Exemple #1
0
def test_model_output_lda_tomotopy(data_dir):
    dataset = Dataset()
    dataset.load_custom_dataset_from_folder(data_dir + '/M10')
    num_topics = 3
    model = LDATOMOTO(num_topics=num_topics, alpha=0.1)
    output = model.train_model(dataset)
    assert 'topics' in output.keys()
    assert 'topic-word-matrix' in output.keys()
    assert 'test-topic-document-matrix' in output.keys()

    # check topics format
    assert type(output['topics']) == list
    assert len(output['topics']) == num_topics

    # check topic-word-matrix format
    assert type(output['topic-word-matrix']) == np.ndarray
    assert output['topic-word-matrix'].shape == (num_topics,
                                                 len(dataset.get_vocabulary()))

    # check topic-document-matrix format
    assert type(output['topic-document-matrix']) == np.ndarray
    assert output['topic-document-matrix'].shape == (
        num_topics, len(dataset.get_partitioned_corpus()[0]))

    # check test-topic-document-matrix format
    assert type(output['test-topic-document-matrix']) == np.ndarray
    assert output['test-topic-document-matrix'].shape == (
        num_topics, len(dataset.get_partitioned_corpus()[2]))
Exemple #2
0
def test_model_output_nmf(data_dir):
    dataset = Dataset()
    dataset.load_custom_dataset_from_folder(data_dir + '/M10')
    num_topics = 3
    model = NMF(num_topics=num_topics,
                w_max_iter=10,
                h_max_iter=10,
                use_partitions=True)
    output = model.train_model(dataset)
    assert 'topics' in output.keys()
    assert 'topic-word-matrix' in output.keys()
    assert 'test-topic-document-matrix' in output.keys()

    # check topics format
    assert type(output['topics']) == list
    assert len(output['topics']) == num_topics

    # check topic-word-matrix format
    assert type(output['topic-word-matrix']) == np.ndarray
    assert output['topic-word-matrix'].shape == (num_topics,
                                                 len(dataset.get_vocabulary()))

    # check topic-document-matrix format
    assert type(output['topic-document-matrix']) == np.ndarray
    assert output['topic-document-matrix'].shape == (
        num_topics, len(dataset.get_partitioned_corpus()[0]))

    # check test-topic-document-matrix format
    assert type(output['test-topic-document-matrix']) == np.ndarray
    assert output['test-topic-document-matrix'].shape == (
        num_topics, len(dataset.get_partitioned_corpus()[2]))
Exemple #3
0
def test_model_output_ctm_combined(data_dir):
    dataset = Dataset()
    dataset.load_custom_dataset_from_folder(data_dir + '/M10')
    num_topics = 3
    model = CTM(num_topics=num_topics, num_epochs=5, inference_type='combined')
    output = model.train_model(dataset)
    assert 'topics' in output.keys()
    assert 'topic-word-matrix' in output.keys()
    assert 'test-topic-document-matrix' in output.keys()

    # check topics format
    assert type(output['topics']) == list
    assert len(output['topics']) == num_topics

    # check topic-word-matrix format
    assert type(output['topic-word-matrix']) == np.ndarray
    assert output['topic-word-matrix'].shape == (num_topics,
                                                 len(dataset.get_vocabulary()))

    # check topic-document-matrix format
    assert type(output['topic-document-matrix']) == np.ndarray
    assert output['topic-document-matrix'].shape == (
        num_topics, len(dataset.get_partitioned_corpus()[0]))

    # check test-topic-document-matrix format
    assert type(output['test-topic-document-matrix']) == np.ndarray
    assert output['test-topic-document-matrix'].shape == (
        num_topics, len(dataset.get_partitioned_corpus()[2]))
Exemple #4
0
def test_model_output_prodlda_not_partitioned(data_dir):
    dataset = Dataset()
    dataset.load_custom_dataset_from_folder(data_dir + '/M10')
    num_topics = 3
    model = ProdLDA(num_topics=num_topics, num_epochs=5, use_partitions=False)
    output = model.train_model(dataset)
    assert 'topics' in output.keys()
    assert 'topic-word-matrix' in output.keys()
    assert 'test-topic-document-matrix' not in output.keys()

    # check topics format
    assert type(output['topics']) == list
    assert len(output['topics']) == num_topics

    # check topic-word-matrix format
    assert type(output['topic-word-matrix']) == np.ndarray
    assert output['topic-word-matrix'].shape == (num_topics, len(dataset.get_vocabulary()))

    # check topic-document-matrix format
    assert type(output['topic-document-matrix']) == np.ndarray
    assert output['topic-document-matrix'].shape == (num_topics, len(dataset.get_corpus()))