(' ', '-').replace('.', '_').lower()
        origin = event.origins[0]
        for phase, arrival_time in arrivals:
            if phase[0:2] == 'D=':
                # unused: depth = self._float(phase[2:7])
                try:
                    depth_usage_flag = phase[7]
                except IndexError:
                    # usage flag is not defined
                    depth_usage_flag = None
                # FIXME: I'm not sure that 'X' actually
                # means 'used'
                if depth_usage_flag == 'X':
                    # FIXME: is this enough to say that
                    # the event is constrained by depth phases?
                    origin.depth_type = 'constrained by depth phases'
                    origin.quality.depth_phase_count += 1
            else:
                pick = Pick()
                prefix = '/'.join((res_id_prefix, 'pick',
                                   evid, station_string))
                pick.resource_id = ResourceIdentifier(prefix=prefix)
                date = origin.time.strftime('%Y%m%d')
                pick.time = UTCDateTime(date + arrival_time)
                # Check if pick is on the next day:
                if pick.time < origin.time:
                    pick.time += timedelta(days=1)
                pick.waveform_id = p_pick.waveform_id
                pick.backazimuth = p_pick.backazimuth
                onset = phase[0]
                if onset == 'e':
                    pick.onset = 'emergent'
                    phase = phase[1:]
                elif onset == 'i':
                    pick.onset = 'impulsive'
                    phase = phase[1:]
                elif onset == 'q':
                    pick.onset = 'questionable'
                    phase = phase[1:]
                pick.phase_hint = phase.strip()
                event.picks.append(pick)
                arrival = Arrival()
                prefix = '/'.join((res_id_prefix, 'arrival',
                                   evid, station_string))
                arrival.resource_id = ResourceIdentifier(prefix=prefix)
                arrival.pick_id = pick.resource_id
                arrival.phase = pick.phase_hint
                arrival.azimuth = p_arrival.azimuth
                arrival.distance = p_arrival.distance
                origin.quality.associated_phase_count += 1
                origin.arrivals.append(arrival)
Exemple #13
0
    def _parse_record_p(self, line, event):
        """
        Parses the 'primary phase record' P

        The primary phase is the first phase of the reading,
        regardless its type.
        """
        station = line[2:7].strip()
        phase = line[7:15]
        arrival_time = line[15:24]
        residual = self._float(line[25:30])
        # unused: residual_flag = line[30]
        distance = self._float(line[32:38])  # degrees
        azimuth = self._float(line[39:44])
        backazimuth = round(azimuth % -360 + 180, 1)
        mb_period = self._float(line[44:48])
        mb_amplitude = self._float(line[48:55])  # nanometers
        mb_magnitude = self._float(line[56:59])
        # unused: mb_usage_flag = line[59]

        origin = event.origins[0]
        evid = event.resource_id.id.split('/')[-1]
        waveform_id = WaveformStreamID()
        waveform_id.station_code = station
        # network_code is required for QuakeML validation
        waveform_id.network_code = '  '
        station_string = \
            waveform_id.get_seed_string()\
            .replace(' ', '-').replace('.', '_').lower()
        prefix = '/'.join((res_id_prefix, 'waveformstream',
                           evid, station_string))
        waveform_id.resource_uri = ResourceIdentifier(prefix=prefix)
        pick = Pick()
        prefix = '/'.join((res_id_prefix, 'pick', evid, station_string))
        pick.resource_id = ResourceIdentifier(prefix=prefix)
        date = origin.time.strftime('%Y%m%d')
        pick.time = UTCDateTime(date + arrival_time)
        # Check if pick is on the next day:
        if pick.time < origin.time:
            pick.time += timedelta(days=1)
        pick.waveform_id = waveform_id
        pick.backazimuth = backazimuth
        onset = phase[0]
        if onset == 'e':
            pick.onset = 'emergent'
            phase = phase[1:]
        elif onset == 'i':
            pick.onset = 'impulsive'
            phase = phase[1:]
        elif onset == 'q':
            pick.onset = 'questionable'
            phase = phase[1:]
        pick.phase_hint = phase.strip()
        event.picks.append(pick)
        if mb_amplitude is not None:
            amplitude = Amplitude()
            prefix = '/'.join((res_id_prefix, 'amp', evid, station_string))
            amplitude.resource_id = ResourceIdentifier(prefix=prefix)
            amplitude.generic_amplitude = mb_amplitude * 1E-9
            amplitude.unit = 'm'
            amplitude.period = mb_period
            amplitude.type = 'AB'
            amplitude.magnitude_hint = 'Mb'
            amplitude.pick_id = pick.resource_id
            amplitude.waveform_id = pick.waveform_id
            event.amplitudes.append(amplitude)
            station_magnitude = StationMagnitude()
            prefix = '/'.join((res_id_prefix, 'stationmagntiude',
                               evid, station_string))
            station_magnitude.resource_id = ResourceIdentifier(prefix=prefix)
            station_magnitude.origin_id = origin.resource_id
            station_magnitude.mag = mb_magnitude
            # station_magnitude.mag_errors['uncertainty'] = 0.0
            station_magnitude.station_magnitude_type = 'Mb'
            station_magnitude.amplitude_id = amplitude.resource_id
            station_magnitude.waveform_id = pick.waveform_id
            res_id = '/'.join(
                (res_id_prefix, 'magnitude/generic/body_wave_magnitude'))
            station_magnitude.method_id = \
                ResourceIdentifier(id=res_id)
            event.station_magnitudes.append(station_magnitude)
        arrival = Arrival()
        prefix = '/'.join((res_id_prefix, 'arrival', evid, station_string))
        arrival.resource_id = ResourceIdentifier(prefix=prefix)
        arrival.pick_id = pick.resource_id
        arrival.phase = pick.phase_hint
        arrival.azimuth = azimuth
        arrival.distance = distance
        arrival.time_residual = residual
        res_id = '/'.join((res_id_prefix, 'earthmodel/ak135'))
        arrival.earth_model_id = ResourceIdentifier(id=res_id)
        origin.arrivals.append(arrival)
        origin.quality.minimum_distance = min(
            d for d in (arrival.distance, origin.quality.minimum_distance)
            if d is not None)
        origin.quality.maximum_distance = \
            max(arrival.distance, origin.quality.minimum_distance)
        origin.quality.associated_phase_count += 1
        return pick, arrival
Exemple #14
0
def _read_picks(f, new_event):
    """
    Internal pick reader. Use read_nordic instead.

    :type f: file
    :param f: File open in read mode
    :type wav_names: list
    :param wav_names: List of waveform files in the sfile
    :type new_event: :class:`~obspy.core.event.event.Event`
    :param new_event: event to associate picks with.

    :returns: :class:`~obspy.core.event.event.Event`
    """
    f.seek(0)
    evtime = new_event.origins[0].time
    pickline = []
    # Set a default, ignored later unless overwritten
    snr = None
    for line in f:
        if line[79] == '7':
            header = line
            break
    for line in f:
        if len(line.rstrip('\n').rstrip('\r')) in [80, 79] and \
           line[79] in ' 4\n':
            pickline += [line]
    for line in pickline:
        if line[18:28].strip() == '':  # If line is empty miss it
            continue
        weight = line[14]
        if weight == '_':
            phase = line[10:17]
            weight = 0
            polarity = ''
        else:
            phase = line[10:14].strip()
            polarity = line[16]
            if weight == ' ':
                weight = 0
        polarity_maps = {"": "undecidable", "C": "positive", "D": "negative"}
        try:
            polarity = polarity_maps[polarity]
        except KeyError:
            polarity = "undecidable"
        # It is valid nordic for the origin to be hour 23 and picks to be hour
        # 00 or 24: this signifies a pick over a day boundary.
        if int(line[18:20]) == 0 and evtime.hour == 23:
            day_add = 86400
            pick_hour = 0
        elif int(line[18:20]) == 24:
            day_add = 86400
            pick_hour = 0
        else:
            day_add = 0
            pick_hour = int(line[18:20])
        try:
            time = UTCDateTime(evtime.year, evtime.month,
                               evtime.day, pick_hour, int(line[20:22]),
                               float(line[23:28])) + day_add
        except ValueError:
            time = UTCDateTime(evtime.year, evtime.month, evtime.day,
                               int(line[18:20]), pick_hour,
                               float("0." + line[23:38].split('.')[1])) +\
                60 + day_add
            # Add 60 seconds on to the time, this copes with s-file
            # preference to write seconds in 1-60 rather than 0-59 which
            # datetime objects accept
        if header[57:60] == 'AIN':
            ain = _float_conv(line[57:60])
            warnings.warn('AIN: %s in header, currently unsupported' % ain)
        elif header[57:60] == 'SNR':
            snr = _float_conv(line[57:60])
        else:
            warnings.warn('%s is not currently supported' % header[57:60])
        # finalweight = _int_conv(line[68:70])
        # Create a new obspy.event.Pick class for this pick
        _waveform_id = WaveformStreamID(station_code=line[1:6].strip(),
                                        channel_code=line[6:8].strip(),
                                        network_code='NA')
        pick = Pick(waveform_id=_waveform_id,
                    phase_hint=phase,
                    polarity=polarity,
                    time=time)
        try:
            pick.onset = onsets[line[9]]
        except KeyError:
            pass
        if line[15] == 'A':
            pick.evaluation_mode = 'automatic'
        else:
            pick.evaluation_mode = 'manual'
        # Note these two are not always filled - velocity conversion not yet
        # implemented, needs to be converted from km/s to s/deg
        # if not velocity == 999.0:
        # new_event.picks[pick_index].horizontal_slowness = 1.0 / velocity
        if _float_conv(line[46:51]) is not None:
            pick.backazimuth = _float_conv(line[46:51])
        # Create new obspy.event.Amplitude class which references above Pick
        # only if there is an amplitude picked.
        if _float_conv(line[33:40]) is not None:
            _amplitude = Amplitude(generic_amplitude=_float_conv(line[33:40]),
                                   period=_float_conv(line[41:45]),
                                   pick_id=pick.resource_id,
                                   waveform_id=pick.waveform_id)
            if pick.phase_hint == 'IAML':
                # Amplitude for local magnitude
                _amplitude.type = 'AML'
                # Set to be evaluating a point in the trace
                _amplitude.category = 'point'
                # Default AML unit in seisan is nm (Page 139 of seisan
                # documentation, version 10.0)
                _amplitude.generic_amplitude /= 1e9
                _amplitude.unit = 'm'
                _amplitude.magnitude_hint = 'ML'
            else:
                # Generic amplitude type
                _amplitude.type = 'A'
            if snr:
                _amplitude.snr = snr
            new_event.amplitudes.append(_amplitude)
        elif _int_conv(line[28:33]) is not None:
            # Create an amplitude instance for code duration also
            _amplitude = Amplitude(generic_amplitude=_int_conv(line[28:33]),
                                   pick_id=pick.resource_id,
                                   waveform_id=pick.waveform_id)
            # Amplitude for coda magnitude
            _amplitude.type = 'END'
            # Set to be evaluating a point in the trace
            _amplitude.category = 'duration'
            _amplitude.unit = 's'
            _amplitude.magnitude_hint = 'Mc'
            if snr is not None:
                _amplitude.snr = snr
            new_event.amplitudes.append(_amplitude)
        # Create new obspy.event.Arrival class referencing above Pick
        if _float_conv(line[33:40]) is None:
            arrival = Arrival(phase=pick.phase_hint, pick_id=pick.resource_id)
            if weight is not None:
                arrival.time_weight = weight
            if _int_conv(line[60:63]) is not None:
                arrival.backazimuth_residual = _int_conv(line[60:63])
            if _float_conv(line[63:68]) is not None:
                arrival.time_residual = _float_conv(line[63:68])
            if _float_conv(line[70:75]) is not None:
                arrival.distance = kilometers2degrees(_float_conv(line[70:75]))
            if _int_conv(line[76:79]) is not None:
                arrival.azimuth = _int_conv(line[76:79])
            new_event.origins[0].arrivals.append(arrival)
        new_event.picks.append(pick)
    return new_event
def __toPick(parser, pick_el, evaluation_mode):
    """
    """
    pick = Pick()
    pick.resource_id = ResourceIdentifier(
        prefix="/".join([RESOURCE_ROOT, "pick"]))

    # Raise a warnings if there is a phase delay
    phase_delay = parser.xpath2obj("phase_delay", pick_el, float)
    if phase_delay is not None:
        msg = "The pick has a phase_delay!"
        raise Exception(msg)

    waveform = pick_el.xpath("waveform")[0]
    network = waveform.get("networkCode")
    station = fix_station_name(waveform.get("stationCode"))
    # Map some station names.
    if station in STATION_DICT:
        station = STATION_DICT[station]
    if not network:
        network = NETWORK_DICT[station]

    location = waveform.get("locationCode") or ""
    channel = waveform.get("channelCode") or ""
    pick.waveform_id = WaveformStreamID(network_code=network,
                                        station_code=station,
                                        channel_code=channel,
                                        location_code=location)
    pick.time, pick.time_errors = __toTimeQuantity(parser, pick_el, "time")
    # Picks without time are not quakeml conform
    if pick.time is None:
        print "Pick has no time and is ignored: %s" % station
        return None
    pick.phase_hint = parser.xpath2obj('phaseHint', pick_el, str)
    onset = parser.xpath2obj('onset', pick_el)
    # Fixing bad and old typo ...
    if onset == "implusive":
        onset = "impulsive"
    if onset:
        pick.onset = onset.lower()
    # Evaluation mode of a pick is global in the SeisHub Event file format.
    #pick.evaluation_mode = evaluation_mode
    # The polarity needs to be mapped.
    polarity = parser.xpath2obj('polarity', pick_el)
    pol_map_dict = {
        'up': 'positive',
        'positive': 'positive',
        'forward': 'positive',
        'forwards': 'positive',
        'right': 'positive',
        'backward': 'negative',
        'backwards': 'negative',
        'left': 'negative',
        'down': 'negative',
        'negative': 'negative',
        'undecidable': 'undecidable',
        'poorup': 'positive',
        'poordown': 'negative'
    }
    if polarity:
        if polarity.lower() in pol_map_dict:
            pick.polarity = pol_map_dict[polarity.lower()]
        else:
            pick.polarity = polarity.lower()

    pick_weight = parser.xpath2obj('weight', pick_el, int)
    if pick_weight is not None:
        pick.extra = AttribDict()
        pick.extra.weight = {'value': pick_weight, 'namespace': NAMESPACE}
    return pick
    def _map_join2phase(self, db):
        """
        Return an obspy Arrival and Pick from an dict of CSS key/values
        corresponding to one record. See the 'Join' section for the implied
        database table join expected.
        
        Inputs
        ======
        db : dict of key/values of CSS fields related to the phases (see Join)

        Returns
        =======
        obspy.core.event.Pick, obspy.core.event.Arrival

        Notes
        =====
        Any object that supports the dict 'get' method can be passed as
        input, e.g. OrderedDict, custom classes, etc.
        
        Join
        ----
        assoc <- arrival <- affiliation (outer) <- schanloc [sta chan] (outer)
        
        """
        p = Pick()
        p.time = _utc(db.get('time'))
        def_net = self.agency[:2].upper()
        css_sta = db.get('sta')
        css_chan = db.get('chan')
        p.waveform_id = WaveformStreamID(
            station_code = db.get('fsta') or css_sta, 
            channel_code = db.get('fchan') or css_chan,
            network_code = db.get('snet') or def_net,
            location_code = db.get('loc'),
            )
        p.horizontal_slowness = db.get('slow')
        #p.horizontal_slowness_errors = self._create_dict(db, 'delslo')
        p.backazimuth = db.get('azimuth')
        #p.backazimuth_errors = self._create_dict(db, 'delaz')
        
        on_qual = _str(db.get('qual')).lower()
        if 'i' in on_qual:
            p.onset = "impulsive"
        elif 'e' in on_qual:
            p.onset = "emergent"
        elif 'w' in on_qual:
            p.onset = "questionable"
        else:
            p.onset =  None
        
        p.phase_hint = db.get('iphase')
        
        pol = _str(db.get('fm')).lower()
        if 'c' in pol or 'u' in pol:
            p.polarity = "positive"
        elif 'd' in pol or 'r' in pol:
            p.polarity = "negative"
        elif '.' in pol:
            p.polarity = "undecidable"
        else:
            p.polarity = None
        
        p.evaluation_mode = "automatic"
        if 'orbassoc' not in _str(db.get('auth')):
            p.evaluation_mode = "manual"
        
        p.evaluation_status = "preliminary"
        if p.evaluation_mode is "manual":
            p.evaluation_status = "reviewed"
        
        p.creation_info = CreationInfo(
            version = db.get('arid'), 
            creation_time = _utc(db.get('arrival.lddate')), 
            agency_id = self.agency, 
            author = db.get('auth'),
            )

        p.resource_id = self._rid(p)

        a = Arrival()
        a.pick_id = ResourceIdentifier(str(p.resource_id), referred_object=p)
        a.phase = db.get('phase')
        a.azimuth = db.get('esaz')
        a.distance = db.get('delta')
        a.takeoff_angle = db.get('ema')
        #a.takeoff_angle_errors = self._create_dict(db, 'emares')
        a.time_residual = db.get('timeres')
        a.horizontal_slowness_residual = db.get('slores')
        a.time_weight = db.get('wgt')
        a.earth_model_id = ResourceIdentifier(self._prefix+'/VelocityModel/'+_str(db.get('vmodel')))
        a.creation_info = CreationInfo(
            version = db.get('arid'), 
            creation_time = _utc(db.get('lddate')),
            agency_id = self.agency,
            )
        a.extra = {}
        a.extra['timedef'] = {
            'value': _str(db.get('timedef')), 
            'namespace': CSS_NAMESPACE
            }
        a.resource_id = self._rid(a)
        return p, a