Exemple #1
0
def grid_search(model,
                X,
                y,
                C_range=(-5, 15, 2),
                gamma_range=(3, -15, -2),
                k=5,
                num_cores=1):
    if not isinstance(model, PredictableModel):
        raise TypeError(
            "GridSearch expects a PredictableModel. If you want to perform optimization on raw data use facerec.feature.Identity to pass unpreprocessed data!"
        )
    if not isinstance(model.classifier, SVM):
        raise TypeError(
            "GridSearch expects a SVM as classifier. Please use a facerec.classifier.SVM!"
        )

    logger = logging.getLogger("facerec.svm.gridsearch")
    logger.info("Performing a Grid Search.")

    # best parameter combination to return
    best_parameter = svm_parameter("-q")
    best_parameter.kernel_type = model.classifier.param.kernel_type
    best_parameter.nu = model.classifier.param.nu
    best_parameter.coef0 = model.classifier.param.coef0
    # either no gamma given or kernel is linear (only C to optimize)
    if (gamma_range is None) or (model.classifier.param.kernel_type == LINEAR):
        gamma_range = (0, 0, 1)

    # best validation error so far
    best_accuracy = np.finfo('float').min

    # create grid (cartesian product of ranges)
    g = grid([C_range, gamma_range])
    results = []
    for p in g:
        C, gamma = p
        C, gamma = 2**C, 2**gamma
        model.classifier.param.C, model.classifier.param.gamma = C, gamma

        # perform a k-fold cross validation
        cv = KFoldCrossValidation(model=model, k=k)
        cv.validate(X, y)

        # append parameter into list with accuracies for all parameter combinations
        results.append([C, gamma, cv.accuracy])

        # store best parameter combination
        if cv.accuracy > best_accuracy:
            logger.info("best_accuracy=%s" % (cv.accuracy))
            best_accuracy = cv.accuracy
            best_parameter.C, best_parameter.gamma = C, gamma

        logger.info("%d-CV Result = %.2f." % (k, cv.accuracy))

    # set best parameter combination to best found
    return best_parameter, results
Exemple #2
0
def grid_search(model, X, y, C_range=(-5, 15, 2), gamma_range=(3, -15, -2), k=5, num_cores=1):
    if not isinstance(model, PredictableModel):
        raise TypeError(
            "GridSearch expects a PredictableModel. If you want to perform optimization on raw data use facerec.feature.Identity to pass unpreprocessed data!")
    if not isinstance(model.classifier, SVM):
        raise TypeError("GridSearch expects a SVM as classifier. Please use a facerec.classifier.SVM!")

    logger = logging.getLogger("facerec.svm.gridsearch")
    logger.info("Performing a Grid Search.")

    # best parameter combination to return
    best_parameter = svm_parameter("-q")
    best_parameter.kernel_type = model.classifier.param.kernel_type
    best_parameter.nu = model.classifier.param.nu
    best_parameter.coef0 = model.classifier.param.coef0
    # either no gamma given or kernel is linear (only C to optimize)
    if (gamma_range is None) or (model.classifier.param.kernel_type == LINEAR):
        gamma_range = (0, 0, 1)

    # best validation error so far
    best_accuracy = np.finfo('float').min

    # create grid (cartesian product of ranges)        
    g = grid([C_range, gamma_range])
    results = []
    for p in g:
        C, gamma = p
        C, gamma = 2 ** C, 2 ** gamma
        model.classifier.param.C, model.classifier.param.gamma = C, gamma

        # perform a k-fold cross validation
        cv = KFoldCrossValidation(model=model, k=k)
        cv.validate(X, y)

        # append parameter into list with accuracies for all parameter combinations
        results.append([C, gamma, cv.accuracy])

        # store best parameter combination
        if cv.accuracy > best_accuracy:
            logger.info("best_accuracy=%s" % (cv.accuracy))
            best_accuracy = cv.accuracy
            best_parameter.C, best_parameter.gamma = C, gamma

        logger.info("%d-CV Result = %.2f." % (k, cv.accuracy))

    # set best parameter combination to best found
    return best_parameter, results
 def train(self):
     # Check if the given dataset exists:
     if not os.path.exists(self.dataset):
         print ">> [Error] No Dataset Found at '%s'." % self.dataset
         sys.exit(1)
     # Reads the images, labels and folder_names from a given dataset. Images
     # are resized to given size on the fly:
     print ">> Loading Dataset <-- " + self.dataset
     [images, labels, subject_names] = self.read_images(self.dataset, self.image_size)
     # Zip us a {label, name} dict from the given data:
     list_of_labels = list(xrange(max(labels) + 1))
     subject_dictionary = dict(zip(list_of_labels, subject_names))
     # Get the model we want to compute:
     model = self.get_model(image_size=self.image_size, subject_names=subject_dictionary)
     # Sometimes you want to know how good the model may perform on the data
     # given, the script allows you to perform a k-fold Cross Validation before
     # the Detection & Recognition part starts:
     if self.numfolds is not None:
         print ">> Validating Model With %s Folds.." % self.numfolds
         # We want to have some log output, so set up a new logging handler
         # and point it to stdout:
         handler = logging.StreamHandler(sys.stdout)
         formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
         handler.setFormatter(formatter)
         # Add a handler to facerec modules, so we see what's going on inside:
         logger = logging.getLogger("facerec")
         logger.addHandler(handler)
         logger.setLevel(logging.DEBUG)
         # Perform the validation & print results:
         crossval = KFoldCrossValidation(model, k=self.numfolds)
         crossval.validate(images, labels)
         crossval.print_results()
     # Compute the model:
     print ">> Computing Model.."
     model.compute(images, labels)
     # And save the model, which uses Pythons pickle module:
     print ">> Saving Model.."
     save_model(self.model_filename, model)
Exemple #4
0
 def train(self):
     # Check if the given dataset exists:
     if not os.path.exists(self.dataset):
         print ">> [Error] No Dataset Found at '%s'." % self.dataset
         sys.exit(1)
     # Reads the images, labels and folder_names from a given dataset. Images
     # are resized to given size on the fly:
     print ">> Loading Dataset <-- " + self.dataset
     [images, labels,
      subject_names] = self.read_images(self.dataset, self.image_size)
     # Zip us a {label, name} dict from the given data:
     list_of_labels = list(xrange(max(labels) + 1))
     subject_dictionary = dict(zip(list_of_labels, subject_names))
     # Get the model we want to compute:
     model = self.get_model(image_size=self.image_size,
                            subject_names=subject_dictionary)
     # Sometimes you want to know how good the model may perform on the data
     # given, the script allows you to perform a k-fold Cross Validation before
     # the Detection & Recognition part starts:
     if self.numfolds is not None:
         print ">> Validating Model With %s Folds.." % self.numfolds
         # We want to have some log output, so set up a new logging handler
         # and point it to stdout:
         handler = logging.StreamHandler(sys.stdout)
         formatter = logging.Formatter(
             '%(asctime)s - %(name)s - %(levelname)s - %(message)s')
         handler.setFormatter(formatter)
         # Add a handler to facerec modules, so we see what's going on inside:
         logger = logging.getLogger("facerec")
         logger.addHandler(handler)
         logger.setLevel(logging.DEBUG)
         # Perform the validation & print results:
         crossval = KFoldCrossValidation(model, k=self.numfolds)
         crossval.validate(images, labels)
         crossval.print_results()
     # Compute the model:
     print ">> Computing Model.."
     model.compute(images, labels)
     # And save the model, which uses Pythons pickle module:
     print ">> Saving Model.."
     save_model(self.model_filename, model)