Exemple #1
0
def test_dirichlet_bcs_scalar_constant_value(method):
    "Test inhomogenous Dirichlet BCs using a Poisson solver"
    sim = Simulation()
    sim.input.read_yaml(yaml_string=BASE_INPUT)
    sim.input.set_value('boundary_conditions', [{}])
    sim.input.set_value('boundary_conditions/0/name', 'all walls')
    sim.input.set_value('boundary_conditions/0/selector', 'code')
    sim.input.set_value('boundary_conditions/0/inside_code', 'on_boundary')

    if method == 'const':
        sim.input.set_value('boundary_conditions/0/phi/type', 'ConstantValue')
        sim.input.set_value('boundary_conditions/0/phi/value', 1.0)
    elif method == 'py_eval':
        sim.input.set_value('boundary_conditions/0/phi/type', 'CodedValue')
        sim.input.set_value('boundary_conditions/0/phi/code', '1.0')
    elif method == 'py_exec':
        sim.input.set_value('boundary_conditions/0/phi/type', 'CodedValue')
        sim.input.set_value('boundary_conditions/0/phi/code', 'value[0] = 1.0')
    elif method == 'cpp':
        sim.input.set_value('boundary_conditions/0/phi/type', 'CppCodedValue')
        sim.input.set_value('boundary_conditions/0/phi/cpp_code', '1.0')

    setup_simulation(sim)
    run_simulation(sim)

    p = sim.data['phi'].vector().get_local()
    assert numpy.linalg.norm(p - 1.0) < 1e-8
Exemple #2
0
def test_dirichlet_bcs_scalar_mms(method):
    "Test inhomogenous coded Dirichlet BCs using a Poisson solver"
    sim = Simulation()
    sim.input.read_yaml(yaml_string=BASE_INPUT)
    sim.input.set_value('boundary_conditions', [{}])
    sim.input.set_value('boundary_conditions/0/name', 'all walls')
    sim.input.set_value('boundary_conditions/0/selector', 'code')
    sim.input.set_value('boundary_conditions/0/inside_code', 'on_boundary')

    # Get analytical expressions
    cphi, _, _, cf = mms_case()
    sim.input.set_value('solver/source', cf)

    # Setup the boundary conditions to test
    if method == 'py_eval':
        sim.input.set_value('boundary_conditions/0/phi/type', 'CodedValue')
        sim.input.set_value('boundary_conditions/0/phi/code', cphi)
    elif method == 'py_exec':
        sim.input.set_value('boundary_conditions/0/phi/type', 'CodedValue')
        sim.input.set_value('boundary_conditions/0/phi/code', 'value[0] = ' + cphi)
    elif method == 'cpp':
        sim.input.set_value('boundary_conditions/0/phi/type', 'CppCodedValue')
        sim.input.set_value('boundary_conditions/0/phi/cpp_code', cphi)

    # Run Ocellaris
    setup_simulation(sim)
    run_simulation(sim)

    # The numeric (phih) and analytic (phia) solution functions
    Vphi = sim.data['Vphi']
    phi = dolfin.Expression(cphi, degree=5)
    phih = sim.data['phi']
    phia = dolfin.interpolate(phi, Vphi)

    # Compute relative error and check that it is reasonable
    phidiff = dolfin.errornorm(phi, phih)
    analytical = dolfin.norm(phia)
    relative_error = phidiff / analytical
    print('RELATIVE ERROR IS %.3f' % relative_error)
    assert relative_error < 0.074
Exemple #3
0
def main(inputfile, input_override):
    """
    Run Ocellaris
    """
    if os.environ.get('OCELLARIS_SUPER_DEBUG', False):
        print('FOUND OCELLARIS_SUPER_DEBUG in environment')
        from ocellaris.utils.debug import enable_super_debug

        enable_super_debug()

    sim = Simulation()

    # Read input
    if sim.io.is_restart_file(inputfile):
        sim.io.load_restart_file_input(inputfile)
    else:
        sim.input.read_yaml(inputfile)

    # Alter input by values given on the command line
    override_input_variables(sim, input_override)

    # Setup logging before we start printing anything
    sim.log.setup()

    # Print banner with Ocellaris version number
    version = get_detailed_version()
    location = os.path.split(os.path.abspath(__file__))[0]
    sim.log.info('=' * 80)
    sim.log.info('                  Ocellaris   %s' % version)
    sim.log.info('=' * 80)
    sim.log.info('Installed at:')
    sim.log.info('    %s' % location)
    sim.log.info('    host: %s' % platform.node())
    sim.log.info()

    # Print some version information
    sim.log.info('Running on Python %s' % sys.version)
    sim.log.info('    Using dolfin %s' % dolfin.__version__)
    sim.log.info('    Using mpi4py %s' % mpi4py.__version__)
    sim.log.info('    Using h5py   %s' % h5py.__version__)
    sim.log.info('    Using meshio %s' % meshio.__version__)
    sim.log.info('    Using PyYAML %s' % yaml.__version__)
    sim.log.info('    Using petsc4py %s' % petsc4py_version)
    sim.log.info('    Using PETSc %d.%d.%d\n' % PETSc.Sys.getVersion())

    # Setup the Ocellaris simulation
    ok = setup_simulation(sim, setup_logging=False, catch_exceptions=True)
    if not ok:
        sim.log.error('Setup did not suceed, exiting')
        sys.exit(1)

    if sim.restarted:
        # Load previous results
        sim.io.load_restart_file_results(inputfile)

    # Run the Ocellaris simulation time loop
    run_simulation(sim, catch_exceptions=True)

    sim.log.info('=' * 80)
    if sim.success:
        sim.log.info('Ocellaris finished successfully')
    else:
        sim.log.info('Ocellaris finished with errors')
Exemple #4
0
def run_and_calculate_error(N, dt, tmax, polydeg_u, polydeg_p, modifier=None):
    """
    Run Ocellaris and return L2 & H1 errors in the last time step
    """
    say(N, dt, tmax, polydeg_u, polydeg_p)

    # Setup and run simulation
    sim = Simulation()
    sim.input.read_yaml('kovasznay.inp')

    sim.input.set_value('mesh/Nx', N)
    sim.input.set_value('mesh/Ny', N)
    sim.input.set_value('time/dt', dt)
    sim.input.set_value('time/tmax', tmax)
    sim.input.set_value('solver/polynomial_degree_velocity', polydeg_u)
    sim.input.set_value('solver/polynomial_degree_pressure', polydeg_p)
    sim.input.set_value('output/stdout_enabled', False)

    if modifier:
        modifier(sim)  # Running regression tests, modify some input params

    say('Running ...')
    try:
        t1 = time.time()
        setup_simulation(sim)
        run_simulation(sim)
        duration = time.time() - t1
    except KeyboardInterrupt:
        raise
    except BaseException as e:
        raise
        import traceback

        traceback.print_exc()
        return [1e10] * 6 + [1, dt, time.time() - t1]
    say('DONE')
    tmax_warning = ' <------ NON CONVERGENCE!!' if sim.time > tmax - dt / 2 else ''

    # Interpolate the analytical solution to the same function space
    Vu = sim.data['Vu']
    Vp = sim.data['Vp']
    lambda_ = sim.input.get_value('user_code/constants/LAMBDA',
                                  required_type='float')
    u0e = dolfin.Expression(
        sim.input.get_value('boundary_conditions/0/u/cpp_code/0'),
        LAMBDA=lambda_,
        degree=polydeg_u)
    u1e = dolfin.Expression(
        sim.input.get_value('boundary_conditions/0/u/cpp_code/1'),
        LAMBDA=lambda_,
        degree=polydeg_u)
    pe = dolfin.Expression(
        '-0.5*exp(LAMBDA*2*x[0]) + 1/(4*LAMBDA)*(exp(2*LAMBDA) - 1.0)',
        LAMBDA=lambda_,
        degree=polydeg_p,
    )
    u0a = dolfin.project(u0e, Vu)
    u1a = dolfin.project(u1e, Vu)
    pa = dolfin.project(pe, Vp)

    # Correct pa (we want to be spot on, not close)
    int_pa = dolfin.assemble(pa * dolfin.dx)
    vol = dolfin.assemble(dolfin.Constant(1.0) * dolfin.dx(domain=Vp.mesh()))
    pa.vector()[:] -= int_pa / vol

    # Calculate L2 errors
    err_u0 = calc_err(sim.data['u0'], u0a)
    err_u1 = calc_err(sim.data['u1'], u1a)
    err_p = calc_err(sim.data['p'], pa)

    # Calculate H1 errors
    err_u0_H1 = calc_err(sim.data['u0'], u0a, 'H1')
    err_u1_H1 = calc_err(sim.data['u1'], u1a, 'H1')
    err_p_H1 = calc_err(sim.data['p'], pa, 'H1')

    say('Number of time steps:', sim.timestep, tmax_warning)
    loglines = sim.log.get_full_log().split('\n')
    say('Num inner iterations:',
        sum(1 if 'Inner iteration' in line else 0 for line in loglines))
    say('max(ui_new-ui_prev)',
        sim.reporting.get_report('max(ui_new-ui_prev)')[1][-1])
    int_p = dolfin.assemble(sim.data['p'] * dolfin.dx)
    say('p*dx', int_p)
    say('pa*dx', dolfin.assemble(pa * dolfin.dx(domain=Vp.mesh())))
    div_u_Vp = abs(
        dolfin.project(dolfin.div(sim.data['u']),
                       Vp).vector().get_local()).max()
    say('div(u)|Vp', div_u_Vp)
    div_u_Vu = abs(
        dolfin.project(dolfin.div(sim.data['u']),
                       Vu).vector().get_local()).max()
    say('div(u)|Vu', div_u_Vu)
    Vdg0 = dolfin.FunctionSpace(sim.data['mesh'], "DG", 0)
    div_u_DG0 = abs(
        dolfin.project(dolfin.div(sim.data['u']),
                       Vdg0).vector().get_local()).max()
    say('div(u)|DG0', div_u_DG0)
    Vdg1 = dolfin.FunctionSpace(sim.data['mesh'], "DG", 1)
    div_u_DG1 = abs(
        dolfin.project(dolfin.div(sim.data['u']),
                       Vdg1).vector().get_local()).max()
    say('div(u)|DG1', div_u_DG1)

    if False:
        # Plot the results
        for fa, name in ((u0a, 'u0'), (u1a, 'u1'), (pa, 'p')):
            p1 = dolfin.plot(sim.data[name] - fa,
                             title='%s_diff' % name,
                             key='%s_diff' % name)
            p2 = dolfin.plot(fa, title=name + ' analytical', key=name)
            p1.write_png('%g_%g_%s_diff' % (N, dt, name))
            p2.write_png('%g_%g_%s' % (N, dt, name))
        dolfin.interactive()

    from numpy import argmax

    for d in range(2):
        up = sim.data['up%d' % d]
        upp = sim.data['upp%d' % d]

        V = up.function_space()
        coords = V.tabulate_dof_coordinates().reshape((-1, 2))

        up.vector()[:] -= upp.vector()
        diff = abs(up.vector().get_local())
        i = argmax(diff)
        say('Max difference in %d direction is %.4e at %r' %
            (d, diff[i], coords[i]))

        if 'uppp%d' % d in sim.data:
            uppp = sim.data['uppp%d' % d]
            upp.vector()[:] -= uppp.vector()
            diffp = abs(upp.vector().get_local())
            ip = argmax(diffp)
            say('Prev max diff. in %d direction is %.4e at %r' %
                (d, diffp[ip], coords[ip]))

    if False and N == 24:
        # dolfin.plot(sim.data['u0'], title='u0')
        # dolfin.plot(sim.data['u1'], title='u1')
        # dolfin.plot(sim.data['p'], title='p')
        # dolfin.plot(u0a, title='u0a')
        # dolfin.plot(u1a, title='u1a')
        # dolfin.plot(pa, title='pa')
        plot_err(sim.data['u0'], u0a, title='u0a - u0')
        plot_err(sim.data['u1'], u1a, title='u1a - u1')
        plot_err(sim.data['p'], pa, 'pa - p')

        # plot_err(sim.data['u0'], u0a, title='u0a - u0')
        dolfin.plot(sim.data['up0'], title='up0 - upp0')
        dolfin.plot(sim.data['upp0'], title='upp0 - uppp0')

        # plot_err(sim.data['u1'], u1a, title='u1a - u1')
        dolfin.plot(sim.data['up1'], title='up1 - upp1')
        # dolfin.plot(sim.data['upp1'], title='upp1 - uppp1')

    hmin = sim.data['mesh'].hmin()
    return err_u0, err_u1, err_p, err_u0_H1, err_u1_H1, err_p_H1, hmin, dt, duration
Exemple #5
0
def run_and_calculate_error(N, dt, tmax, polydeg_u, polydeg_p, modifier=None):
    """
    Run Ocellaris and return L2 & H1 errors in the last time step
    """
    say(N, dt, tmax, polydeg_u, polydeg_p)

    # Setup and run simulation
    sim = Simulation()
    sim.input.read_yaml('taylor-green.inp')

    if sim.input.get_value('mesh/type') == 'Rectangle':
        # Use structured mesh
        sim.input.set_value('mesh/Nx', N)
        sim.input.set_value('mesh/Ny', N)
    else:
        # Create unstructured mesh with gmsh
        cmd1 = [
            'gmsh',
            '-string',
            'lc = %f;' % (2.0 / N),
            '-o',
            'taylor-green_%d.msh' % N,
            '-2',
            'taylor-green.geo',
        ]
        cmd2 = [
            'dolfin-convert',
            'taylor-green_%d.msh' % N, 'taylor-green.xml'
        ]
        with open('/dev/null', 'w') as devnull:
            for cmd in (cmd1, cmd2):
                say(' '.join(cmd))
                subprocess.call(cmd, stdout=devnull, stderr=devnull)

    sim.input.set_value('time/dt', dt)
    sim.input.set_value('time/tmax', tmax)
    sim.input.set_value('solver/polynomial_degree_velocity', polydeg_u)
    sim.input.set_value('solver/polynomial_degree_pressure', polydeg_p)
    sim.input.set_value('output/stdout_enabled', False)

    if sim.input.get_value('solver/timestepping_method', 'BDF') == 'CN':
        sim.input.set_value(
            'initial_conditions/p/cpp_code',
            '-(cos(2*pi*x[0]) + cos(2*pi*x[1])) * exp(-4*pi*pi*nu*(t+dt/2))/4',
        )

    # Turn off BDM
    # sim.input.set_value('solver/velocity_postprocessing', 'None')

    if modifier:
        modifier(sim)  # Running regression tests, modify some input params

    say('Running with %s %s solver ...' % (
        sim.input.get_value('solver/type'),
        sim.input.get_value('solver/function_space_velocity', 'DG'),
    ))
    t1 = time.time()
    setup_simulation(sim)
    if 'Vcoupled' in sim.data:
        say('Num unknowns', sim.data['Vcoupled'].dim())
    run_simulation(sim)
    duration = time.time() - t1
    say('DONE')

    # Interpolate the analytical solution to the same function space
    Vu = sim.data['Vu']
    Vp = sim.data['Vp']
    vals = dict(
        t=sim.time,
        dt=sim.dt,
        nu=sim.input['physical_properties']['nu'],
        rho=sim.input['physical_properties']['rho'],
    )
    u0e = dolfin.Expression(
        sim.input.get_value('initial_conditions/up0/cpp_code'),
        degree=polydeg_u + 3,
        **vals)
    u1e = dolfin.Expression(
        sim.input.get_value('initial_conditions/up1/cpp_code'),
        degree=polydeg_u + 3,
        **vals)
    if sim.input.get_value('solver/timestepping_method', 'BDF') == 'CN':
        vals['t'] = sim.time - sim.dt
    pe = dolfin.Expression(
        sim.input.get_value('initial_conditions/p/cpp_code'),
        degree=polydeg_p + 3,
        **vals)

    u0a = dolfin.project(u0e, Vu)
    u1a = dolfin.project(u1e, Vu)
    pa = dolfin.project(pe, Vp)

    # Calculate L2 errors
    err_u0 = calc_err(sim.data['u0'], u0a)
    err_u1 = calc_err(sim.data['u1'], u1a)
    err_p = calc_err(sim.data['p'], pa)

    # Calculate H1 errors
    err_u0_H1 = calc_err(sim.data['u0'], u0a, 'H1')
    err_u1_H1 = calc_err(sim.data['u1'], u1a, 'H1')
    err_p_H1 = calc_err(sim.data['p'], pa, 'H1')

    say('Number of time steps:', sim.timestep)
    loglines = sim.log.get_full_log().split('\n')
    say('Num inner iterations:',
        sum(1 if 'iteration' in line else 0 for line in loglines))
    int_p = dolfin.assemble(sim.data['p'] * dolfin.dx)
    say('Number of mesh cells:', sim.data['mesh'].num_cells())
    say('p*dx', int_p)
    div_u_Vp = abs(
        dolfin.project(dolfin.div(sim.data['u']),
                       Vp).vector().get_local()).max()
    say('div(u)|Vp', div_u_Vp)
    div_u_Vu = abs(
        dolfin.project(dolfin.div(sim.data['u']),
                       Vu).vector().get_local()).max()
    say('div(u)|Vu', div_u_Vu)
    Vdg0 = dolfin.FunctionSpace(sim.data['mesh'], "DG", 0)
    div_u_DG0 = abs(
        dolfin.project(dolfin.div(sim.data['u']),
                       Vdg0).vector().get_local()).max()
    say('div(u)|DG0', div_u_DG0)
    Vdg1 = dolfin.FunctionSpace(sim.data['mesh'], "DG", 1)
    div_u_DG1 = abs(
        dolfin.project(dolfin.div(sim.data['u']),
                       Vdg1).vector().get_local()).max()
    say('div(u)|DG1', div_u_DG1)

    if 'u_mesh' in sim.data:
        Vmesh = sim.data['Vmesh']
        div_u_mesh_Vmesh = abs(
            dolfin.project(dolfin.div(sim.data['u_mesh']),
                           Vmesh).vector().get_local()).max()
        say('div(u_mesh)|V_mesh', div_u_mesh_Vmesh)
        div_u_mesh_DG0 = abs(
            dolfin.project(dolfin.div(sim.data['u_mesh']),
                           Vdg0).vector().get_local()).max()
        say('div(u_mesh)|DG0', div_u_mesh_DG0)
        div_u_mesh_DG1 = abs(
            dolfin.project(dolfin.div(sim.data['u_mesh']),
                           Vdg1).vector().get_local()).max()
        say('div(u_mesh)|DG1', div_u_mesh_DG1)

    if False:
        # Plot the results
        for fa, name in ((u0a, 'u0'), (u1a, 'u1'), (pa, 'p')):
            p1 = dolfin.plot(sim.data[name] - fa,
                             title='%s_diff' % name,
                             key='%s_diff' % name)
            p2 = dolfin.plot(fa, title=name + ' analytical', key=name)
            p1.write_png('%g_%g_%s_diff' % (N, dt, name))
            p2.write_png('%g_%g_%s' % (N, dt, name))
        dolfin.interactive()

    if N == 40 and False:
        dolfin.plot(sim.data['u0'], title='u0')
        dolfin.plot(sim.data['u1'], title='u1')
        dolfin.plot(sim.data['p'], title='p')
        dolfin.plot(u0a, title='u0a')
        dolfin.plot(u1a, title='u1a')
        dolfin.plot(pa, title='pa')
        plot_err(sim.data['u0'], u0a, 'u0a - u0')
        plot_err(sim.data['u1'], u1a, 'u1a - u1')
        plot_err(sim.data['p'], pa, 'pa - p')

    hmin = sim.data['mesh'].hmin()
    return err_u0, err_u1, err_p, err_u0_H1, err_u1_H1, err_p_H1, hmin, dt, duration
Exemple #6
0
def run_and_calculate_error(N, dt, tmax, polydeg_rho, last=False):
    """
    Run Ocellaris and return L2 & H1 errors in the last time step
    """
    say(N, dt, tmax, polydeg_rho)

    # Setup and run simulation
    sim = Simulation()
    sim.input.read_yaml('transport.inp')

    mesh_type = sim.input.get_value('mesh/type')
    if mesh_type == 'XML':
        # Create unstructured mesh with gmsh
        cmd1 = [
            'gmsh', '-string',
            'lc = %f;' % (3.14 / N), '-o',
            'disc_%d.msh' % N, '-2',
            '../convergence-variable-density-disk/disc.geo'
        ]
        cmd2 = ['dolfin-convert', 'disc_%d.msh' % N, 'disc.xml']
        with open('/dev/null', 'w') as devnull:
            for cmd in (cmd1, cmd2):
                say(' '.join(cmd))
                if ISROOT:
                    subprocess.call(cmd, stdout=devnull, stderr=devnull)
    elif mesh_type == 'UnitDisc':
        sim.input.set_value('mesh/N', N // 2)
    else:
        sim.input.set_value('mesh/Nx', N)
        sim.input.set_value('mesh/Ny', N)

    sim.input.set_value('time/dt', dt)
    sim.input.set_value('time/tmax', tmax)
    sim.input.set_value('multiphase_solver/polynomial_degree_rho', polydeg_rho)
    sim.input.set_value('output/stdout_enabled', False)

    say('Running with multiphase solver %s ...' %
        (sim.input.get_value('multiphase_solver/type')))
    t1 = time.time()
    setup_simulation(sim)
    run_simulation(sim)
    duration = time.time() - t1
    say('DONE')

    # Interpolate the analytical solution to the same function space
    Vu = sim.data['Vu']
    Vp = sim.data['Vp']
    Vr = sim.data['Vrho']
    polydeg_r = Vr.ufl_element().degree()
    vals = dict(t=sim.time, dt=sim.dt)
    rho_e = dolfin.Expression(
        sim.input.get_value('initial_conditions/rho_p/cpp_code'),
        degree=polydeg_r,
        **vals)
    rho_a = dolfin.project(rho_e, Vr)

    rho_e.t = 0
    rho_0 = dolfin.project(rho_e, Vr)

    # Calculate L2 errors
    err_rho = calc_err(sim.data['rho'], rho_a)

    # Calculate H1 errors
    err_rho_H1 = calc_err(sim.data['rho'], rho_a, 'H1')

    mesh = sim.data['mesh']
    n = dolfin.FacetNormal(mesh)

    reports = sim.reporting.timestep_xy_reports
    say('Num time steps:', sim.timestep)
    say('Num cells:', mesh.num_cells())
    say('Co_max:', numpy.max(reports['Co']))
    say('rho_min went from %r to %r' %
        (reports['min(rho)'][0], reports['min(rho)'][-1]))
    say('rho_max went from %r to %r' %
        (reports['max(rho)'][0], reports['max(rho)'][-1]))
    m0, m1 = reports['mass'][0], reports['mass'][-1]
    say('mass error %.3e (%.3e)' % (m1 - m0, (m1 - m0) / m0))
    say('vel compat error %.3e' %
        dolfin.assemble(dolfin.dot(sim.data['u'], n) * dolfin.ds))
    int_p = dolfin.assemble(sim.data['p'] * dolfin.dx)
    say('p*dx', int_p)
    div_u_Vp = abs(
        dolfin.project(dolfin.div(sim.data['u']),
                       Vp).vector().get_local()).max()
    say('div(u)|Vp', div_u_Vp)
    div_u_Vu = abs(
        dolfin.project(dolfin.div(sim.data['u']),
                       Vu).vector().get_local()).max()
    say('div(u)|Vu', div_u_Vu)
    Vdg0 = dolfin.FunctionSpace(mesh, "DG", 0)
    div_u_DG0 = abs(
        dolfin.project(dolfin.div(sim.data['u']),
                       Vdg0).vector().get_local()).max()
    say('div(u)|DG0', div_u_DG0)
    Vdg1 = dolfin.FunctionSpace(mesh, "DG", 1)
    div_u_DG1 = abs(
        dolfin.project(dolfin.div(sim.data['u']),
                       Vdg1).vector().get_local()).max()
    say('div(u)|DG1', div_u_DG1)

    isoparam = mesh.ufl_coordinate_element().degree() > 1
    if last and (not isoparam
                 or sim.input.get_value('mesh/type') == 'UnitDisc'):
        # Plot the results
        for fa, name in ((rho_a, 'rho'), ):
            fh = sim.data[name]
            if isoparam:
                # Bug in matplotlib plotting for isoparametric elements
                mesh2 = dolfin.UnitDiscMesh(dolfin.MPI.comm_world, N // 2, 1,
                                            2)
                ue = fa.function_space().ufl_element()
                V2 = dolfin.FunctionSpace(mesh2, ue.family(), ue.degree())
                fa2, fh2 = dolfin.Function(V2), dolfin.Function(V2)
                fa2.vector().set_local(fa.vector().get_local())
                fh2.vector().set_local(fh.vector().get_local())
                fa, fh = fa2, fh2
            plot(fh - fa, name + ' diff', '%g_%g_%s_diff' % (N, dt, name))
            plot(fa, name + ' analytical',
                 '%g_%g_%s_analytical' % (N, dt, name))
            plot(fh, name + ' numerical', '%g_%g_%s_numerical' % (N, dt, name))
            plot(rho_0, name + ' initial', '%g_%g_%s_initial' % (N, dt, name))

    hmin = mesh.hmin()
    return err_rho, err_rho_H1, hmin, dt, duration
Exemple #7
0
def run_and_calculate_error(N, dt, tmax, polydeg_u, polydeg_p, nu, last=False):
    """
    Run Ocellaris and return L2 & H1 errors in the last time step
    """
    say(N, dt, tmax, polydeg_u, polydeg_p)

    # Setup and run simulation
    timingtypes = [
        dolfin.TimingType.user, dolfin.TimingType.system,
        dolfin.TimingType.wall
    ]
    dolfin.timings(dolfin.TimingClear_clear, timingtypes)
    sim = Simulation()
    sim.input.read_yaml('disc.inp')

    mesh_type = sim.input.get_value('mesh/type')
    if mesh_type == 'XML':
        # Create unstructured mesh with gmsh
        cmd1 = [
            'gmsh', '-string',
            'lc = %f;' % (3.14 / N), '-o',
            'disc_%d.msh' % N, '-2', 'disc.geo'
        ]
        cmd2 = ['dolfin-convert', 'disc_%d.msh' % N, 'disc.xml']
        with open('/dev/null', 'w') as devnull:
            for cmd in (cmd1, cmd2):
                say(' '.join(cmd))
                subprocess.call(cmd, stdout=devnull, stderr=devnull)
    elif mesh_type == 'UnitDisc':
        sim.input.set_value('mesh/N', N // 2)
    else:
        sim.input.set_value('mesh/Nx', N)
        sim.input.set_value('mesh/Ny', N)

    sim.input.set_value('time/dt', dt)
    sim.input.set_value('time/tmax', tmax)
    sim.input.set_value('solver/polynomial_degree_velocity', polydeg_u)
    sim.input.set_value('solver/polynomial_degree_pressure', polydeg_p)
    sim.input.set_value('physical_properties/nu', nu)
    sim.input.set_value('output/stdout_enabled', False)

    say('Running with %s %s solver ...' %
        (sim.input.get_value('solver/type'),
         sim.input.get_value('solver/function_space_velocity')))
    t1 = time.time()
    setup_simulation(sim)
    run_simulation(sim)
    duration = time.time() - t1
    say('DONE')

    # Interpolate the analytical solution to the same function space
    Vu = sim.data['Vu']
    Vp = sim.data['Vp']
    Vr = sim.data['Vrho']
    polydeg_r = Vr.ufl_element().degree()
    vals = dict(t=sim.time,
                dt=sim.dt,
                Q=sim.input.get_value('user_code/constants/Q'))
    rho_e = dolfin.Expression(
        sim.input.get_value('initial_conditions/rho_p/cpp_code'),
        degree=polydeg_r,
        **vals)
    u0e = dolfin.Expression(
        sim.input.get_value('initial_conditions/up0/cpp_code'),
        degree=polydeg_u,
        **vals)
    u1e = dolfin.Expression(
        sim.input.get_value('initial_conditions/up1/cpp_code'),
        degree=polydeg_u,
        **vals)
    pe = dolfin.Expression(
        sim.input.get_value('initial_conditions/p/cpp_code'),
        degree=polydeg_p,
        **vals)

    rho_a = dolfin.project(rho_e, Vr)
    u0a = dolfin.project(u0e, Vu)
    u1a = dolfin.project(u1e, Vu)
    pa = dolfin.project(pe, Vp)

    mesh = sim.data['mesh']
    n = dolfin.FacetNormal(mesh)

    # Correct for possible non-zero average p
    int_p = dolfin.assemble(sim.data['p'] * dolfin.dx)
    int_pa = dolfin.assemble(pa * dolfin.dx)
    vol = dolfin.assemble(dolfin.Constant(1.0) * dolfin.dx(domain=mesh))
    pa_avg = int_pa / vol
    sim.data['p'].vector()[:] += pa_avg

    # Calculate L2 errors
    err_rho = calc_err(sim.data['rho'], rho_a)
    err_u0 = calc_err(sim.data['u0'], u0a)
    err_u1 = calc_err(sim.data['u1'], u1a)
    err_p = calc_err(sim.data['p'], pa)

    # Calculate H1 errors
    err_rho_H1 = calc_err(sim.data['rho'], rho_a, 'H1')
    err_u0_H1 = calc_err(sim.data['u0'], u0a, 'H1')
    err_u1_H1 = calc_err(sim.data['u1'], u1a, 'H1')
    err_p_H1 = calc_err(sim.data['p'], pa, 'H1')

    reports = sim.reporting.timestep_xy_reports
    say('Num time steps:', sim.timestep)
    say('Num cells:', mesh.num_cells())
    Co_max, Pe_max = numpy.max(reports['Co']), numpy.max(reports['Pe'])
    say('Co_max:', Co_max)
    say('Pe_max:', Pe_max)
    say('rho_min went from %r to %r' %
        (reports['min(rho)'][0], reports['min(rho)'][-1]))
    say('rho_max went from %r to %r' %
        (reports['max(rho)'][0], reports['max(rho)'][-1]))
    m0, m1 = reports['mass'][0], reports['mass'][-1]
    say('mass error %.3e (%.3e)' % (m1 - m0, (m1 - m0) / m0))
    say('vel repr error %.3e' %
        dolfin.assemble(dolfin.dot(sim.data['u'], n) * dolfin.ds))
    say('p*dx', int_p)
    div_u_Vp = abs(
        dolfin.project(dolfin.div(sim.data['u']),
                       Vp).vector().get_local()).max()
    say('div(u)|Vp', div_u_Vp)
    div_u_Vu = abs(
        dolfin.project(dolfin.div(sim.data['u']),
                       Vu).vector().get_local()).max()
    say('div(u)|Vu', div_u_Vu)
    Vdg0 = dolfin.FunctionSpace(mesh, "DG", 0)
    div_u_DG0 = abs(
        dolfin.project(dolfin.div(sim.data['u']),
                       Vdg0).vector().get_local()).max()
    say('div(u)|DG0', div_u_DG0)
    Vdg1 = dolfin.FunctionSpace(mesh, "DG", 1)
    div_u_DG1 = abs(
        dolfin.project(dolfin.div(sim.data['u']),
                       Vdg1).vector().get_local()).max()
    say('div(u)|DG1', div_u_DG1)

    isoparam = mesh.ufl_coordinate_element().degree() > 1
    allways_plot = True
    if (last or allways_plot) and (
            not isoparam or sim.input.get_value('mesh/type') == 'UnitDisc'):
        # Plot the results
        for fa, name in ((u0a, 'u0'), (u1a, 'u1'), (pa, 'p'), (rho_a, 'rho')):
            fh = sim.data[name]
            if isoparam:
                # Bug in matplotlib plotting for isoparametric elements
                mesh2 = dolfin.UnitDiscMesh(dolfin.MPI.comm_world, N // 2, 1,
                                            2)
                ue = fa.function_space().ufl_element()
                V2 = dolfin.FunctionSpace(mesh2, ue.family(), ue.degree())
                fa2, fh2 = dolfin.Function(V2), dolfin.Function(V2)
                fa2.vector().set_local(fa.vector().get_local())
                fh2.vector().set_local(fh.vector().get_local())
                fa, fh = fa2, fh2
            discr = ''  # '%g_%g_' % (N, dt)
            plot(fa, name + ' analytical', '%s%s_1analytical' % (discr, name))
            plot(fh, name + ' numerical', '%s%s_2numerical' % (discr, name))
            plot(fh - fa, name + ' diff', '%s%s_3diff' % (discr, name))

    hmin = mesh.hmin()
    return err_rho, err_u0, err_u1, err_p, err_rho_H1, err_u0_H1, err_u1_H1, err_p_H1, hmin, dt, Co_max, Pe_max, duration
Exemple #8
0
def test_slip_length_robin_bcs_scalar_mms(slip_length, method):
    """
    Test slip length Robin BCs using a Poisson solver to solve

      -∇⋅∇φ = f

    where φ = (-6x² + 6x + 6𝛿)/(6𝛿  - 1) and hence f = 12/(6𝛿  - 1). 

    We use Neumann BCs n⋅∇φ = 0 on the horizontal walls and Navier's
    slip length boundary condition on the vertical walls. The selected
    analytical solution is such that for any slip length 𝛿 the average
    value of φ is 1.0

    This mimics a flow profile going vertically in a 1.0 wide channel
    """
    sim = Simulation()
    sim.input.read_yaml(yaml_string=BASE_INPUT)

    # Create boundary regions
    sim.input.set_value('boundary_conditions', [{}, {}])
    sim.input.set_value('boundary_conditions/0/name', 'vertical walls')
    sim.input.set_value('boundary_conditions/0/selector', 'code')
    sim.input.set_value(
        'boundary_conditions/0/inside_code', 'on_boundary and (x[0] < 1e-6 or x[0] > 1 - 1e-6)'
    )
    sim.input.set_value('boundary_conditions/1/name', 'horizontal walls')
    sim.input.set_value('boundary_conditions/1/selector', 'code')
    sim.input.set_value(
        'boundary_conditions/1/inside_code', 'on_boundary and (x[1] < 1e-6 or x[1] > 1 - 1e-6)'
    )

    # Vertical wall BCs
    if method == 'Constant':
        sim.input.set_value('boundary_conditions/0/phi/type', 'SlipLength')
        sim.input.set_value('boundary_conditions/0/phi/slip_length', slip_length)
    elif method == 'C++':
        sim.input.set_value('boundary_conditions/0/phi/type', 'SlipLength')
        sim.input.set_value('boundary_conditions/0/phi/slip_length', repr(slip_length))
    else:
        sim.input.set_value('boundary_conditions/0/phi/type', 'InterfaceSlipLength')
        sim.input.set_value('boundary_conditions/0/phi/slip_length', slip_length)
        sim.input.set_value('boundary_conditions/0/phi/slip_factor_function', 'fs_zone/phi')

        sim.input.set_value('fields', [{}])
        sim.input.set_value('fields/0/name', 'fs_zone')
        sim.input.set_value('fields/0/type', 'FreeSurfaceZone')
        sim.input.set_value('fields/0/radius', 0.5)

        # Create dummy scalar field
        sim.input.set_value('multiphase_solver/type', 'BlendedAlgebraicVOF')
        sim.input.set_value('multiphase_solver/function_space_colour', 'DG')
        sim.input.set_value('multiphase_solver/polynomial_degree_colour', 0)
        sim.input.set_value('initial_conditions/cp/cpp_code', 'x[1] < 0.5 ? 1.0 : 0.0')

        sim.input.set_value('physical_properties/rho0', 1.0)
        sim.input.set_value('physical_properties/rho1', 1.0)
        sim.input.set_value('physical_properties/nu0', 1.0)
        sim.input.set_value('physical_properties/nu1', 1.0)

        sim.input.set_value('multiphase_solver/project_uconv_dgt0', False)
        sim.data['u_conv'] = dolfin.as_vector([0, 0])
        sim.data['dt'] = dolfin.Constant(1.0)

    # Horizontal wall BCs
    sim.input.set_value('boundary_conditions/1/phi/type', 'ConstantGradient')
    sim.input.set_value('boundary_conditions/1/phi/value', 0.0)

    # RHS
    sim.input.set_value('solver/source', '12/(6*𝛿  - 1.0)'.replace('𝛿', repr(slip_length)))

    # Run Ocellaris
    setup_simulation(sim)
    run_simulation(sim)

    # The numeric (phih) and analytic (phia) solution functions
    cphi = '(-6*x[0]*x[0] + 6*x[0] + 6*𝛿)/(6*𝛿  - 1.0)'.replace('𝛿', repr(slip_length))
    Vphi = sim.data['Vphi']
    phi = dolfin.Expression(cphi, degree=5)
    phih = sim.data['phi']
    phia = dolfin.interpolate(phi, Vphi)

    # Plot to file for debugging
    # debug_phi_plot(phi, phia, phih, 'test_slip_length_bcs_scalar_mms_%g.png' % slip_length)

    # Compute relative error and check that it is reasonable
    phidiff = dolfin.errornorm(phi, phih)
    analytical = dolfin.norm(phia)
    relative_error = phidiff / analytical
    print('RELATIVE ERROR IS %.4f for 𝛿=%r' % (relative_error, slip_length))

    if method == 'Interface' and False:
        from matplotlib import pyplot

        fig = pyplot.figure(figsize=(8, 15))
        fig.add_subplot(311)
        c = dolfin.plot(sim.data['c'])
        pyplot.colorbar(c)
        fig.add_subplot(312)
        c = dolfin.plot(sim.data['ls_c_0_5'])
        pyplot.colorbar(c)
        fig.add_subplot(313)
        c = dolfin.plot(sim.fields['fs_zone'].get_variable('phi'))
        pyplot.colorbar(c)
        fig.tight_layout()
        fig.savefig('AAAAAAAAAAAaaaa.png')

    assert relative_error < 0.0099  # Expect 0.0097 for 𝛿=0.001
Exemple #9
0
def test_robin_bcs_scalar_mms(bcs, b):
    """
    Test Robin BCs using a Poisson solver to solve

      -∇⋅∇φ = f

    where φ = 1 + x and hence f = 0. We use Neumann
    BCs n⋅∇φ = 0 on the horizontal walls and Robin
    BCs on the vertical walls
    """
    sim = Simulation()
    sim.input.read_yaml(yaml_string=BASE_INPUT)

    # Create boundary regions
    sim.input.set_value('boundary_conditions', [{}, {}, {}])
    sim.input.set_value('boundary_conditions/0/name', 'vertical wall x=0')
    sim.input.set_value('boundary_conditions/0/selector', 'code')
    sim.input.set_value(
        'boundary_conditions/0/inside_code', 'on_boundary and (x[0] < 1e-6 or x[0] > 1 - 1e-6)'
    )
    sim.input.set_value('boundary_conditions/1/name', 'vertical walls x=1')
    sim.input.set_value('boundary_conditions/1/selector', 'code')
    sim.input.set_value('boundary_conditions/1/inside_code', 'on_boundary and x[0] > 1 - 1e-6')
    sim.input.set_value('boundary_conditions/2/name', 'horizontal walls')
    sim.input.set_value('boundary_conditions/2/selector', 'code')
    sim.input.set_value(
        'boundary_conditions/2/inside_code', 'on_boundary and (x[1] < 1e-6 or x[1] > 1 - 1e-6)'
    )

    # Setup the boundary conditions to test
    if bcs == 'robin':
        sim.input.set_value('boundary_conditions/0/phi/type', 'ConstantRobin')
        sim.input.set_value('boundary_conditions/0/phi/blend', b)
        sim.input.set_value('boundary_conditions/0/phi/dval', 1.0)
        sim.input.set_value('boundary_conditions/0/phi/nval', -1.0)
        sim.input.set_value('boundary_conditions/1/phi/type', 'ConstantRobin')
        sim.input.set_value('boundary_conditions/1/phi/blend', b)
        sim.input.set_value('boundary_conditions/1/phi/dval', 2.0)
        sim.input.set_value('boundary_conditions/1/phi/nval', 1.0)
        sim.input.set_value('boundary_conditions/2/phi/type', 'ConstantGradient')
        sim.input.set_value('boundary_conditions/2/phi/value', 0.0)
    elif bcs == 'neumann':
        sim.input.set_value('boundary_conditions/0/phi/type', 'ConstantGradient')
        sim.input.set_value('boundary_conditions/0/phi/value', -1.0)
        sim.input.set_value('boundary_conditions/1/phi/type', 'ConstantGradient')
        sim.input.set_value('boundary_conditions/1/phi/value', 1.0)

    # RHS
    sim.input.set_value('solver/source', '2*pi*pi*(pow(sin(x[0]*pi), 2) - pow(cos(x[0]*pi), 2))')

    # Run Ocellaris
    setup_simulation(sim)
    run_simulation(sim)

    # The numeric (phih) and analytic (phia) solution functions
    cphi = '1.0 + x[0] + pow(sin(x[0]*pi), 2)'
    Vphi = sim.data['Vphi']
    phi = dolfin.Expression(cphi, degree=5)
    phih = sim.data['phi']
    phia = dolfin.interpolate(phi, Vphi)

    # Correct the constant offset due to how the null space is handledFalse
    if bcs == 'neumann':
        correct_constant_offset(sim, phih, phia)

    # Plot to file for debugging
    # debug_phi_plot(phia, phih, 'test_robin_bcs_scalar_mms_%s.png' % bcs)

    # Compute relative error and check that it is reasonable
    phidiff = dolfin.errornorm(phi, phih)
    analytical = dolfin.norm(phia)
    relative_error = phidiff / analytical
    print('RELATIVE ERROR IS %.3f' % relative_error)
    assert relative_error < 0.015  # Expect 0.0139 with Robin
Exemple #10
0
def test_neumann_bcs_scalar_mms(method):
    "Test pure Neumann BCs using a Poisson solver"
    sim = Simulation()
    sim.input.read_yaml(yaml_string=BASE_INPUT)
    sim.input.set_value('mesh/Nx', 20)
    sim.input.set_value('mesh/Ny', 20)
    sim.input.set_value('boundary_conditions', [{}, {}])
    sim.input.set_value('boundary_conditions/0/name', 'vertical walls')
    sim.input.set_value('boundary_conditions/0/selector', 'code')
    sim.input.set_value(
        'boundary_conditions/0/inside_code', 'on_boundary and (x[0] < 1e-6 or x[0] > 1 - 1e-6)'
    )
    sim.input.set_value('boundary_conditions/1/name', 'horizontal walls')
    sim.input.set_value('boundary_conditions/1/selector', 'code')
    sim.input.set_value(
        'boundary_conditions/1/inside_code', 'on_boundary and (x[1] < 1e-6 or x[1] > 1 - 1e-6)'
    )

    # Get analytical expressions
    cphi, cphix, cphiy, cf = mms_case()
    sim.input.set_value('solver/source', cf)

    if method.startswith('py'):
        cphix = '(-1.0 if x[0] < 0.5 else 1.0) * ' + cphix
        cphiy = '(-1.0 if x[1] < 0.5 else 1.0) * ' + cphiy
    else:
        cphix = '(x[0] < 0.5 ? -1.0 : 1.0) * ' + cphix
        cphiy = '(x[1] < 0.5 ? -1.0 : 1.0) * ' + cphiy

    # Setup the boundary conditions to test
    if method == 'py_eval':
        sim.input.set_value('boundary_conditions/0/phi/type', 'CodedGradient')
        sim.input.set_value('boundary_conditions/0/phi/code', cphix)
        sim.input.set_value('boundary_conditions/1/phi/type', 'CodedGradient')
        sim.input.set_value('boundary_conditions/1/phi/code', cphiy)
    elif method == 'py_exec':
        sim.input.set_value('boundary_conditions/0/phi/type', 'CodedGradient')
        sim.input.set_value('boundary_conditions/0/phi/code', 'value[0] = ' + cphix)
        sim.input.set_value('boundary_conditions/1/phi/type', 'CodedGradient')
        sim.input.set_value('boundary_conditions/1/phi/code', 'value[0] = ' + cphiy)
    elif method == 'cpp':
        sim.input.set_value('boundary_conditions/0/phi/type', 'CppCodedGradient')
        sim.input.set_value('boundary_conditions/0/phi/cpp_code', cphix)
        sim.input.set_value('boundary_conditions/1/phi/type', 'CppCodedGradient')
        sim.input.set_value('boundary_conditions/1/phi/cpp_code', cphiy)

    # Run Ocellaris
    setup_simulation(sim)
    run_simulation(sim)

    # The numeric (phih) and analytic (phia) solution functions
    Vphi = sim.data['Vphi']
    phi = dolfin.Expression(cphi, degree=5)
    phih = sim.data['phi']
    phia = dolfin.interpolate(phi, Vphi)

    # Correct the constant offset due to how the null space is handled
    correct_constant_offset(sim, phih, phia)

    # Compute relative error and check that it is reasonable
    phidiff = dolfin.errornorm(phi, phih)
    analytical = dolfin.norm(phia)
    relative_error = phidiff / analytical
    print('RELATIVE ERROR IS %.3f' % relative_error)
    assert relative_error < 0.055