from file_utils import time_start, timer_end is_ctpn = True is_uied = True is_merge = True PATH_IMG_INPUT = 'data\\input\\web\\6.png' PATH_LABEL_COMPO = 'data\\output\\compo.json' PATH_LABEL_TEXT = 'data\\output\\ocr.txt' PATH_CTPN_DRAWN = 'data\\output\\ctpn.png' PATH_UIED_DRAWN = 'data\\output\\uied.png' PATH_UIED_BIN = 'data\\output\\gradient.png' PATH_MERGE = 'data\\output\\merged.png' PATH_COMPONENT = 'data\\output\\components' img_section = (3000, 1500) # selected img section, height and width start = time_start() if is_ctpn: import ocr ocr.ctpn(PATH_IMG_INPUT, PATH_LABEL_TEXT, PATH_CTPN_DRAWN, img_section) if is_uied: import ui ui.uied(PATH_IMG_INPUT, PATH_LABEL_COMPO, PATH_UIED_DRAWN, PATH_UIED_BIN, img_section) if is_merge: import merge merge.incorporate(PATH_IMG_INPUT, PATH_LABEL_COMPO, PATH_LABEL_TEXT, PATH_MERGE, img_section, is_clip=True, clip_path=PATH_COMPONENT) timer_end(start)
continue input_path_img = line.split()[0] print(input_path_img) # *** start processing *** start = time.clock() # set output paths # for image detection label_compo = pjoin(C.ROOT_LABEL_UIED, str(index) + '.json') img_uied_drawn = pjoin(C.ROOT_IMG_DRAWN_UIED, str(index) + '.png') img_uied_grad = pjoin(C.ROOT_IMG_GRADIENT_UIED, str(index) + '.png') # for text recognition (ctpn) label_text = pjoin(C.ROOT_LABEL_CTPN, str(index) + '.txt') img_ctpn_drawn = pjoin(C.ROOT_IMG_DRAWN_CTPN, str(index) + '.png') # for incorporated results img_merge = pjoin(C.ROOT_IMG_MERGE, str(index) + '.png') label_merge = pjoin(C.ROOT_OUTPUT, 'label.txt') if is_ctpn: ocr.ctpn(input_path_img, label_text, img_ctpn_drawn, img_section) if is_uied: ui.uied(input_path_img, label_compo, img_uied_drawn, img_uied_grad, img_section) if is_merge: merge.incorporate(input_path_img, label_compo, label_text, img_merge, label_merge, img_section, is_clip) print('%d Time Taken:%.3f s\n' % (index, time.clock() - start)) index += 1