Exemple #1
0
    def calc_trim_mean_throughput(self, samples=8):
        """
        Calculate the cluster average throughput out of a few samples

        Args:
            samples (int): The number of samples to take

        Returns:
            float: The average cluster throughput

        """
        throughput_vals = [self.get_cluster_throughput() for _ in range(samples)]
        return round(get_trim_mean(throughput_vals), 3)
Exemple #2
0
    def calc_trim_metric_mean(self, metric=constants.LATENCY_QUERY, samples=5):
        """
        Get the trimmed mean of a given metric

        Args:
            metric (str): The metric to calculate the average result for
            samples (int): The number of samples to take

        Returns:
            float: The average result for the metric

        """
        vals = list()
        for i in range(samples):
            vals.append(round(self.get_query(metric), 5))
            if i == samples - 1:
                break
            time.sleep(5)
        return round(get_trim_mean(vals), 5)
Exemple #3
0
    def calc_trim_metric_mean(self, metric, samples=5, mute_logs=False):
        """
        Get the trimmed mean of a given metric

        Args:
            metric (str): The metric to calculate the average result for
            samples (int): The number of samples to take
            mute_logs (bool): True for muting the logs, False otherwise

        Returns:
            float: The average result for the metric

        """
        vals = list()
        for i in range(samples):
            vals.append(round(self.get_query(metric, mute_logs), 5))
            if i == samples - 1:
                break
            time.sleep(5)
        return round(get_trim_mean(vals), 5)