Exemple #1
0
def rar_spectra(data, fs, rgsmth=4):
    nrg = data.shape[1]
    pp = data[1:] * np.conj(data[0:-1])
    # Intensity spectrum
    data_int = utils.smooth(np.abs(data) ** 2, 10, axis=0)
    mean_intensity_profile = np.mean(data_int, axis=0)
    mask = mean_intensity_profile > (mean_intensity_profile.mean() / 10)
    mask = mask.reshape((1, mask.size))
    data_int_m = mask * data_int
    mean_int = np.sum(data_int_m) / np.sum(mask) / data.shape[0]
    mean_intensity_profile2 = mean_intensity_profile - mean_int * mask.flatten()
    han = np.hanning(data.shape[1]).reshape((1, data.shape[1]))
    data_ac = data_int_m - mask * mean_int
    intens_spectrum = utils.smooth(np.mean(np.abs(np.fft.fft(han * data_ac, axis=1)) ** 2, axis=0), rgsmth)/nrg
    intens_spectrum_noug = utils.smooth(np.abs(np.fft.fft(han * np.mean(data_ac, axis=0), axis=1)) ** 2, rgsmth)/nrg
    phase_spectrum = np.mean(np.abs(np.fft.fft(mask * np.angle(utils.smooth(pp, 10, axis=0)), axis=1)) ** 2, axis=0)
    phase_spectrum = utils.smooth(phase_spectrum, rgsmth)/nrg
    kr = 2 * np.pi * np.fft.fftfreq(intens_spectrum.size, const.c / 2 / fs)
    return kr, mean_intensity_profile2, intens_spectrum, phase_spectrum, intens_spectrum_noug.flatten()
Exemple #2
0
def sar_delta_k_omega(dk_sig, inter_aperture_time, dksmoth=4):
    n_block = dk_sig.shape[0]
    dk_pps = np.zeros((n_block-1, dk_sig.shape[2]), dtype=np.complex)
    dk_omega = np.zeros_like(dk_pps, dtype=np.float)
    for ind_lag in range(1, n_block):
        dk_pp = dk_sig[ind_lag:, :, :] * np.conj(dk_sig[0:n_block - ind_lag, :, :])
        dk_pps[ind_lag-1] = np.mean(np.mean(dk_pp, axis=0), axis=0)
        # dk_pps[ind_lag - 1] = np.mean(dk_pp, axis=0)[0]
        # Angular frequencies
        dk_omega[ind_lag-1] = np.angle(utils.smooth(dk_pps[ind_lag-1], dksmoth)) / (inter_aperture_time * ind_lag)

    #d k_omega = utils.smooth(dk_omega, dksmoth, axis=1)
    return dk_pps, dk_omega
Exemple #3
0
def rar_delta_k_omega(rdk_sig, prt, lags=[1, 2, 4, 8, 16, 32, 64], dksmoth=4):
    n_pulses = rdk_sig.shape[0]
    lags = np.array(lags)
    dk_pps = np.zeros((lags.size, rdk_sig.shape[1]), dtype=np.complex)
    dk_omega = np.zeros_like(dk_pps, dtype=np.float)
    for ind_lag in range(lags.size):
        dk_pp = rdk_sig[lags[ind_lag]:, :] * np.conj(rdk_sig[0:n_pulses - lags[ind_lag], :])
        dk_pps[ind_lag-1] = np.mean(dk_pp, axis=0)
        # dk_pps[ind_lag - 1] = np.mean(dk_pp, axis=0)[0]
        # Angular frequencies
        dk_omega[ind_lag-1] = np.angle(utils.smooth(dk_pps[ind_lag-1], dksmoth)) / (prt * lags[ind_lag])

    return dk_pps, dk_omega
Exemple #4
0
def sar_spectra(sardata, fs, rgsmth=4):
    # azimuth int profile
    nrg = sardata.shape[1]
    az_prof = np.mean(sardata, axis=1)
    mask = sardata > (az_prof.reshape((az_prof.size, 1)) / 10)
    az_prof = np.sum(sardata, axis=1) / np.sum(mask, axis=1)
    # Remove average
    han = np.hanning(sardata.shape[1]).reshape((1, sardata.shape[1]))
    sardata_ac = mask * (sardata - az_prof.reshape((az_prof.size, 1)))
    sarint_spec = np.mean(np.abs(np.fft.fft(sardata_ac * han, axis=1))**2,
                          axis=0) / nrg
    sarint_spec = utils.smooth(sarint_spec, rgsmth)
    kr = 2 * np.pi * np.fft.fftfreq(sarint_spec.size, const.c / 2 / fs)
    return kr, sarint_spec
Exemple #5
0
def view_surface(radsurf, rel, ml=2):
    """
    
    :param rel: realization of radar surface
    :param ml: 
    :return: 
    """
    w_h = radsurf.dz[0]
    v_r = rel["v_r"][0]
    cfg = radsurf.cfg
    v_r_mean = np.mean(v_r)
    v_r_std = np.std(v_r)
    plt.figure()
    plt.imshow(w_h,
               aspect='equal',
               cmap=mpl.cm.winter,
               extent=[0., cfg.ocean.Lx, 0, cfg.ocean.Ly],
               origin='lower',
               vmin=-(np.abs(w_h).max()),
               vmax=(np.abs(w_h).max()))
    plt.xlabel('Ground range [m]')
    plt.ylabel('Azimuth [m]')
    plt.title('Surface Height')
    plt.colorbar()
    sigma = (utils.smooth(np.abs(rel["scene_hh"][0])**2, ml) / cfg.ocean.dx /
             cfg.ocean.dy)
    s_mean = np.mean(sigma)
    dmin = np.max([0, s_mean - 1.5 * np.std(sigma)])
    dmin = utils.db(s_mean - 2 * np.std(sigma))
    #dmin = 0
    dmax = utils.db(s_mean + 2 * np.std(sigma))
    dmin = dmax - 15
    dmax = utils.db(sigma.max())
    # utils.image(utils.db(sigma), aspect='equal', cmap=utils.sea_cmap,
    #             extent=[0., cfg.ocean.Lx, 0, cfg.ocean.Ly],
    #             xlabel='Ground range [m]', ylabel='Azimuth [m]',
    #             title='Backscattering', cbar_xlabel='dB',
    #             min=dmin, max=dmax)
    plt.figure()
    plt.imshow(utils.db(sigma),
               aspect='equal',
               cmap=mpl.cm.viridis,
               extent=[0., cfg.ocean.Lx, 0, cfg.ocean.Ly],
               origin='lower',
               vmin=dmin,
               vmax=dmax)
    plt.xlabel('Ground range [m]')
    plt.ylabel('Azimuth [m]')
    plt.title('Radar Scattering')
    plt.colorbar()
Exemple #6
0
def sar_delta_k_slow(sar_data, fs, dksmoth=4):
    # Number of range samples
    nrg = sar_data.shape[2]
    ndk = int(nrg/2)
    # FFT in range and re-order
    sar_data_f = np.fft.fftshift(np.fft.fft(sar_data, axis=2), axes=(2,))
    dk_sig = np.zeros((sar_data.shape[0], sar_data.shape[1], ndk), dtype=np.complex)
    for ind in range(0, ndk):
        dk_ind = sar_data_f[:, :, ind:] * np.conj(sar_data_f[:, :, 0:nrg - ind])
        dk_sig[:, :, ind] = np.mean(dk_ind, axis=2)
    dk_avg = utils.smooth(np.mean(np.abs(np.mean(dk_sig, axis=0))**2, axis=0), dksmoth)
    # dkr = np.fft.fftshift(2 * np.pi * np.fft.fftfreq(ndk, const.c / 2 / fs))
    dkr = fs / nrg * 2 / const.c * 2 * np.pi * np.arange(ndk)
    return dkr, dk_avg, dk_sig
Exemple #7
0
def view_surface(S, ml=2):
    w_h = S[1]
    v_r = S[2]
    cfg = S[0]
    v_r_mean = np.mean(v_r)
    v_r_std = np.std(v_r)
    plt.figure()
    plt.imshow(w_h,
               aspect='equal',
               cmap=mpl.cm.winter,
               extent=[0., cfg.ocean.Lx, 0, cfg.ocean.Ly],
               origin='lower',
               vmin=-(np.abs(w_h).max()),
               vmax=(np.abs(w_h).max()))
    plt.xlabel('Ground range [m]')
    plt.ylabel('Azimuth [m]')
    plt.title('Surface Height')
    plt.colorbar()
    sigma = (utils.smooth(np.abs(S[-1][0])**2, ml) / cfg.ocean.dx /
             cfg.ocean.dy)
    s_mean = np.mean(sigma)
    dmin = np.max([0, s_mean - 1.5 * np.std(sigma)])
    dmin = utils.db(s_mean - 2 * np.std(sigma))
    #dmin = 0
    dmax = utils.db(s_mean + 2 * np.std(sigma))
    dmin = dmax - 15
    dmax = utils.db(sigma.max())
    # utils.image(utils.db(sigma), aspect='equal', cmap=utils.sea_cmap,
    #             extent=[0., cfg.ocean.Lx, 0, cfg.ocean.Ly],
    #             xlabel='Ground range [m]', ylabel='Azimuth [m]',
    #             title='Backscattering', cbar_xlabel='dB',
    #             min=dmin, max=dmax)
    plt.figure()
    plt.imshow(utils.db(sigma),
               aspect='equal',
               cmap=mpl.cm.viridis,
               extent=[0., cfg.ocean.Lx, 0, cfg.ocean.Ly],
               origin='lower',
               vmin=dmin,
               vmax=dmax)
    plt.xlabel('Ground range [m]')
    plt.ylabel('Azimuth [m]')
    plt.title('Radar Scattering')
    plt.colorbar()
Exemple #8
0
def sar_delta_k(csardata, fs, dksmoth=4):
    # Number of range samples
    nrg = csardata.shape[2]
    sardata = np.abs(csardata)**2
    az_prof = np.mean(np.mean(sardata, axis=2), axis=0)
    burst_avg = np.mean(sardata, axis=0)
    mask = burst_avg > (az_prof.reshape((az_prof.size, 1)) / 10)
    mask = mask.reshape((1,) + mask.shape)
    # Remove average
    han = np.hanning(sardata.shape[2]).reshape((1, 1, sardata.shape[2]))
    sardata_ac = mask * (sardata - az_prof.reshape((1, az_prof.size, 1)))
    dk_sig = np.fft.fft(sardata_ac * han, axis=2) / nrg
    # Keep only positive frequencies, since input signal was real
    ndk = int(nrg/2)
    dk_sig = dk_sig[:, :, 0:int(ndk)]
    dk_avg = utils.smooth(np.mean(np.abs(np.mean(dk_sig, axis=0))**2, axis=0), dksmoth)
    # After smoothing we would down-sample, but not needed  for simulator
    dkr = fs / nrg * 2 / const.c * 2 * np.pi * np.arange(ndk)
    return dkr, dk_avg, dk_sig
Exemple #9
0
def rar_delta_k(data, fs, dksmoth=4):
    # Number of range samples
    nrg = data.shape[1]
    idata = np.abs(data)**2
    az_prof = np.mean(idata, axis=1)
    burst_avg = np.mean(idata, axis=0)
    mask = burst_avg > burst_avg.max()/10
    mask = mask.reshape((1, mask.size))
    # Remove average
    han = np.hanning(idata.shape[1]).reshape((1, idata.shape[1]))
    idata_ac = mask * (idata - az_prof.reshape((az_prof.size, 1)))
    rdk_sig = np.fft.fft(idata_ac * han, axis=1) / nrg
    # Keep only positive frequencies, since input signal was real
    ndk = int(nrg/2)
    rdk_sig = rdk_sig[:, 0:int(ndk)]
    rdk_avg = utils.smooth(np.abs(np.mean(rdk_sig, axis=0))**2, dksmoth)
    # After smoothing we would down-sample, but not needed  for simulator
    dkr = fs / nrg * 2 / const.c * 2 * np.pi * np.arange(ndk)
    return dkr, rdk_avg, rdk_sig
Exemple #10
0
def ati_process(cfg_file, proc_output_file, ocean_file, output_file):

    print('-------------------------------------------------------------------')
    print(time.strftime("- OCEANSAR ATI Processor: [%Y-%m-%d %H:%M:%S]", time.localtime()))
    print('-------------------------------------------------------------------')

    print('Initializing...')

    ## CONFIGURATION FILE
    cfg = tpio.ConfigFile(cfg_file)

    # SAR
    inc_angle = np.deg2rad(cfg.sar.inc_angle)
    f0 = cfg.sar.f0
    prf = cfg.sar.prf
    num_ch = cfg.sar.num_ch
    ant_L = cfg.sar.ant_L
    alt = cfg.sar.alt
    v_ground = cfg.sar.v_ground
    rg_bw = cfg.sar.rg_bw
    over_fs = cfg.sar.over_fs
    pol = cfg.sar.pol
    if pol == 'DP':
        polt = ['hh', 'vv']
    elif pol == 'hh':
        polt = ['hh']
    else:
        polt = ['vv']
    # ATI
    rg_ml = cfg.ati.rg_ml
    az_ml = cfg.ati.az_ml
    ml_win = cfg.ati.ml_win
    plot_save = cfg.ati.plot_save
    plot_path = cfg.ati.plot_path
    plot_format = cfg.ati.plot_format
    plot_tex = cfg.ati.plot_tex
    plot_surface = cfg.ati.plot_surface
    plot_proc_ampl = cfg.ati.plot_proc_ampl
    plot_coh = cfg.ati.plot_coh
    plot_coh_all = cfg.ati.plot_coh_all
    plot_ati_phase = cfg.ati.plot_ati_phase
    plot_ati_phase_all = cfg.ati.plot_ati_phase_all
    plot_vel_hist = cfg.ati.plot_vel_hist
    plot_vel = cfg.ati.plot_vel

    ## CALCULATE PARAMETERS
    if v_ground == 'auto': v_ground = geosar.orbit_to_vel(alt, ground=True)
    k0 = 2.*np.pi*f0/const.c
    rg_sampling = rg_bw*over_fs

    # PROCESSED RAW DATA
    proc_content = tpio.ProcFile(proc_output_file, 'r')
    proc_data = proc_content.get('slc*')
    proc_content.close()

    # OCEAN SURFACE
    surface = OceanSurface()
    surface.load(ocean_file, compute=['D', 'V'])
    surface.t = 0.

    # OUTPUT FILE
    output = open(output_file, 'w')

    # OTHER INITIALIZATIONS
    # Enable TeX
    if plot_tex:
        plt.rc('font', family='serif')
        plt.rc('text', usetex=True)

    # Create plots directory
    plot_path = os.path.dirname(output_file) + os.sep + plot_path
    if plot_save:
        if not os.path.exists(plot_path):
            os.makedirs(plot_path)

    # SURFACE VELOCITIES
    grg_grid_spacing = (const.c/2./rg_sampling/np.sin(inc_angle))
    rg_res_fact = grg_grid_spacing / surface.dx
    az_grid_spacing = (v_ground/prf)
    az_res_fact = az_grid_spacing / surface.dy
    res_fact = np.ceil(np.sqrt(rg_res_fact*az_res_fact))

    # SURFACE RADIAL VELOCITY
    v_radial_surf = surface.Vx*np.sin(inc_angle) - surface.Vz*np.cos(inc_angle)
    v_radial_surf_ml = utils.smooth(utils.smooth(v_radial_surf, res_fact * rg_ml, axis=1), res_fact * az_ml, axis=0)
    v_radial_surf_mean = np.mean(v_radial_surf)
    v_radial_surf_std = np.std(v_radial_surf)
    v_radial_surf_ml_std = np.std(v_radial_surf_ml)

    # SURFACE HORIZONTAL VELOCITY
    v_horizo_surf = surface.Vx
    v_horizo_surf_ml = utils.smooth(utils.smooth(v_horizo_surf, res_fact * rg_ml, axis=1), res_fact * az_ml, axis=0)
    v_horizo_surf_mean = np.mean(v_horizo_surf)
    v_horizo_surf_std = np.std(v_horizo_surf)
    v_horizo_surf_ml_std = np.std(v_horizo_surf_ml)

    # Expected mean azimuth shift
    sr0 = geosar.inc_to_sr(inc_angle, alt)
    avg_az_shift = - v_radial_surf_mean / v_ground * sr0
    std_az_shift = v_radial_surf_std / v_ground * sr0
    ##################
    # ATI PROCESSING #
    ##################

    print('Starting ATI processing...')

    # Get dimensions & calculate region of interest
    rg_span = surface.Lx
    az_span = surface.Ly
    rg_size = proc_data[0].shape[2]
    az_size = proc_data[0].shape[1]

    # Note: RG is projected, so plots are Ground Range
    rg_min = 0
    rg_max = np.int(rg_span/(const.c/2./rg_sampling/np.sin(inc_angle)))
    az_min = np.int(az_size/2. + (-az_span/2. + avg_az_shift)/(v_ground/prf))
    az_max = np.int(az_size/2. + (az_span/2. + avg_az_shift)/(v_ground/prf))
    az_guard = np.int(std_az_shift / (v_ground / prf))
    if (az_max - az_min) < (2 * az_guard - 10):
        print('Not enough edge-effect free image')
        return

    # Adaptive coregistration
    if cfg.sar.L_total:
        ant_L = ant_L/np.float(num_ch)
        dist_chan = ant_L/2
    else:
        if np.float(cfg.sar.Spacing) != 0:
            dist_chan = np.float(cfg.sar.Spacing)/2
        else:
            dist_chan = ant_L/2
    # dist_chan = ant_L/num_ch/2.
    print('ATI Spacing: %f' % dist_chan)
    inter_chan_shift_dist = dist_chan/(v_ground/prf)
    # Subsample shift in azimuth
    for chind in range(proc_data.shape[0]):
        shift_dist = - chind * inter_chan_shift_dist
        shift_arr = np.exp(-2j * np.pi * shift_dist *
                           np.roll(np.arange(az_size) - az_size/2,
                                   int(-az_size / 2)) / az_size)
        shift_arr = shift_arr.reshape((1, az_size, 1))
        proc_data[chind] = np.fft.ifft(np.fft.fft(proc_data[chind], axis=1) *
                                       shift_arr, axis=1)

    # First dimension is number of channels, second is number of pols
    ch_dim = proc_data.shape[0:2]
    npol = ch_dim[1]
    proc_data_rshp = [np.prod(ch_dim), proc_data.shape[2], proc_data.shape[3]]
    # Compute extended covariance matrices...
    proc_data = proc_data.reshape(proc_data_rshp)
    # Intensities
    i_all = []
    for chind in range(proc_data.shape[0]):
        this_i = utils.smooth(utils.smooth(np.abs(proc_data[chind])**2., rg_ml, axis=1, window=ml_win),
                              az_ml, axis=0, window=ml_win)
        i_all.append(this_i[az_min:az_max, rg_min:rg_max])
    i_all = np.array(i_all)
    # .reshape((ch_dim) + (az_max - az_min, rg_max - rg_min))
    interfs = []
    cohs = []
    tind = 0
    coh_lut = np.zeros((proc_data.shape[0], proc_data.shape[0]), dtype=int)
    for chind1 in range(proc_data.shape[0]):
        for chind2 in range(chind1 + 1, proc_data.shape[0]):
            coh_lut[chind1, chind2] = tind
            tind = tind + 1
            t_interf = utils.smooth(utils.smooth(proc_data[chind2] *
                                                 np.conj(proc_data[chind1]),
                                                 rg_ml, axis=1, window=ml_win),
                                    az_ml, axis=0, window=ml_win)
            interfs.append(t_interf[az_min:az_max, rg_min:rg_max])
            cohs.append(t_interf[az_min:az_max, rg_min:rg_max] /
                        np.sqrt(i_all[chind1] * i_all[chind2]))

    print('Generating plots and estimating values...')

    # SURFACE HEIGHT
    if plot_surface:
        plt.figure()
        plt.imshow(surface.Dz, cmap="ocean",
                   extent=[0, surface.Lx, 0, surface.Ly], origin='lower')
        plt.title('Surface Height')
        plt.xlabel('Ground range [m]')
        plt.ylabel('Azimuth [m]')
        cbar = plt.colorbar()
        cbar.ax.set_xlabel('[m]')

        if plot_save:
            plt.savefig(plot_path + os.sep + 'plot_surface.' + plot_format,
                        bbox_inches='tight')
            plt.close()
        else:
            plt.show()


    # PROCESSED AMPLITUDE
    if plot_proc_ampl:
        for pind in range(npol):
            save_path = (plot_path + os.sep + 'amp_dB_' + polt[pind]+
                         '.' + plot_format)
            plt.figure()
            plt.imshow(utils.db(i_all[pind]), aspect='equal',
                       origin='lower',
                       vmin=utils.db(np.max(i_all[pind]))-20,
                       extent=[0., rg_span, 0., az_span], interpolation='nearest',
                       cmap='viridis')
            plt.xlabel('Ground range [m]')
            plt.ylabel('Azimuth [m]')
            plt.title("Amplitude")
            plt.colorbar()
            plt.savefig(save_path)

            save_path = (plot_path + os.sep + 'amp_' + polt[pind]+
                         '.' + plot_format)
            int_img = (i_all[pind])**0.5
            vmin = np.mean(int_img) - 3 * np.std(int_img)
            vmax = np.mean(int_img) + 3 * np.std(int_img)
            plt.figure()
            plt.imshow(int_img, aspect='equal',
                       origin='lower',
                       vmin=vmin, vmax=vmax,
                       extent=[0., rg_span, 0., az_span], interpolation='nearest',
                       cmap='viridis')
            plt.xlabel('Ground range [m]')
            plt.ylabel('Azimuth [m]')
            plt.title("Amplitude")
            plt.colorbar()
            plt.savefig(save_path)

    if plot_coh and ch_dim[0] > 1:
        for pind in range(npol):
            save_path = (plot_path + os.sep + 'ATI_coh_' +
                         polt[pind] + polt[pind] +
                         '.' + plot_format)
            coh_ind = coh_lut[(pind, pind + npol)]
            plt.figure()
            plt.imshow(np.abs(cohs[coh_ind]), aspect='equal',
                       origin='lower',
                       vmin=0, vmax=1,
                       extent=[0., rg_span, 0., az_span],
                       cmap='bone')
            plt.xlabel('Ground range [m]')
            plt.ylabel('Azimuth [m]')
            plt.title("ATI Coherence")
            # plt.colorbar()
            plt.savefig(save_path)

    # ATI PHASE

    tau_ati = dist_chan/v_ground

    ati_phases = []
    # Hack to avoid interferogram computation if there are no interferometric channels
    if num_ch > 1:
        npol_ = npol
    else:
        npol_ = 0
    for pind in range(npol_):
        save_path = (plot_path + os.sep + 'ATI_pha_' +
                     polt[pind] + polt[pind] +
                     '.' + plot_format)
        coh_ind = coh_lut[(pind, pind + npol)]
        ati_phase = uwphase(cohs[coh_ind])
        ati_phases.append(ati_phase)
        v_radial_est = -ati_phase / tau_ati / (k0 * 2.)
        if plot_ati_phase:
            phase_mean = np.mean(ati_phase)
            phase_std = np.std(ati_phase)
            vmin = np.max([-np.abs(phase_mean) - 4*phase_std,
                           -np.abs(ati_phase).max()])
            vmax = np.min([np.abs(phase_mean) + 4*phase_std,
                           np.abs(ati_phase).max()])
            plt.figure()
            plt.imshow(ati_phase, aspect='equal',
                       origin='lower',
                       vmin=vmin, vmax=vmax,
                       extent=[0., rg_span, 0., az_span],
                       cmap='hsv')
            plt.xlabel('Ground range [m]')
            plt.ylabel('Azimuth [m]')
            plt.title("ATI Phase")
            plt.colorbar()
            plt.savefig(save_path)

            save_path = (plot_path + os.sep + 'ATI_rvel_' +
                         polt[pind] + polt[pind] +
                         '.' + plot_format)
            vmin = -np.abs(v_radial_surf_mean) - 4. * v_radial_surf_std
            vmax = np.abs(v_radial_surf_mean) + 4. * v_radial_surf_std
            plt.figure()
            plt.imshow(v_radial_est, aspect='equal',
                       origin='lower',
                       vmin=vmin, vmax=vmax,
                       extent=[0., rg_span, 0., az_span],
                       cmap='bwr')
            plt.xlabel('Ground range [m]')
            plt.ylabel('Azimuth [m]')
            plt.title("Estimated Radial Velocity " + polt[pind])
            plt.colorbar()
            plt.savefig(save_path)

    if npol_ == 4:  # Bypass this for now
        # Cross pol interferogram
        coh_ind = coh_lut[(0, 1)]
        save_path = (plot_path + os.sep + 'POL_coh_' +
                     polt[0] + polt[1] +
                     '.' + plot_format)
        utils.image(np.abs(cohs[coh_ind]), max=1, min=0, aspect='equal',
                    cmap='gray', extent=[0., rg_span, 0., az_span],
                    xlabel='Ground range [m]', ylabel='Azimuth [m]',
                    title='XPOL Coherence',
                    usetex=plot_tex, save=plot_save, save_path=save_path)
        save_path = (plot_path + os.sep + 'POL_pha_' +
                     polt[0] + polt[1] +
                     '.' + plot_format)
        ati_phase = uwphase(cohs[coh_ind])
        phase_mean = np.mean(ati_phase)
        phase_std = np.std(ati_phase)
        vmin = np.max([-np.abs(phase_mean) - 4*phase_std, -np.pi])
        vmax = np.min([np.abs(phase_mean) + 4*phase_std, np.pi])
        utils.image(ati_phase, aspect='equal',
                    min=vmin,  max=vmax,
                    cmap=utils.bwr_cmap, extent=[0., rg_span, 0., az_span],
                    xlabel='Ground range [m]', ylabel='Azimuth [m]',
                    title='XPOL Phase', cbar_xlabel='[rad]',
                    usetex=plot_tex, save=plot_save, save_path=save_path)

    if num_ch > 1:
        ati_phases = np.array(ati_phases)

        output.write('--------------------------------------------\n')
        output.write('SURFACE RADIAL VELOCITY - NO SMOOTHING\n')
        output.write('MEAN(SURF. V) = %.4f\n' % v_radial_surf_mean)
        output.write('STD(SURF. V) = %.4f\n' % v_radial_surf_std)
        output.write('--------------------------------------------\n\n')

        output.write('--------------------------------------------\n')
        output.write('SURFACE RADIAL VELOCITY - SMOOTHING (WIN. SIZE=%dx%d)\n' % (az_ml, rg_ml))
        output.write('MEAN(SURF. V) = %.4f\n' % v_radial_surf_mean)
        output.write('STD(SURF. V) = %.4f\n' % v_radial_surf_ml_std)
        output.write('--------------------------------------------\n\n')

        output.write('--------------------------------------------\n')
        output.write('SURFACE HORIZONTAL VELOCITY - NO SMOOTHING\n')
        output.write('MEAN(SURF. V) = %.4f\n' % v_horizo_surf_mean)
        output.write('STD(SURF. V) = %.4f\n' % v_horizo_surf_std)
        output.write('--------------------------------------------\n\n')

        if plot_vel_hist:
            # PLOT RADIAL VELOCITY
            plt.figure()

            plt.hist(v_radial_surf.flatten(), 200, normed=True, histtype='step')
            #plt.hist(v_radial_surf_ml.flatten(), 500, normed=True, histtype='step')
            plt.grid(True)
            plt.xlim([-np.abs(v_radial_surf_mean) - 4.*v_radial_surf_std, np.abs(v_radial_surf_mean) + 4.* v_radial_surf_std])
            plt.xlabel('Radial velocity [m/s]')
            plt.ylabel('PDF')
            plt.title('Surface velocity')

            if plot_save:
                plt.savefig(plot_path + os.sep + 'TRUE_radial_vel_hist.' + plot_format)
                plt.close()
            else:
                plt.show()

            plt.figure()
            plt.hist(v_radial_surf_ml.flatten(), 200, normed=True, histtype='step')
            #plt.hist(v_radial_surf_ml.flatten(), 500, normed=True, histtype='step')
            plt.grid(True)
            plt.xlim([-np.abs(v_radial_surf_mean) - 4.*v_radial_surf_std, np.abs(v_radial_surf_mean) + 4.* v_radial_surf_std])
            plt.xlabel('Radial velocity [m/s]')
            plt.ylabel('PDF')
            plt.title('Surface velocity (low pass filtered)')

            if plot_save:
                plt.savefig(plot_path + os.sep + 'TRUE_radial_vel_ml_hist.' + plot_format)
                plt.close()
            else:
                plt.show()

        if plot_vel:

            utils.image(v_radial_surf, aspect='equal', cmap=utils.bwr_cmap, extent=[0., rg_span, 0., az_span],
                        xlabel='Ground range [m]', ylabel='Azimuth [m]', title='Surface Radial Velocity', cbar_xlabel='[m/s]',
                        min=-np.abs(v_radial_surf_mean) - 4.*v_radial_surf_std, max=np.abs(v_radial_surf_mean) + 4.*v_radial_surf_std,
                        usetex=plot_tex, save=plot_save, save_path=plot_path + os.sep + 'TRUE_radial_vel.' + plot_format)
            utils.image(v_radial_surf_ml, aspect='equal', cmap=utils.bwr_cmap, extent=[0., rg_span, 0., az_span],
                        xlabel='Ground range [m]', ylabel='Azimuth [m]', title='Surface Radial Velocity', cbar_xlabel='[m/s]',
                        min=-np.abs(v_radial_surf_mean) - 4.*v_radial_surf_std, max=np.abs(v_radial_surf_mean) + 4.*v_radial_surf_std,
                        usetex=plot_tex, save=plot_save, save_path=plot_path + os.sep + 'TRUE_radial_vel_ml.' + plot_format)

        ##  ESTIMATED VELOCITIES

        # Note: plot limits are taken from surface calculations to keep the same ranges

        # ESTIMATE RADIAL VELOCITY
        v_radial_ests = -ati_phases/tau_ati/(k0*2.)

        # ESTIMATE HORIZONTAL VELOCITY
        v_horizo_ests = -ati_phases/tau_ati/(k0*2.)/np.sin(inc_angle)

        #Trim edges
        v_radial_ests = v_radial_ests[:, az_guard:-az_guard, 5:-5]
        v_horizo_ests = v_horizo_ests[:, az_guard:-az_guard, 5:-5]
        output.write('--------------------------------------------\n')
        output.write('ESTIMATED RADIAL VELOCITY - NO SMOOTHING\n')
        for pind in range(npol):
            output.write("%s Polarization\n" % polt[pind])
            output.write('MEAN(EST. V) = %.4f\n' % np.mean(v_radial_ests[pind]))
            output.write('STD(EST. V) = %.4f\n' % np.std(v_radial_ests[pind]))
        output.write('--------------------------------------------\n\n')

        output.write('--------------------------------------------\n')
        output.write('ESTIMATED RADIAL VELOCITY - SMOOTHING (WIN. SIZE=%dx%d)\n' % (az_ml, rg_ml))
        for pind in range(npol):
            output.write("%s Polarization\n" % polt[pind])
            output.write('MEAN(EST. V) = %.4f\n' % np.mean(utils.smooth(utils.smooth(v_radial_ests[pind],
                                                                                     rg_ml, axis=1),
                                                                        az_ml, axis=0)))
            output.write('STD(EST. V) = %.4f\n' % np.std(utils.smooth(utils.smooth(v_radial_ests[pind],
                                                                                   rg_ml, axis=1),
                                                                      az_ml, axis=0)))
        output.write('--------------------------------------------\n\n')

        output.write('--------------------------------------------\n')
        output.write('ESTIMATED HORIZONTAL VELOCITY - NO SMOOTHING\n')
        for pind in range(npol):
            output.write("%s Polarization\n" % polt[pind])
            output.write('MEAN(EST. V) = %.4f\n' % np.mean(v_horizo_ests[pind]))
            output.write('STD(EST. V) = %.4f\n' % np.std(v_horizo_ests[pind]))
        output.write('--------------------------------------------\n\n')

    # Processed NRCS

    NRCS_est_avg = 10*np.log10(np.mean(np.mean(i_all[:, az_guard:-az_guard, 5:-5], axis=-1), axis=-1))
    output.write('--------------------------------------------\n')
    for pind in range(npol):
        output.write("%s Polarization\n" % polt[pind])
        output.write('Estimated mean NRCS = %5.2f\n' % NRCS_est_avg[pind])
    output.write('--------------------------------------------\n\n')

    # Some bookkeeping information
    output.write('--------------------------------------------\n')
    output.write('GROUND RANGE GRID SPACING = %.4f\n' % grg_grid_spacing)
    output.write('AZIMUTH GRID SPACING = %.4f\n' % az_grid_spacing)
    output.write('--------------------------------------------\n\n')

    output.close()

    if plot_vel_hist and num_ch > 1:
        # PLOT RADIAL VELOCITY
        plt.figure()
        plt.hist(v_radial_surf.flatten(), 200, normed=True, histtype='step',
                 label='True')
        for pind in range(npol):
            plt.hist(v_radial_ests[pind].flatten(), 200, normed=True,
                     histtype='step', label=polt[pind])
        plt.grid(True)
        plt.xlim([-np.abs(v_radial_surf_mean) - 4.*v_radial_surf_std,
                  np.abs(v_radial_surf_mean) + 4.*v_radial_surf_std])
        plt.xlabel('Radial velocity [m/s]')
        plt.ylabel('PDF')
        plt.title('Estimated velocity')
        plt.legend()

        if plot_save:
            plt.savefig(plot_path + os.sep + 'ATI_radial_vel_hist.' + plot_format)
            plt.close()
        else:
            plt.show()

    # Save some statistics to npz file
    #
    if num_ch > 1:
        filenpz = os.path.join(os.path.dirname(output_file), 'ati_stats.npz')
        # Mean coh
        cohs = np.array(cohs)[:, az_guard:-az_guard, 5:-5]

        np.savez(filenpz,
                 nrcs=NRCS_est_avg,
                 v_r_dop=np.mean(np.mean(v_radial_ests, axis=-1), axis=-1),
                 v_r_surf = v_radial_surf_mean,
                 v_r_surf_std = v_radial_surf_std,
                 coh_mean= np.mean(np.mean(cohs, axis=-1), axis=-1),
                 abscoh_mean=np.mean(np.mean(np.abs(cohs), axis=-1), axis=-1),
                 coh_lut=coh_lut,
                 pols=polt)
    print('----------------------------------------')
    print(time.strftime("ATI Processing finished [%Y-%m-%d %H:%M:%S]", time.localtime()))
    print('----------------------------------------')
Exemple #11
0
def l2_wavespectrum(cfg_file, proc_output_file, ocean_file, output_file):

    print(
        '-------------------------------------------------------------------')
    print(
        time.strftime("- OCEANSAR L2 Wavespectra: [%Y-%m-%d %H:%M:%S]",
                      time.localtime()))
    print(
        '-------------------------------------------------------------------')

    print('Initializing...')

    ## CONFIGURATION FILE
    cfg = tpio.ConfigFile(cfg_file)

    # SAR
    inc_angle = np.deg2rad(cfg.sar.inc_angle)
    f0 = cfg.sar.f0
    prf = cfg.sar.prf
    num_ch = cfg.sar.num_ch
    ant_L = cfg.sar.ant_L
    alt = cfg.sar.alt
    v_ground = cfg.sar.v_ground
    rg_bw = cfg.sar.rg_bw
    over_fs = cfg.sar.over_fs
    pol = cfg.sar.pol
    if pol == 'DP':
        polt = ['hh', 'vv']
    elif pol == 'hh':
        polt = ['hh']
    else:
        polt = ['vv']
        # L2 wavespectrum
    rg_ml = cfg.L2_wavespectrum.rg_ml
    az_ml = cfg.L2_wavespectrum.az_ml
    krg_ml = cfg.L2_wavespectrum.krg_ml
    kaz_ml = cfg.L2_wavespectrum.kaz_ml
    ml_win = cfg.L2_wavespectrum.ml_win
    plot_save = cfg.L2_wavespectrum.plot_save
    plot_path = cfg.L2_wavespectrum.plot_path
    plot_format = cfg.L2_wavespectrum.plot_format
    plot_tex = cfg.L2_wavespectrum.plot_tex
    plot_surface = cfg.L2_wavespectrum.plot_surface
    plot_proc_ampl = cfg.L2_wavespectrum.plot_proc_ampl
    plot_spectrum = cfg.L2_wavespectrum.plot_spectrum
    n_sublook = cfg.L2_wavespectrum.n_sublook
    sublook_weighting = cfg.L2_wavespectrum.sublook_az_weighting

    ## CALCULATE PARAMETERS
    if v_ground == 'auto': v_ground = geosar.orbit_to_vel(alt, ground=True)
    k0 = 2. * np.pi * f0 / const.c
    rg_sampling = rg_bw * over_fs

    # PROCESSED RAW DATA
    proc_content = tpio.ProcFile(proc_output_file, 'r')
    proc_data = proc_content.get('slc*')
    proc_content.close()

    # OCEAN SURFACE
    surface = OceanSurface()
    surface.load(ocean_file, compute=['D', 'V'])
    surface.t = 0.

    # OUTPUT FILE
    output = open(output_file, 'w')

    # OTHER INITIALIZATIONS
    # Enable TeX
    if plot_tex:
        plt.rc('font', family='serif')
        plt.rc('text', usetex=True)

    # Create plots directory
    plot_path = os.path.dirname(output_file) + os.sep + plot_path
    if plot_save:
        if not os.path.exists(plot_path):
            os.makedirs(plot_path)

    # SURFACE VELOCITIES
    grg_grid_spacing = (const.c / 2. / rg_sampling / np.sin(inc_angle))
    rg_res_fact = grg_grid_spacing / surface.dx
    az_grid_spacing = (v_ground / prf)
    az_res_fact = az_grid_spacing / surface.dy
    res_fact = np.ceil(np.sqrt(rg_res_fact * az_res_fact))

    # SURFACE RADIAL VELOCITY
    v_radial_surf = surface.Vx * np.sin(inc_angle) - surface.Vz * np.cos(
        inc_angle)
    v_radial_surf_ml = utils.smooth(utils.smooth(v_radial_surf,
                                                 res_fact * rg_ml,
                                                 axis=1),
                                    res_fact * az_ml,
                                    axis=0)
    v_radial_surf_mean = np.mean(v_radial_surf)
    v_radial_surf_std = np.std(v_radial_surf)
    v_radial_surf_ml_std = np.std(v_radial_surf_ml)

    # Expected mean azimuth shift
    sr0 = geosar.inc_to_sr(inc_angle, alt)
    avg_az_shift = -v_radial_surf_mean / v_ground * sr0
    std_az_shift = v_radial_surf_std / v_ground * sr0

    print('Starting Wavespectrum processing...')

    # Get dimensions & calculate region of interest
    rg_span = surface.Lx
    az_span = surface.Ly
    rg_size = proc_data[0].shape[2]
    az_size = proc_data[0].shape[1]

    # Note: RG is projected, so plots are Ground Range
    rg_min = 0
    rg_max = np.int(rg_span / (const.c / 2. / rg_sampling / np.sin(inc_angle)))
    az_min = np.int(az_size / 2. + (-az_span / 2. + avg_az_shift) /
                    (v_ground / prf))
    az_max = np.int(az_size / 2. + (az_span / 2. + avg_az_shift) /
                    (v_ground / prf))
    az_guard = np.int(std_az_shift / (v_ground / prf))
    az_min = az_min + az_guard
    az_max = az_max - az_guard
    if (az_max - az_min) < (2 * az_guard - 10):
        print('Not enough edge-effect free image')
        return

    # Adaptive coregistration
    if cfg.sar.L_total:
        ant_L = ant_L / np.float(num_ch)
        dist_chan = ant_L / 2
    else:
        if np.float(cfg.sar.Spacing) != 0:
            dist_chan = np.float(cfg.sar.Spacing) / 2
        else:
            dist_chan = ant_L / 2
    # dist_chan = ant_L/num_ch/2.
    print('ATI Spacing: %f' % dist_chan)
    inter_chan_shift_dist = dist_chan / (v_ground / prf)
    # Subsample shift in azimuth
    for chind in range(proc_data.shape[0]):
        shift_dist = -chind * inter_chan_shift_dist
        shift_arr = np.exp(
            -2j * np.pi * shift_dist *
            np.roll(np.arange(az_size) - az_size / 2, int(-az_size / 2)) /
            az_size)
        shift_arr = shift_arr.reshape((1, az_size, 1))
        proc_data[chind] = np.fft.ifft(np.fft.fft(proc_data[chind], axis=1) *
                                       shift_arr,
                                       axis=1)

    # First dimension is number of channels, second is number of pols
    ch_dim = proc_data.shape[0:2]
    npol = ch_dim[1]
    proc_data_rshp = [np.prod(ch_dim), proc_data.shape[2], proc_data.shape[3]]
    # Compute extended covariance matrices...
    proc_data = proc_data.reshape(proc_data_rshp)
    # Intensities
    i_all = []
    for chind in range(proc_data.shape[0]):
        this_i = utils.smooth(utils.smooth(np.abs(proc_data[chind])**2.,
                                           rg_ml,
                                           axis=1,
                                           window=ml_win),
                              az_ml,
                              axis=0,
                              window=ml_win)
        i_all.append(this_i[az_min:az_max, rg_min:rg_max])
    i_all = np.array(i_all)

    ## Wave spectra computation
    ## Processed Doppler bandwidth
    proc_bw = cfg.processing.doppler_bw
    PRF = cfg.sar.prf
    fa = np.fft.fftfreq(proc_data_rshp[1], 1 / PRF)
    # Filters
    sublook_filt = []
    sublook_bw = proc_bw / n_sublook
    for i_sbl in range(n_sublook):
        fa_min = -1 * proc_bw / 2 + i_sbl * sublook_bw
        fa_max = fa_min + sublook_bw
        fa_c = (fa_max + fa_min) / 2
        win = np.where(
            np.logical_and(fa > fa_min, fa < fa_max),
            (sublook_weighting -
             (1 - sublook_weighting) * np.cos(2 * np.pi *
                                              (fa - fa_min) / sublook_bw)), 0)
        sublook_filt.append(win)

    # Apply sublooks
    az_downsmp = int(np.floor(az_ml / 2))
    rg_downsmp = int(np.floor(rg_ml / 2))
    sublooks = []
    sublooks_f = []
    for i_sbl in range(n_sublook):
        # Go to frequency domain
        sublook_data = np.fft.ifft(np.fft.fft(proc_data, axis=1) *
                                   sublook_filt[i_sbl].reshape(
                                       (1, proc_data_rshp[1], 1)),
                                   axis=1)
        # Get intensities
        sublook_data = np.abs(sublook_data)**2
        # Multilook
        for chind in range(proc_data.shape[0]):
            sublook_data[chind] = utils.smooth(utils.smooth(
                sublook_data[chind], rg_ml, axis=1),
                                               az_ml,
                                               axis=0)
        # Keep only valid part and down sample
        sublook_data = sublook_data[:, az_min:az_max:az_downsmp,
                                    rg_min:rg_max:rg_downsmp]
        sublooks.append(sublook_data)
        sublooks_f.append(
            np.fft.fft(np.fft.fft(sublook_data - np.mean(sublook_data),
                                  axis=1),
                       axis=2))

    kaz = 2 * np.pi * np.fft.fftfreq(sublook_data.shape[1],
                                     az_downsmp * az_grid_spacing)
    kgrg = 2 * np.pi * np.fft.fftfreq(sublook_data.shape[2],
                                      rg_downsmp * grg_grid_spacing)

    xspecs = []
    tind = 0
    xspec_lut = np.zeros((len(sublooks), len(sublooks)), dtype=int)

    for ind1 in range(len(sublooks)):
        for ind2 in range(ind1 + 1, len(sublooks)):
            xspec_lut[ind1, ind2] = tind
            tind = tind + 1
            xspec = sublooks_f[ind1] * np.conj(sublooks_f[ind2])
            xspecs.append(xspec)

    with open(output_file, 'wb') as output:
        pickle.dump(xspecs, output, pickle.HIGHEST_PROTOCOL)
        pickle.dump([kaz, kgrg], output, pickle.HIGHEST_PROTOCOL)

    # PROCESSED AMPLITUDE
    if plot_proc_ampl:
        for pind in range(npol):
            save_path = (plot_path + os.sep + 'amp_dB_' + polt[pind] + '.' +
                         plot_format)
            plt.figure()
            plt.imshow(utils.db(i_all[pind]),
                       aspect='equal',
                       origin='lower',
                       vmin=utils.db(np.max(i_all[pind])) - 20,
                       extent=[0., rg_span, 0., az_span],
                       interpolation='nearest',
                       cmap='viridis')
            plt.xlabel('Ground range [m]')
            plt.ylabel('Azimuth [m]')
            plt.title("Amplitude")
            plt.colorbar()
            plt.savefig(save_path)

            save_path = (plot_path + os.sep + 'amp_' + polt[pind] + '.' +
                         plot_format)
            int_img = (i_all[pind])**0.5
            vmin = np.mean(int_img) - 3 * np.std(int_img)
            vmax = np.mean(int_img) + 3 * np.std(int_img)
            plt.figure()
            plt.imshow(int_img,
                       aspect='equal',
                       origin='lower',
                       vmin=vmin,
                       vmax=vmax,
                       extent=[0., rg_span, 0., az_span],
                       interpolation='nearest',
                       cmap='viridis')
            plt.xlabel('Ground range [m]')
            plt.ylabel('Azimuth [m]')
            plt.title("Amplitude")
            plt.colorbar()
            plt.savefig(save_path)

    ## FIXME: I am plotting the cross spectrum for the first polarization and the first channel only, which is not
    ## very nice. To be fixed, in particular por multiple polarizations

    for ind1 in range(len(sublooks)):
        for ind2 in range(ind1 + 1, len(sublooks)):
            save_path_abs = os.path.join(plot_path,
                                         ('xspec_abs_%i%i.%s' %
                                          (ind1 + 1, ind2 + 1, plot_format)))
            save_path_pha = os.path.join(plot_path,
                                         ('xspec_pha_%i%i.%s' %
                                          (ind1 + 1, ind2 + 1, plot_format)))
            save_path_im = os.path.join(plot_path,
                                        ('xspec_im_%i%i.%s' %
                                         (ind1 + 1, ind2 + 1, plot_format)))
            ml_xspec = utils.smooth(utils.smooth(np.fft.fftshift(
                xspecs[xspec_lut[ind1, ind2]][0]),
                                                 krg_ml,
                                                 axis=1),
                                    kaz_ml,
                                    axis=0)
            plt.figure()
            plt.imshow(np.abs(ml_xspec),
                       origin='lower',
                       cmap='inferno_r',
                       extent=[kgrg.min(),
                               kgrg.max(),
                               kaz.min(),
                               kaz.max()],
                       interpolation='nearest')
            plt.grid(True)
            pltax = plt.gca()
            pltax.set_xlim((-0.1, 0.1))
            pltax.set_ylim((-0.1, 0.1))
            northarr_length = 0.075  # np.min([surface_full.kx.max(), surface_full.ky.max()])
            pltax.arrow(0,
                        0,
                        -northarr_length * np.sin(np.radians(cfg.sar.heading)),
                        northarr_length * np.cos(np.radians(cfg.sar.heading)),
                        fc="k",
                        ec="k")
            plt.xlabel('$k_x$ [rad/m]')
            plt.ylabel('$k_y$ [rad/m]')
            plt.colorbar()
            plt.savefig(save_path_abs)
            plt.close()
            plt.figure()
            ml_xspec_pha = np.angle(ml_xspec)
            ml_xspec_im = np.imag(ml_xspec)
            immax = np.abs(ml_xspec_im).max()
            whimmax = np.abs(ml_xspec_im).flatten().argmax()
            phmax = np.abs(ml_xspec_pha.flatten()[whimmax])
            plt.imshow(ml_xspec_pha,
                       origin='lower',
                       cmap='bwr',
                       extent=[kgrg.min(),
                               kgrg.max(),
                               kaz.min(),
                               kaz.max()],
                       interpolation='nearest',
                       vmin=-2 * phmax,
                       vmax=2 * phmax)
            plt.grid(True)
            pltax = plt.gca()
            pltax.set_xlim((-0.1, 0.1))
            pltax.set_ylim((-0.1, 0.1))
            northarr_length = 0.075  # np.min([surface_full.kx.max(), surface_full.ky.max()])
            pltax.arrow(0,
                        0,
                        -northarr_length * np.sin(np.radians(cfg.sar.heading)),
                        northarr_length * np.cos(np.radians(cfg.sar.heading)),
                        fc="k",
                        ec="k")
            plt.xlabel('$k_x$ [rad/m]')
            plt.ylabel('$k_y$ [rad/m]')
            plt.colorbar()
            plt.savefig(save_path_pha)
            plt.close()
            plt.figure()
            plt.imshow(ml_xspec_im,
                       origin='lower',
                       cmap='bwr',
                       extent=[kgrg.min(),
                               kgrg.max(),
                               kaz.min(),
                               kaz.max()],
                       interpolation='nearest',
                       vmin=-2 * immax,
                       vmax=2 * immax)
            plt.grid(True)
            pltax = plt.gca()
            pltax.set_xlim((-0.1, 0.1))
            pltax.set_ylim((-0.1, 0.1))
            northarr_length = 0.075  # np.min([surface_full.kx.max(), surface_full.ky.max()])
            pltax.arrow(0,
                        0,
                        -northarr_length * np.sin(np.radians(cfg.sar.heading)),
                        northarr_length * np.cos(np.radians(cfg.sar.heading)),
                        fc="k",
                        ec="k")
            plt.xlabel('$k_x$ [rad/m]')
            plt.ylabel('$k_y$ [rad/m]')
            plt.colorbar()
            plt.savefig(save_path_im)
            plt.close()
Exemple #12
0
def ati_process(cfg_file, insar_output_file, ocean_file, output_file):

    print(
        '-------------------------------------------------------------------')
    print(
        time.strftime("- OCEANSAR ATI Processor: [%Y-%m-%d %H:%M:%S]",
                      time.localtime()))
    print(
        '-------------------------------------------------------------------')

    print('Initializing...')

    ## CONFIGURATION FILE
    cfg = tpio.ConfigFile(cfg_file)

    # SAR
    pol = cfg.sar.pol
    if pol == 'DP':
        polt = ['hh', 'vv']
    elif pol == 'hh':
        polt = ['hh']
    else:
        polt = ['vv']
    # ATI

    ml_win = cfg.ati.ml_win
    plot_save = cfg.ati.plot_save
    plot_path = cfg.ati.plot_path
    plot_format = cfg.ati.plot_format
    plot_tex = cfg.ati.plot_tex
    plot_surface = cfg.ati.plot_surface
    plot_proc_ampl = cfg.ati.plot_proc_ampl
    plot_coh = cfg.ati.plot_coh
    plot_coh_all = cfg.ati.plot_coh_all
    plot_ati_phase = cfg.ati.plot_ati_phase
    plot_ati_phase_all = cfg.ati.plot_ati_phase_all
    plot_vel_hist = cfg.ati.plot_vel_hist
    plot_vel = cfg.ati.plot_vel

    # PROCESSED InSAR L1b DATA
    insar_data = tpio.L1bFile(insar_output_file, 'r')
    i_all = insar_data.get('ml_intensity')
    cohs = insar_data.get('ml_coherence') * np.exp(
        1j * insar_data.get('ml_phase'))
    coh_lut = insar_data.get('coh_lut')
    sr0 = insar_data.get('sr0')
    inc_angle = insar_data.get('inc_angle')
    b_ati = insar_data.get('b_ati')
    b_xti = insar_data.get('b_xti')
    f0 = insar_data.get('f0')
    az_sampling = insar_data.get('az_sampling')
    num_ch = insar_data.get('num_ch')
    rg_sampling = insar_data.get('rg_sampling')
    v_ground = insar_data.get('v_ground')
    alt = insar_data.get('orbit_alt')
    inc_angle = np.deg2rad(insar_data.get('inc_angle'))
    rg_ml = insar_data.get('rg_ml')
    az_ml = insar_data.get('az_ml')
    insar_data.close()

    # CALCULATE PARAMETERS
    k0 = 2. * np.pi * f0 / const.c

    # OCEAN SURFACE
    surface = OceanSurface()
    surface.load(ocean_file, compute=['D', 'V'])
    surface.t = 0.

    # OUTPUT FILE
    output = open(output_file, 'w')

    # OTHER INITIALIZATIONS
    # Enable TeX
    if plot_tex:
        plt.rc('font', family='serif')
        plt.rc('text', usetex=True)

    # Create plots directory
    plot_path = os.path.dirname(output_file) + os.sep + plot_path
    if plot_save:
        if not os.path.exists(plot_path):
            os.makedirs(plot_path)

    # SURFACE VELOCITIES
    grg_grid_spacing = (const.c / 2. / rg_sampling / np.sin(inc_angle))
    rg_res_fact = grg_grid_spacing / surface.dx
    az_grid_spacing = (v_ground / az_sampling)
    az_res_fact = az_grid_spacing / surface.dy
    res_fact = np.ceil(np.sqrt(rg_res_fact * az_res_fact))

    # SURFACE RADIAL VELOCITY
    v_radial_surf = surface.Vx * np.sin(inc_angle) - surface.Vz * np.cos(
        inc_angle)
    v_radial_surf_ml = utils.smooth(utils.smooth(v_radial_surf,
                                                 res_fact * rg_ml,
                                                 axis=1),
                                    res_fact * az_ml,
                                    axis=0)
    v_radial_surf_mean = np.mean(v_radial_surf)
    v_radial_surf_std = np.std(v_radial_surf)
    v_radial_surf_ml_std = np.std(v_radial_surf_ml)

    # SURFACE HORIZONTAL VELOCITY
    v_horizo_surf = surface.Vx
    v_horizo_surf_ml = utils.smooth(utils.smooth(v_horizo_surf,
                                                 res_fact * rg_ml,
                                                 axis=1),
                                    res_fact * az_ml,
                                    axis=0)
    v_horizo_surf_mean = np.mean(v_horizo_surf)
    v_horizo_surf_std = np.std(v_horizo_surf)
    v_horizo_surf_ml_std = np.std(v_horizo_surf_ml)

    # Expected mean azimuth shift
    sr0 = geosar.inc_to_sr(inc_angle, alt)
    avg_az_shift = -v_radial_surf_mean / v_ground * sr0
    std_az_shift = v_radial_surf_std / v_ground * sr0

    az_guard = np.int(std_az_shift / (v_ground / az_sampling))
    ##################
    # ATI PROCESSING #
    ##################

    print('Starting ATI processing...')

    # Get dimensions & calculate region of interest
    rg_span = surface.Lx
    az_span = surface.Ly

    # First dimension is number of channels, second is number of pols
    ch_dim = i_all.shape[0:2]
    npol = ch_dim[1]

    print('Generating plots and estimating values...')

    # SURFACE HEIGHT
    if plot_surface:
        plt.figure()
        plt.imshow(surface.Dz,
                   cmap="ocean",
                   extent=[0, surface.Lx, 0, surface.Ly],
                   origin='lower')
        plt.title('Surface Height')
        plt.xlabel('Ground range [m]')
        plt.ylabel('Azimuth [m]')
        cbar = plt.colorbar()
        cbar.ax.set_xlabel('[m]')

        if plot_save:
            plt.savefig(plot_path + os.sep + 'plot_surface.' + plot_format,
                        bbox_inches='tight')
            plt.close()
        else:
            plt.show()

    # PROCESSED AMPLITUDE
    if plot_proc_ampl:
        for pind in range(npol):
            save_path = (plot_path + os.sep + 'amp_dB_' + polt[pind] + '.' +
                         plot_format)
            plt.figure()
            plt.imshow(utils.db(i_all[0, pind]),
                       aspect='equal',
                       origin='lower',
                       vmin=utils.db(np.max(i_all[pind])) - 20,
                       extent=[0., rg_span, 0., az_span],
                       interpolation='nearest',
                       cmap='viridis')
            plt.xlabel('Ground range [m]')
            plt.ylabel('Azimuth [m]')
            plt.title("Amplitude")
            plt.colorbar()
            plt.savefig(save_path)
            plt.close()
            save_path = (plot_path + os.sep + 'amp_' + polt[pind] + '.' +
                         plot_format)
            int_img = (i_all[0, pind])**0.5
            vmin = np.mean(int_img) - 3 * np.std(int_img)
            vmax = np.mean(int_img) + 3 * np.std(int_img)
            plt.figure()
            plt.imshow(int_img,
                       aspect='equal',
                       origin='lower',
                       vmin=vmin,
                       vmax=vmax,
                       extent=[0., rg_span, 0., az_span],
                       interpolation='nearest',
                       cmap='viridis')
            plt.xlabel('Ground range [m]')
            plt.ylabel('Azimuth [m]')
            plt.title("Amplitude")
            plt.colorbar()
            plt.savefig(save_path)
            plt.close()

    if plot_coh and ch_dim[0] > 1:
        for pind in range(npol):
            save_path = (plot_path + os.sep + 'ATI_coh_' + polt[pind] +
                         polt[pind] + '.' + plot_format)
            coh_ind = coh_lut[0, pind, 1, pind]
            plt.figure()
            plt.imshow(np.abs(cohs[coh_ind]),
                       aspect='equal',
                       origin='lower',
                       vmin=0,
                       vmax=1,
                       extent=[0., rg_span, 0., az_span],
                       cmap='bone')
            plt.xlabel('Ground range [m]')
            plt.ylabel('Azimuth [m]')
            plt.title("ATI Coherence")
            # plt.colorbar()
            plt.savefig(save_path)

    # ATI PHASE

    tau_ati = b_ati / v_ground

    ati_phases = []
    # Hack to avoid interferogram computation if there are no interferometric channels
    if num_ch > 1:
        npol_ = npol
    else:
        npol_ = 0
    for pind in range(npol_):
        save_path = (plot_path + os.sep + 'ATI_pha_' + polt[pind] +
                     polt[pind] + '.' + plot_format)
        coh_ind = coh_lut[(0, pind, 1, pind)]
        ati_phase = uwphase(cohs[coh_ind])
        ati_phases.append(ati_phase)
        v_radial_est = -ati_phase / tau_ati[1] / (k0 * 2.)
        if plot_ati_phase:
            phase_mean = np.mean(ati_phase)
            phase_std = np.std(ati_phase)
            vmin = np.max([
                -np.abs(phase_mean) - 4 * phase_std, -np.abs(ati_phase).max()
            ])
            vmax = np.min(
                [np.abs(phase_mean) + 4 * phase_std,
                 np.abs(ati_phase).max()])
            plt.figure()
            plt.imshow(ati_phase,
                       aspect='equal',
                       origin='lower',
                       vmin=vmin,
                       vmax=vmax,
                       extent=[0., rg_span, 0., az_span],
                       cmap='hsv')
            plt.xlabel('Ground range [m]')
            plt.ylabel('Azimuth [m]')
            plt.title("ATI Phase")
            plt.colorbar()
            plt.savefig(save_path)

            save_path = (plot_path + os.sep + 'ATI_rvel_' + polt[pind] +
                         polt[pind] + '.' + plot_format)
            vmin = -np.abs(v_radial_surf_mean) - 4. * v_radial_surf_std
            vmax = np.abs(v_radial_surf_mean) + 4. * v_radial_surf_std
            plt.figure()
            plt.imshow(v_radial_est,
                       aspect='equal',
                       origin='lower',
                       vmin=vmin,
                       vmax=vmax,
                       extent=[0., rg_span, 0., az_span],
                       cmap='bwr')
            plt.xlabel('Ground range [m]')
            plt.ylabel('Azimuth [m]')
            plt.title("Estimated Radial Velocity " + polt[pind])
            plt.colorbar()
            plt.savefig(save_path)

    if npol_ == 4:  # Bypass this for now
        # Cross pol interferogram
        coh_ind = coh_lut[(0, 1)]
        save_path = (plot_path + os.sep + 'POL_coh_' + polt[0] + polt[1] +
                     '.' + plot_format)
        utils.image(np.abs(cohs[coh_ind]),
                    max=1,
                    min=0,
                    aspect='equal',
                    cmap='gray',
                    extent=[0., rg_span, 0., az_span],
                    xlabel='Ground range [m]',
                    ylabel='Azimuth [m]',
                    title='XPOL Coherence',
                    usetex=plot_tex,
                    save=plot_save,
                    save_path=save_path)
        save_path = (plot_path + os.sep + 'POL_pha_' + polt[0] + polt[1] +
                     '.' + plot_format)
        ati_phase = uwphase(cohs[coh_ind])
        phase_mean = np.mean(ati_phase)
        phase_std = np.std(ati_phase)
        vmin = np.max([-np.abs(phase_mean) - 4 * phase_std, -np.pi])
        vmax = np.min([np.abs(phase_mean) + 4 * phase_std, np.pi])
        utils.image(ati_phase,
                    aspect='equal',
                    min=vmin,
                    max=vmax,
                    cmap=utils.bwr_cmap,
                    extent=[0., rg_span, 0., az_span],
                    xlabel='Ground range [m]',
                    ylabel='Azimuth [m]',
                    title='XPOL Phase',
                    cbar_xlabel='[rad]',
                    usetex=plot_tex,
                    save=plot_save,
                    save_path=save_path)

    if num_ch > 1:
        ati_phases = np.array(ati_phases)

        output.write('--------------------------------------------\n')
        output.write('SURFACE RADIAL VELOCITY - NO SMOOTHING\n')
        output.write('MEAN(SURF. V) = %.4f\n' % v_radial_surf_mean)
        output.write('STD(SURF. V) = %.4f\n' % v_radial_surf_std)
        output.write('--------------------------------------------\n\n')

        output.write('--------------------------------------------\n')
        output.write(
            'SURFACE RADIAL VELOCITY - SMOOTHING (WIN. SIZE=%dx%d)\n' %
            (az_ml, rg_ml))
        output.write('MEAN(SURF. V) = %.4f\n' % v_radial_surf_mean)
        output.write('STD(SURF. V) = %.4f\n' % v_radial_surf_ml_std)
        output.write('--------------------------------------------\n\n')

        output.write('--------------------------------------------\n')
        output.write('SURFACE HORIZONTAL VELOCITY - NO SMOOTHING\n')
        output.write('MEAN(SURF. V) = %.4f\n' % v_horizo_surf_mean)
        output.write('STD(SURF. V) = %.4f\n' % v_horizo_surf_std)
        output.write('--------------------------------------------\n\n')

        if plot_vel_hist:
            # PLOT RADIAL VELOCITY
            plt.figure()

            plt.hist(v_radial_surf.flatten(),
                     200,
                     density=True,
                     histtype='step')
            #plt.hist(v_radial_surf_ml.flatten(), 500, density=True, histtype='step')
            plt.grid(True)
            plt.xlim([
                -np.abs(v_radial_surf_mean) - 4. * v_radial_surf_std,
                np.abs(v_radial_surf_mean) + 4. * v_radial_surf_std
            ])
            plt.xlabel('Radial velocity [m/s]')
            plt.ylabel('PDF')
            plt.title('Surface velocity')

            if plot_save:
                plt.savefig(plot_path + os.sep + 'TRUE_radial_vel_hist.' +
                            plot_format)
                plt.close()
            else:
                plt.show()

            plt.figure()
            plt.hist(v_radial_surf_ml.flatten(),
                     200,
                     density=True,
                     histtype='step')
            #plt.hist(v_radial_surf_ml.flatten(), 500, density=True, histtype='step')
            plt.grid(True)
            plt.xlim([
                -np.abs(v_radial_surf_mean) - 4. * v_radial_surf_std,
                np.abs(v_radial_surf_mean) + 4. * v_radial_surf_std
            ])
            plt.xlabel('Radial velocity [m/s]')
            plt.ylabel('PDF')
            plt.title('Surface velocity (low pass filtered)')

            if plot_save:
                plt.savefig(plot_path + os.sep + 'TRUE_radial_vel_ml_hist.' +
                            plot_format)
                plt.close()
            else:
                plt.show()

        if plot_vel:

            utils.image(
                v_radial_surf,
                aspect='equal',
                cmap=utils.bwr_cmap,
                extent=[0., rg_span, 0., az_span],
                xlabel='Ground range [m]',
                ylabel='Azimuth [m]',
                title='Surface Radial Velocity',
                cbar_xlabel='[m/s]',
                min=-np.abs(v_radial_surf_mean) - 4. * v_radial_surf_std,
                max=np.abs(v_radial_surf_mean) + 4. * v_radial_surf_std,
                usetex=plot_tex,
                save=plot_save,
                save_path=plot_path + os.sep + 'TRUE_radial_vel.' +
                plot_format)
            utils.image(
                v_radial_surf_ml,
                aspect='equal',
                cmap=utils.bwr_cmap,
                extent=[0., rg_span, 0., az_span],
                xlabel='Ground range [m]',
                ylabel='Azimuth [m]',
                title='Surface Radial Velocity',
                cbar_xlabel='[m/s]',
                min=-np.abs(v_radial_surf_mean) - 4. * v_radial_surf_std,
                max=np.abs(v_radial_surf_mean) + 4. * v_radial_surf_std,
                usetex=plot_tex,
                save=plot_save,
                save_path=plot_path + os.sep + 'TRUE_radial_vel_ml.' +
                plot_format)

        ##  ESTIMATED VELOCITIES

        # Note: plot limits are taken from surface calculations to keep the same ranges

        # ESTIMATE RADIAL VELOCITY
        v_radial_ests = -ati_phases / tau_ati[1] / (k0 * 2.)

        # ESTIMATE HORIZONTAL VELOCITY
        v_horizo_ests = -ati_phases / tau_ati[1] / (k0 *
                                                    2.) / np.sin(inc_angle)

        #Trim edges
        v_radial_ests = v_radial_ests[:, az_guard:-az_guard, 5:-5]
        v_horizo_ests = v_horizo_ests[:, az_guard:-az_guard, 5:-5]
        output.write('--------------------------------------------\n')
        output.write('ESTIMATED RADIAL VELOCITY - NO SMOOTHING\n')
        for pind in range(npol):
            output.write("%s Polarization\n" % polt[pind])
            output.write('MEAN(EST. V) = %.4f\n' %
                         np.mean(v_radial_ests[pind]))
            output.write('STD(EST. V) = %.4f\n' % np.std(v_radial_ests[pind]))
        output.write('--------------------------------------------\n\n')

        output.write('--------------------------------------------\n')
        output.write(
            'ESTIMATED RADIAL VELOCITY - SMOOTHING (WIN. SIZE=%dx%d)\n' %
            (az_ml, rg_ml))
        for pind in range(npol):
            output.write("%s Polarization\n" % polt[pind])
            output.write('MEAN(EST. V) = %.4f\n' % np.mean(
                utils.smooth(utils.smooth(v_radial_ests[pind], rg_ml, axis=1),
                             az_ml,
                             axis=0)))
            output.write('STD(EST. V) = %.4f\n' % np.std(
                utils.smooth(utils.smooth(v_radial_ests[pind], rg_ml, axis=1),
                             az_ml,
                             axis=0)))
        output.write('--------------------------------------------\n\n')

        output.write('--------------------------------------------\n')
        output.write('ESTIMATED HORIZONTAL VELOCITY - NO SMOOTHING\n')
        for pind in range(npol):
            output.write("%s Polarization\n" % polt[pind])
            output.write('MEAN(EST. V) = %.4f\n' %
                         np.mean(v_horizo_ests[pind]))
            output.write('STD(EST. V) = %.4f\n' % np.std(v_horizo_ests[pind]))
        output.write('--------------------------------------------\n\n')

    # Processed NRCS

    NRCS_est_avg = 10 * np.log10(
        np.mean(np.mean(i_all[:, :, az_guard:-az_guard, 5:-5], axis=-1),
                axis=-1))
    output.write('--------------------------------------------\n')
    for pind in range(npol):
        output.write("%s Polarization\n" % polt[pind])
        output.write('Estimated mean NRCS = %5.2f\n' % NRCS_est_avg[0, pind])
    output.write('--------------------------------------------\n\n')

    # Some bookkeeping information
    output.write('--------------------------------------------\n')
    output.write('GROUND RANGE GRID SPACING = %.4f\n' % grg_grid_spacing)
    output.write('AZIMUTH GRID SPACING = %.4f\n' % az_grid_spacing)
    output.write('--------------------------------------------\n\n')

    output.close()

    if plot_vel_hist and num_ch > 1:
        # PLOT RADIAL VELOCITY
        plt.figure()
        plt.hist(v_radial_surf.flatten(),
                 200,
                 density=True,
                 histtype='step',
                 label='True')
        for pind in range(npol):
            plt.hist(v_radial_ests[pind].flatten(),
                     200,
                     density=True,
                     histtype='step',
                     label=polt[pind])
        plt.grid(True)
        plt.xlim([
            -np.abs(v_radial_surf_mean) - 4. * v_radial_surf_std,
            np.abs(v_radial_surf_mean) + 4. * v_radial_surf_std
        ])
        plt.xlabel('Radial velocity [m/s]')
        plt.ylabel('PDF')
        plt.title('Estimated velocity')
        plt.legend()

        if plot_save:
            plt.savefig(plot_path + os.sep + 'ATI_radial_vel_hist.' +
                        plot_format)
            plt.close()
        else:
            plt.show()

    # Save some statistics to npz file
    #
    if num_ch > 1:
        filenpz = os.path.join(os.path.dirname(output_file), 'ati_stats.npz')
        # Mean coh
        cohs = np.array(cohs)[:, az_guard:-az_guard, 5:-5]

        np.savez(filenpz,
                 nrcs=NRCS_est_avg,
                 v_r_dop=np.mean(np.mean(v_radial_ests, axis=-1), axis=-1),
                 v_r_surf=v_radial_surf_mean,
                 v_r_surf_std=v_radial_surf_std,
                 coh_mean=np.mean(np.mean(cohs, axis=-1), axis=-1),
                 abscoh_mean=np.mean(np.mean(np.abs(cohs), axis=-1), axis=-1),
                 coh_lut=coh_lut,
                 pols=polt)
    print('----------------------------------------')
    print(
        time.strftime("ATI Processing finished [%Y-%m-%d %H:%M:%S]",
                      time.localtime()))
    print('----------------------------------------')