Exemple #1
0
def _draw_time_series_plot(evaluation, plot_config):
    """"""
    time_range_info = plot_config['time_range']
    ref_ds = evaluation.ref_dataset
    target_ds = evaluation.target_datasets

    if time_range_info == 'monthly':
        ref_ds.values, ref_ds.times = utils.calc_climatology_monthly(ref_ds)

        for t in target_ds:
            t.values, t.times = utils.calc_climatology_monthly(t)
    else:
        logger.error('Invalid time range provided. Only monthly is supported '
                     'at the moment')
        return

    if evaluation.subregions:
        for bound_count, bound in enumerate(evaluation.subregions):
            results = []
            labels = []

            subset = dsp.subset(bound,
                                ref_ds,
                                subregion_name="R{}_{}".format(
                                    bound_count, ref_ds.name))

            results.append(utils.calc_time_series(subset))
            labels.append(subset.name)

            for t in target_ds:
                subset = dsp.subset(bound,
                                    t,
                                    subregion_name="R{}_{}".format(
                                        bound_count, t.name))
                results.append(utils.calc_time_series(subset))
                labels.append(subset.name)

            plots.draw_time_series(np.array(results), ref_ds.times, labels,
                                   'R{}'.format(bound_count),
                                   **plot_config.get('optional_args', {}))

    else:
        results = []
        labels = []

        results.append(utils.calc_time_series(ref_ds))
        labels.append(ref_ds.name)

        for t in target_ds:
            results.append(utils.calc_time_series(t))
            labels.append(t.name)

        plots.draw_time_series(np.array(results), ref_ds.times, labels,
                               'time_series',
                               **plot_config.get('optional_args', {}))
Exemple #2
0
    def _run_subregion_evaluation(self):
        results = []
        for target in self.target_datasets:
            results.append([])
            for metric in self.metrics:
                results[-1].append([])
                for subregion in self.subregions:
                    # Subset the reference and target dataset with the 
                    # subregion information.
                    new_ref = DSP.subset(subregion, self.ref_dataset)
                    new_tar = DSP.subset(subregion, target)

                    run_result = metric.run(new_ref, new_tar)
                    results[-1][-1].append(run_result)
        return results
Exemple #3
0
    def _run_subregion_evaluation(self):
        results = []
        for target in self.target_datasets:
            results.append([])
            for metric in self.metrics:
                results[-1].append([])
                for subregion in self.subregions:
                    # Subset the reference and target dataset with the
                    # subregion information.
                    new_ref = DSP.subset(subregion, self.ref_dataset)
                    new_tar = DSP.subset(subregion, target)

                    run_result = metric.run(new_ref, new_tar)
                    results[-1][-1].append(run_result)
        return results
 def test_subset(self):
     subset = dp.subset(self.target_dataset, self.subregion)
     self.assertEqual(subset.lats.shape[0], 82)
     self.assertSequenceEqual(list(np.array(range(-81, 82, 2))),
                              list(subset.lats))
     self.assertEqual(subset.lons.shape[0], 162)
     self.assertEqual(subset.times.shape[0], 37)
     self.assertEqual(subset.values.shape, (37, 82, 162))
 def test_subset(self):
     subset = dp.subset(self.subregion, self.target_dataset)
     self.assertEqual(subset.lats.shape[0], 82)
     self.assertSequenceEqual(list(np.array(range(-81, 82, 2))),
                              list(subset.lats))
     self.assertEqual(subset.lons.shape[0], 162)
     self.assertEqual(subset.times.shape[0], 37)
     self.assertEqual(subset.values.shape, (37, 82, 162))
Exemple #6
0
    def _run_subregion_evaluation(self):
        results = []
        new_refs = [DSP.subset(s, self.ref_dataset) for s in self.subregions]

        for target in self.target_datasets:
            results.append([])
            new_targets = [DSP.subset(s, target) for s in self.subregions]

            for metric in self.metrics:
                results[-1].append([])

                for i in range(len(self.subregions)):
                    new_ref = new_refs[i]
                    new_tar = new_targets[i]

                    run_result = metric.run(new_ref, new_tar)
                    results[-1][-1].append(run_result)
        return convert_evaluation_result(results, subregion=True)
Exemple #7
0
    def _run_subregion_unary_evaluation(self):
        unary_results = []
        if self.ref_dataset:
            new_refs = [DSP.subset(s, self.ref_dataset) for s in self.subregions]

        new_targets = [
            [DSP.subset(s, t) for s in self.subregions]
            for t in self.target_datasets
        ]

        for metric in self.unary_metrics:
            unary_results.append([])

            for i in range(len(self.subregions)):
                unary_results[-1].append([])

                if self.ref_dataset:
                    unary_results[-1][-1].append(metric.run(new_refs[i]))

                for t in range(len(self.target_datasets)):
                    unary_results[-1][-1].append(metric.run(new_targets[t][i]))

        return convert_unary_evaluation_result(unary_results, subregion = True)
Exemple #8
0
 def test_subset_without_start_index(self):
     self.subregion = ds.Bounds(
         lat_min=-81, lat_max=81,
         lon_min=-161, lon_max=161,
     )
     subset = dp.subset(self.target_dataset, self.subregion)
     times = np.array([datetime.datetime(year, month, 1)
                       for year in range(2000, 2010)
                       for month in range(1, 13)])
     self.assertEqual(subset.lats.shape[0], 82)
     self.assertSequenceEqual(list(np.array(range(-81, 82, 2))),
                              list(subset.lats))
     self.assertEqual(subset.lons.shape[0], 162)
     self.assertEqual(subset.values.shape, (120, 82, 162))
     self.assertEqual(subset.times.shape[0], 120)
     np.testing.assert_array_equal(subset.times, times)
 def test_subset_without_start_index(self):
     self.subregion = ds.Bounds(
         -81, 81,
         -161, 161,
     )
     subset = dp.subset(self.target_dataset, self.subregion)
     times = np.array([datetime.datetime(year, month, 1)
                       for year in range(2000, 2010)
                       for month in range(1, 13)])
     self.assertEqual(subset.lats.shape[0], 82)
     self.assertSequenceEqual(list(np.array(range(-81, 82, 2))),
                              list(subset.lats))
     self.assertEqual(subset.lons.shape[0], 162)
     self.assertEqual(subset.values.shape, (120, 82, 162))
     self.assertEqual(subset.times.shape[0], 120)
     np.testing.assert_array_equal(subset.times, times)
Exemple #10
0
if time_info['maximum_overlap_period']:
    start_time, end_time = utils.get_temporal_overlap([ref_dataset]+model_datasets)
    print 'Maximum overlap period'
    print 'start_time:', start_time
    print 'end_time:', end_time

if temporal_resolution == 'monthly' and end_time.day !=1:
    end_time = end_time.replace(day=1)
if ref_data_info['data_source'] == 'rcmed':
    min_lat = np.max([min_lat, ref_dataset.lats.min()])
    max_lat = np.min([max_lat, ref_dataset.lats.max()])
    min_lon = np.max([min_lon, ref_dataset.lons.min()])
    max_lon = np.min([max_lon, ref_dataset.lons.max()])
bounds = Bounds(min_lat, max_lat, min_lon, max_lon, start_time, end_time)

ref_dataset = dsp.subset(bounds,ref_dataset)
if ref_dataset.temporal_resolution() != temporal_resolution:
    ref_dataset = dsp.temporal_rebin(ref_dataset, temporal_resolution)
for idata,dataset in enumerate(model_datasets):
    model_datasets[idata] = dsp.subset(bounds,dataset)
    if dataset.temporal_resolution() != temporal_resolution:
        model_datasets[idata] = dsp.temporal_rebin(dataset, temporal_resolution)

# Temporaly subset both observation and model datasets for the user specified season
month_start = time_info['month_start']
month_end = time_info['month_end']
average_each_year = time_info['average_each_year']

ref_dataset = dsp.temporal_subset(month_start, month_end,ref_dataset,average_each_year)
for idata,dataset in enumerate(model_datasets):
    model_datasets[idata] = dsp.temporal_subset(month_start, month_end,dataset,average_each_year)
# https://rcmes.jpl.nasa.gov/content/data-rcmes-database
CRU31 = rcmed.parameter_dataset(10, 37, LAT_MIN, LAT_MAX, LON_MIN, LON_MAX,
                                START, END)
""" Step 3: Resample Datasets so they are the same shape """
print("Resampling datasets ...")
print("... on units")
CRU31 = dsp.water_flux_unit_conversion(CRU31)
print("... temporal")
CRU31 = dsp.temporal_rebin(CRU31, temporal_resolution='monthly')

for member, each_target_dataset in enumerate(target_datasets):
    target_datasets[member] = dsp.water_flux_unit_conversion(
        target_datasets[member])
    target_datasets[member] = dsp.temporal_rebin(target_datasets[member],
                                                 temporal_resolution='monthly')
    target_datasets[member] = dsp.subset(EVAL_BOUNDS, target_datasets[member])

#Regrid
print("... regrid")
new_lats = np.arange(LAT_MIN, LAT_MAX, gridLatStep)
new_lons = np.arange(LON_MIN, LON_MAX, gridLonStep)
CRU31 = dsp.spatial_regrid(CRU31, new_lats, new_lons)

for member, each_target_dataset in enumerate(target_datasets):
    target_datasets[member] = dsp.spatial_regrid(target_datasets[member],
                                                 new_lats, new_lons)

#find the mean values
#way to get the mean. Note the function exists in util.py as def calc_climatology_year(dataset):
CRU31.values = utils.calc_temporal_mean(CRU31)
""" Step 2: Fetch an OCW Dataset Object from the data_source.rcmed module """
print("Working with the rcmed interface to get CRU3.1 Daily Precipitation")
# the dataset_id and the parameter id were determined from
# https://rcmes.jpl.nasa.gov/content/data-rcmes-database
CRU31 = rcmed.parameter_dataset(
    10, 37, LAT_MIN, LAT_MAX, LON_MIN, LON_MAX, START, END)


""" Step 3: Processing datasets so they are the same shape ... """
print("Processing datasets so they are the same shape")
CRU31 = dsp.water_flux_unit_conversion(CRU31)
CRU31 = dsp.normalize_dataset_datetimes(CRU31, 'monthly')

for member, each_target_dataset in enumerate(target_datasets):
    target_datasets[member] = dsp.subset(target_datasets[member], EVAL_BOUNDS)
    target_datasets[member] = dsp.water_flux_unit_conversion(target_datasets[
                                                             member])
    target_datasets[member] = dsp.normalize_dataset_datetimes(
        target_datasets[member], 'monthly')

print("... spatial regridding")
new_lats = np.arange(LAT_MIN, LAT_MAX, gridLatStep)
new_lons = np.arange(LON_MIN, LON_MAX, gridLonStep)
CRU31 = dsp.spatial_regrid(CRU31, new_lats, new_lons)


for member, each_target_dataset in enumerate(target_datasets):
    target_datasets[member] = dsp.spatial_regrid(
        target_datasets[member], new_lats, new_lons)
 def test_out_of_dataset_bounds_start(self):
     self.subregion.start = datetime.datetime(1999, 1, 1)
     with self.assertRaises(ValueError):
         dp.subset(self.subregion, self.target_dataset)
Exemple #14
0
def _draw_time_series_plot(evaluation, plot_config):
    """"""
    time_range_info = plot_config['time_range']
    ref_ds = evaluation.ref_dataset
    target_ds = evaluation.target_datasets

    if time_range_info == 'monthly':
        ref_ds.values, ref_ds.times = utils.calc_climatology_monthly(ref_ds)

        for t in target_ds:
            t.values, t.times = utils.calc_climatology_monthly(t)
    else:
        logger.error(
            'Invalid time range provided. Only monthly is supported '
            'at the moment'
        )
        return

    if evaluation.subregions:
        for bound_count, bound in enumerate(evaluation.subregions):
            results = []
            labels = []

            subset = dsp.subset(
                bound,
                ref_ds,
                subregion_name="R{}_{}".format(bound_count, ref_ds.name)
            )

            results.append(utils.calc_time_series(subset))
            labels.append(subset.name)

            for t in target_ds:
                subset = dsp.subset(
                    bound,
                    t,
                    subregion_name="R{}_{}".format(bound_count, t.name)
                )
                results.append(utils.calc_time_series(subset))
                labels.append(subset.name)

            plots.draw_time_series(np.array(results),
                                   ref_ds.times,
                                   labels,
                                   'R{}'.format(bound_count),
                                   **plot_config.get('optional_args', {}))

    else:
        results = []
        labels = []

        results.append(utils.calc_time_series(ref_ds))
        labels.append(ref_ds.name)

        for t in target_ds:
            results.append(utils.calc_time_series(t))
            labels.append(t.name)

        plots.draw_time_series(np.array(results),
                               ref_ds.times,
                               labels,
                               'time_series',
                               **plot_config.get('optional_args', {}))
 def test_out_of_dataset_bounds_lat_min(self):
     self.subregion.lat_min = -90
     with self.assertRaises(ValueError):
         dp.subset(self.target_dataset, self.subregion)
Exemple #16
0
LON_MAX = 55
START = datetime.datetime(1999, 1, 1)
END = datetime.datetime(2000, 12, 1)
SEASON_MONTH_START = 1
SEASON_MONTH_END = 12

EVAL_BOUNDS = Bounds(LAT_MIN, LAT_MAX, LON_MIN, LON_MAX, START, END)

# Normalize the time values of our datasets so they fall on expected days
# of the month. For example, monthly data will be normalized so that:
# 15 Jan 2014, 15 Feb 2014 => 1 Jan 2014, 1 Feb 2014
ref_dataset = dsp.normalize_dataset_datetimes(ref_dataset, "monthly")
target_dataset = dsp.normalize_dataset_datetimes(target_dataset, "monthly")

# Subset down the evaluation datasets to our selected evaluation bounds.
target_dataset = dsp.subset(EVAL_BOUNDS, target_dataset)
ref_dataset = dsp.subset(EVAL_BOUNDS, ref_dataset)

# Do a monthly temporal rebin of the evaluation datasets.
target_dataset = dsp.temporal_rebin(target_dataset, datetime.timedelta(days=30))
ref_dataset = dsp.temporal_rebin(ref_dataset, datetime.timedelta(days=30))

# Spatially regrid onto a 1 degree lat/lon grid within our evaluation bounds.
new_lats = np.arange(LAT_MIN, LAT_MAX, 1.0)
new_lons = np.arange(LON_MIN, LON_MAX, 1.0)
target_dataset = dsp.spatial_regrid(target_dataset, new_lats, new_lons)
ref_dataset = dsp.spatial_regrid(ref_dataset, new_lats, new_lons)

# Load the datasets for the evaluation.
mean_bias = metrics.MeanBias()
# These versions of the metrics require seasonal bounds prior to running
Exemple #17
0
if time_info['maximum_overlap_period']:
    start_time, end_time = utils.get_temporal_overlap([ref_dataset]+model_datasets)
    print 'Maximum overlap period'
    print 'start_time:', start_time
    print 'end_time:', end_time

if temporal_resolution == 'monthly' and end_time.day !=1:
    end_time = end_time.replace(day=1)
if ref_data_info['data_source'] == 'rcmed':
    min_lat = np.max([min_lat, ref_dataset.lats.min()])
    max_lat = np.min([max_lat, ref_dataset.lats.max()])
    min_lon = np.max([min_lon, ref_dataset.lons.min()])
    max_lon = np.min([max_lon, ref_dataset.lons.max()])
bounds = Bounds(min_lat, max_lat, min_lon, max_lon, start_time, end_time)

ref_dataset = dsp.subset(ref_dataset, bounds)
if ref_dataset.temporal_resolution() != temporal_resolution:
    ref_dataset = dsp.temporal_rebin(ref_dataset, temporal_resolution)
for idata,dataset in enumerate(model_datasets):
    model_datasets[idata] = dsp.subset(dataset, bounds)
    if dataset.temporal_resolution() != temporal_resolution:
        model_datasets[idata] = dsp.temporal_rebin(dataset, temporal_resolution)

# Temporaly subset both observation and model datasets for the user specified season
month_start = time_info['month_start']
month_end = time_info['month_end']
average_each_year = time_info['average_each_year']

ref_dataset = dsp.temporal_subset(ref_dataset,month_start, month_end,average_each_year)
for idata,dataset in enumerate(model_datasets):
    model_datasets[idata] = dsp.temporal_subset(dataset,month_start, month_end,average_each_year)
Exemple #18
0
    max_lon = np.min([max_lon, dataset.lons.max()])

if not 'boundary_type' in space_info:
    bounds = Bounds(lat_min=min_lat,
                    lat_max=max_lat,
                    lon_min=min_lon,
                    lon_max=max_lon,
                    start=start_time,
                    end=end_time)
else:
    bounds = Bounds(boundary_type=space_info['boundary_type'],
                    start=start_time,
                    end=end_time)

for i, dataset in enumerate(datasets):
    datasets[i] = dsp.subset(dataset, bounds)
    if dataset.temporal_resolution() != temporal_resolution:
        datasets[i] = dsp.temporal_rebin(dataset, temporal_resolution)

# Temporally subset both observation and model datasets
# for the user specified season
month_start = time_info['month_start']
month_end = time_info['month_end']
average_each_year = time_info['average_each_year']

# For now we will treat the first listed dataset as the reference dataset for
# evaluation purposes.
for i, dataset in enumerate(datasets):
    datasets[i] = dsp.temporal_subset(dataset, month_start, month_end,
                                      average_each_year)
import ocw.dataset as ds
import ocw.data_source.local as local
import ocw.dataset_processor as dsp
import ocw.plotter as plotter

import numpy as np
import numpy.ma as ma


''' data source: https://dx.doi.org/10.6084/m9.figshare.3753321.v1
    AOD_monthly_2000-Mar_2016-FEB_from_MISR_L3_JOINT.nc is publicly available.'''
dataset = local.load_file('AOD_monthly_2000-MAR_2016-FEB_from_MISR_L3_JOINT.nc',
                          'nonabsorbing_ave')
''' Subset the data for East Asia'''
Bounds = ds.Bounds(lat_min=20, lat_max=57.7, lon_min=90, lon_max=150)
dataset = dsp.subset(dataset, Bounds)

'''The original dataset includes nonabsorbing AOD values between March 2000 and February 2015. 
dsp.temporal_subset will extract data in September-October-November.'''
dataset_SON = dsp.temporal_subset(
    dataset, month_start=9, month_end=11, average_each_year=True)

ny, nx = dataset_SON.values.shape[1:]

# multi-year mean aod
clim_aod = ma.zeros([3, ny, nx])

clim_aod[0, :] = ma.mean(dataset_SON.values, axis=0)  # 16-year mean
clim_aod[1, :] = ma.mean(dataset_SON.values[-5:, :],
                         axis=0)  # the last 5-year mean
clim_aod[2, :] = dataset_SON.values[-1, :]  # the last year's value
                                        parameter_id,
                                        min_lat,
                                        max_lat,
                                        min_lon,
                                        max_lon,
                                        start_time,
                                        end_time)

""" Step 3: Resample Datasets so they are the same shape """
print("CRU31_Dataset.values shape: (times, lats, lons) - %s" % (cru31_dataset.values.shape,))
print("KNMI_Dataset.values shape: (times, lats, lons) - %s" % (knmi_dataset.values.shape,))
print("Our two datasets have a mis-match in time. We will subset on time to %s years\n" % YEARS)

# Create a Bounds object to use for subsetting
new_bounds = Bounds(min_lat, max_lat, min_lon, max_lon, start_time, end_time)
knmi_dataset = dsp.subset(new_bounds, knmi_dataset)

print("CRU31_Dataset.values shape: (times, lats, lons) - %s" % (cru31_dataset.values.shape,))
print("KNMI_Dataset.values shape: (times, lats, lons) - %s \n" % (knmi_dataset.values.shape,))

print("Temporally Rebinning the Datasets to a Single Timestep")
# To run FULL temporal Rebinning use a timedelta > 366 days.  I used 999 in this example
knmi_dataset = dsp.temporal_rebin(knmi_dataset, datetime.timedelta(days=999))
cru31_dataset = dsp.temporal_rebin(cru31_dataset, datetime.timedelta(days=999))

print("KNMI_Dataset.values shape: %s" % (knmi_dataset.values.shape,))
print("CRU31_Dataset.values shape: %s \n\n" % (cru31_dataset.values.shape,))
 
""" Spatially Regrid the Dataset Objects to a 1/2 degree grid """
# Using the bounds we will create a new set of lats and lons on 1 degree step
new_lons = np.arange(min_lon, max_lon, 0.5)

""" Step 2: Fetch an OCW Dataset Object from the data_source.rcmed module """
print("Working with the rcmed interface to get CRU3.1 Daily Precipitation")
# the dataset_id and the parameter id were determined from  
# https://rcmes.jpl.nasa.gov/content/data-rcmes-database 
CRU31 = rcmed.parameter_dataset(10, 37, LAT_MIN, LAT_MAX, LON_MIN, LON_MAX, START, END)


""" Step 3: Processing datasets so they are the same shape ... """
print("Processing datasets so they are the same shape")
CRU31 = dsp.water_flux_unit_conversion(CRU31)
CRU31 = dsp.normalize_dataset_datetimes(CRU31, 'monthly')

for member, each_target_dataset in enumerate(target_datasets):
	target_datasets[member] = dsp.subset(EVAL_BOUNDS, target_datasets[member])
	target_datasets[member] = dsp.water_flux_unit_conversion(target_datasets[member])
	target_datasets[member] = dsp.normalize_dataset_datetimes(target_datasets[member], 'monthly')  		
	
print("... spatial regridding")
new_lats = np.arange(LAT_MIN, LAT_MAX, gridLatStep)
new_lons = np.arange(LON_MIN, LON_MAX, gridLonStep)
CRU31 = dsp.spatial_regrid(CRU31, new_lats, new_lons)


for member, each_target_dataset in enumerate(target_datasets):
	target_datasets[member] = dsp.spatial_regrid(target_datasets[member], new_lats, new_lons)

#find climatology monthly for obs and models
CRU31.values, CRU31.times = utils.calc_climatology_monthly(CRU31)
target_datasets.append(local.load_file(FILE_3, varName, name="UCT"))


""" Step 2: Fetch an OCW Dataset Object from the data_source.rcmed module """
print("Working with the rcmed interface to get CRU3.1 Daily Precipitation")
# the dataset_id and the parameter id were determined from  
# https://rcmes.jpl.nasa.gov/content/data-rcmes-database 
CRU31 = rcmed.parameter_dataset(10, 37, LAT_MIN, LAT_MAX, LON_MIN, LON_MAX, START, END)

""" Step 3: Resample Datasets so they are the same shape """
print("Resampling datasets")
CRU31 = dsp.water_flux_unit_conversion(CRU31)
CRU31 = dsp.temporal_rebin(CRU31, datetime.timedelta(days=30))

for member, each_target_dataset in enumerate(target_datasets):
  target_datasets[member] = dsp.subset(EVAL_BOUNDS, target_datasets[member])
  target_datasets[member] = dsp.water_flux_unit_conversion(target_datasets[member])
  target_datasets[member] = dsp.temporal_rebin(target_datasets[member], datetime.timedelta(days=30))    
    

""" Spatially Regrid the Dataset Objects to a user defined  grid """
# Using the bounds we will create a new set of lats and lons 
print("Regridding datasets")
new_lats = np.arange(LAT_MIN, LAT_MAX, gridLatStep)
new_lons = np.arange(LON_MIN, LON_MAX, gridLonStep)
CRU31 = dsp.spatial_regrid(CRU31, new_lats, new_lons)

for member, each_target_dataset in enumerate(target_datasets):
  target_datasets[member] = dsp.spatial_regrid(target_datasets[member], new_lats, new_lons)

#make the model ensemble
""" Step 3: Resample Datasets so they are the same shape """

print("Temporally Rebinning the Datasets to an Annual Timestep")
# To run annual temporal Rebinning use a timedelta of 360 days.
knmi_dataset = dsp.temporal_rebin(knmi_dataset, datetime.timedelta(days=360))
wrf311_dataset = dsp.temporal_rebin(wrf311_dataset, datetime.timedelta(days=360))
cru31_dataset = dsp.temporal_rebin(cru31_dataset, datetime.timedelta(days=360))

# Running Temporal Rebin early helps negate the issue of datasets being on different 
# days of the month (1st vs. 15th)
# Create a Bounds object to use for subsetting
new_bounds = Bounds(min_lat, max_lat, min_lon, max_lon, start_time, end_time)

# Subset our model datasets so they are the same size
knmi_dataset = dsp.subset(new_bounds, knmi_dataset)
wrf311_dataset = dsp.subset(new_bounds, wrf311_dataset)

""" Spatially Regrid the Dataset Objects to a 1/2 degree grid """
# Using the bounds we will create a new set of lats and lons on 1/2 degree step
new_lons = np.arange(min_lon, max_lon, 0.5)
new_lats = np.arange(min_lat, max_lat, 0.5)
 
# Spatially regrid datasets using the new_lats, new_lons numpy arrays
knmi_dataset = dsp.spatial_regrid(knmi_dataset, new_lats, new_lons)
wrf311_dataset = dsp.spatial_regrid(wrf311_dataset, new_lats, new_lons)
cru31_dataset = dsp.spatial_regrid(cru31_dataset, new_lats, new_lons)

# Generate an ensemble dataset from knmi and wrf models
ensemble_dataset = dsp.ensemble([knmi_dataset, wrf311_dataset])
]
model_dataset_season = [
    dsp.temporal_subset(dataset,
                        month_start,
                        month_end,
                        average_each_year=True)
    for dataset in model_dataset_subset
]
""" Spatial subset of obs_dataset and generate time series """
obs_timeseries = np.zeros([nyear, n_region
                           ])  # region index 0-6: NW, SW, NGP, SGP, MW, NE, SE
model_timeseries = np.zeros([nmodel, nyear, n_region])

for iregion in np.arange(n_region):
    obs_timeseries[:, iregion] = utils.calc_time_series(
        dsp.subset(obs_dataset_season, regional_bounds[iregion]))
    for imodel in np.arange(nmodel):
        model_timeseries[imodel, :, iregion] = utils.calc_time_series(
            dsp.subset(model_dataset_season[imodel], regional_bounds[iregion]))

year = np.arange(nyear)

regional_trends_obs = np.zeros(n_region)
regional_trends_obs_error = np.zeros(n_region)
regional_trends_model = np.zeros([nmodel, n_region])
regional_trends_model_error = np.zeros([nmodel, n_region])
regional_trends_ens = np.zeros(n_region)
regional_trends_ens_error = np.zeros(n_region)

for iregion in np.arange(n_region):
    regional_trends_obs[iregion], regional_trends_obs_error[
Exemple #25
0
                                                      model_datasets)
    print 'Maximum overlap period'
    print 'start_time:', start_time
    print 'end_time:', end_time

if temporal_resolution == 'monthly' and end_time.day != 1:
    end_time = end_time.replace(day=1)
if ref_data_info['data_source'] == 'rcmed':
    min_lat = np.max([min_lat, ref_dataset.lats.min()])
    max_lat = np.min([max_lat, ref_dataset.lats.max()])
    min_lon = np.max([min_lon, ref_dataset.lons.min()])
    max_lon = np.min([max_lon, ref_dataset.lons.max()])
bounds = Bounds(min_lat, max_lat, min_lon, max_lon, start_time, end_time)

if ref_dataset.lats.ndim != 2 and ref_dataset.lons.ndim != 2:
    ref_dataset = dsp.subset(bounds, ref_dataset)
for idata, dataset in enumerate(model_datasets):
    if dataset.lats.ndim != 2 and dataset.lons.ndim != 2:
        model_datasets[idata] = dsp.subset(bounds, dataset)

# Temporaly subset both observation and model datasets for the user specified season
month_start = time_info['month_start']
month_end = time_info['month_end']
average_each_year = time_info['average_each_year']

ref_dataset = dsp.temporal_subset(month_start, month_end, ref_dataset,
                                  average_each_year)
for idata, dataset in enumerate(model_datasets):
    model_datasets[idata] = dsp.temporal_subset(month_start, month_end,
                                                dataset, average_each_year)
 def test_subset_name_propagation(self):
     subset_name = 'foo_subset_name'
     subset = dp.subset(self.target_dataset, self.subregion, subset_name)
     self.assertEqual(subset.name, subset_name)
SEASON_MONTH_START = 1
SEASON_MONTH_END = 12

EVAL_BOUNDS = Bounds(LAT_MIN, LAT_MAX, LON_MIN, LON_MAX, START, END)

# Normalize the time values of our datasets so they fall on expected days
# of the month. For example, monthly data will be normalized so that:
# 15 Jan 2014, 15 Feb 2014 => 1 Jan 2014, 1 Feb 2014
ref_dataset = dsp.normalize_dataset_datetimes(ref_dataset, 'monthly')
target_datasets = [
    dsp.normalize_dataset_datetimes(target, 'monthly')
    for target in target_datasets
]

# Subset down the evaluation datasets to our selected evaluation bounds.
ref_dataset = dsp.subset(EVAL_BOUNDS, ref_dataset)
target_datasets = [
    dsp.subset(EVAL_BOUNDS, target) for target in target_datasets
]

# Do a monthly temporal rebin of the evaluation datasets.
ref_dataset = dsp.temporal_rebin(ref_dataset, datetime.timedelta(days=30))
target_datasets = [
    dsp.temporal_rebin(target, datetime.timedelta(days=30))
    for target in target_datasets
]

# Spatially regrid onto a 1 degree lat/lon grid within our evaluation bounds.
new_lats = np.arange(LAT_MIN, LAT_MAX, 1.0)
new_lons = np.arange(LON_MIN, LON_MAX, 1.0)
ref_dataset = dsp.spatial_regrid(ref_dataset, new_lats, new_lons)
Exemple #28
0
target_datasets.append(local.load_file(FILE_3, varName, name='UCT'))

# Step 2: Fetch an OCW Dataset Object from the data_source.rcmed module
print('Working with the rcmed interface to get CRU3.1 Daily Precipitation')
# the dataset_id and the parameter id were determined from
# https://rcmes.jpl.nasa.gov/content/data-rcmes-database
CRU31 = rcmed.parameter_dataset(
    10, 37, LAT_MIN, LAT_MAX, LON_MIN, LON_MAX, START, END)

# Step 3: Processing datasets so they are the same shape
print('Processing datasets so they are the same shape')
CRU31 = dsp.water_flux_unit_conversion(CRU31)
CRU31 = dsp.normalize_dataset_datetimes(CRU31, 'monthly')

for member, each_target_dataset in enumerate(target_datasets):
    target_datasets[member] = dsp.subset(target_datasets[member], EVAL_BOUNDS)
    target_datasets[member] = dsp.water_flux_unit_conversion(target_datasets[member])
    target_datasets[member] = dsp.normalize_dataset_datetimes(
        target_datasets[member], 'monthly')

print('... spatial regridding')
new_lats = np.arange(LAT_MIN, LAT_MAX, gridLatStep)
new_lons = np.arange(LON_MIN, LON_MAX, gridLonStep)
CRU31 = dsp.spatial_regrid(CRU31, new_lats, new_lons)

for member, each_target_dataset in enumerate(target_datasets):
    target_datasets[member] =\
        dsp.spatial_regrid(target_datasets[member], new_lats, new_lons)

# Find climatology monthly for obs and models.
CRU31.values, CRU31.times = utils.calc_climatology_monthly(CRU31)
target_datasets.append(local.load_file(FILE_1, varName, name="KNMI"))
target_datasets.append(local.load_file(FILE_2, varName, name="REGCM"))
target_datasets.append(local.load_file(FILE_3, varName, name="UCT"))
""" Step 2: Fetch an OCW Dataset Object from the data_source.rcmed module """
print("Working with the rcmed interface to get CRU3.1 Daily Precipitation")
# the dataset_id and the parameter id were determined from
# https://rcmes.jpl.nasa.gov/content/data-rcmes-database
CRU31 = rcmed.parameter_dataset(10, 37, LAT_MIN, LAT_MAX, LON_MIN, LON_MAX,
                                START, END)
""" Step 3: Processing datasets so they are the same shape ... """
print("Processing datasets so they are the same shape")
CRU31 = dsp.water_flux_unit_conversion(CRU31)
CRU31 = dsp.normalize_dataset_datetimes(CRU31, 'monthly')

for member, each_target_dataset in enumerate(target_datasets):
    target_datasets[member] = dsp.subset(EVAL_BOUNDS, target_datasets[member])
    target_datasets[member] = dsp.water_flux_unit_conversion(
        target_datasets[member])
    target_datasets[member] = dsp.normalize_dataset_datetimes(
        target_datasets[member], 'monthly')

print("... spatial regridding")
new_lats = np.arange(LAT_MIN, LAT_MAX, gridLatStep)
new_lons = np.arange(LON_MIN, LON_MAX, gridLonStep)
CRU31 = dsp.spatial_regrid(CRU31, new_lats, new_lons)

for member, each_target_dataset in enumerate(target_datasets):
    target_datasets[member] = dsp.spatial_regrid(target_datasets[member],
                                                 new_lats, new_lons)

#find climatology monthly for obs and models
 def test_out_of_dataset_bounds_lon_max(self):
     self.subregion.lon_max = 180
     with self.assertRaises(ValueError):
         dp.subset(self.subregion, self.target_dataset)
import ssl

if hasattr(ssl, '_create_unverified_context'):
  ssl._create_default_https_context = ssl._create_unverified_context

# rectangular boundary
min_lat = 15.75
max_lat = 55.75
min_lon = -125.75
max_lon = -66.75

start_time = datetime(1998,1,1)
end_time = datetime(1998,12,31)

TRMM_dataset = rcmed.parameter_dataset(3, 36, min_lat, max_lat, min_lon, max_lon,
                                            start_time, end_time)

Cuba_and_Bahamas_bounds = Bounds(boundary_type='countries', countries=['Cuba','Bahamas'])
TRMM_dataset2 = dsp.subset(TRMM_dataset, Cuba_and_Bahamas_bounds, extract=False) # to mask out the data over Mexico and Canada

plotter.draw_contour_map(ma.mean(TRMM_dataset2.values, axis=0), TRMM_dataset2.lats, TRMM_dataset2.lons, fname='TRMM_without_Cuba_and_Bahamas')

NCA_SW_bounds = Bounds(boundary_type='us_states', us_states=['CA','NV','UT','AZ','NM','CO'])
TRMM_dataset3 = dsp.subset(TRMM_dataset2, NCA_SW_bounds, extract=True) # to mask out the data over Mexico and Canada

plotter.draw_contour_map(ma.mean(TRMM_dataset3.values, axis=0), TRMM_dataset3.lats, TRMM_dataset3.lons, fname='TRMM_NCA_SW')



 def test_out_of_dataset_bounds_end(self):
     self.subregion.end = datetime.datetime(2011, 1, 1)
     with self.assertRaises(ValueError):
         dp.subset(self.subregion, self.target_dataset)
Exemple #33
0
min_lat = 15.75
max_lat = 55.75
min_lon = -125.75
max_lon = -66.75

start_time = datetime(1998, 1, 1)
end_time = datetime(1998, 12, 31)

TRMM_dataset = rcmed.parameter_dataset(3, 36, min_lat, max_lat, min_lon,
                                       max_lon, start_time, end_time)

Cuba_and_Bahamas_bounds = Bounds(boundary_type='countries',
                                 countries=['Cuba', 'Bahamas'])
# to mask out the data over Mexico and Canada
TRMM_dataset2 = dsp.subset(TRMM_dataset,
                           Cuba_and_Bahamas_bounds,
                           extract=False)

plotter.draw_contour_map(ma.mean(TRMM_dataset2.values, axis=0),
                         TRMM_dataset2.lats,
                         TRMM_dataset2.lons,
                         fname='TRMM_without_Cuba_and_Bahamas')

NCA_SW_bounds = Bounds(boundary_type='us_states',
                       us_states=['CA', 'NV', 'UT', 'AZ', 'NM', 'CO'])
# to mask out the data over Mexico and Canada
TRMM_dataset3 = dsp.subset(TRMM_dataset2, NCA_SW_bounds, extract=True)

plotter.draw_contour_map(ma.mean(TRMM_dataset3.values, axis=0),
                         TRMM_dataset3.lats,
                         TRMM_dataset3.lons,
knmi_dataset.name = "knmi"
wrf_dataset.name = "wrf"

# Date values from loaded datasets might not always fall on reasonable days.
# With monthly data, we could have data falling on the 1st, 15th, or some other
# day of the month. Let's fix that real quick.
##########################################################################
knmi_dataset = dsp.normalize_dataset_datetimes(knmi_dataset, 'monthly')
wrf_dataset = dsp.normalize_dataset_datetimes(wrf_dataset, 'monthly')

# We're only going to run this evaluation over a years worth of data. We'll
# make a Bounds object and use it to subset our datasets.
##########################################################################
subset = Bounds(lat_min=-45, lat_max=42, lon_min=-24, lon_max=60,
                start=datetime.datetime(1989, 1, 1), end=datetime.datetime(1989, 12, 1))
knmi_dataset = dsp.subset(knmi_dataset, subset)
wrf_dataset = dsp.subset(wrf_dataset, subset)

# Temporally re-bin the data into a monthly timestep.
##########################################################################
knmi_dataset = dsp.temporal_rebin(knmi_dataset, temporal_resolution='monthly')
wrf_dataset = dsp.temporal_rebin(wrf_dataset, temporal_resolution='monthly')

# Spatially regrid the datasets onto a 1 degree grid.
##########################################################################
# Get the bounds of the reference dataset and use it to create a new
# set of lat/lon values on a 1 degree step
# Using the bounds we will create a new set of lats and lons on 1 degree step
min_lat, max_lat, min_lon, max_lon = knmi_dataset.spatial_boundaries()
new_lons = numpy.arange(min_lon, max_lon, 1)
new_lats = numpy.arange(min_lat, max_lat, 1)
Exemple #35
0
print("Fetching data from RCMED...")
cru31_dataset = rcmed.parameter_dataset(dataset_id, parameter_id, min_lat,
                                        max_lat, min_lon, max_lon, start_time,
                                        end_time)
""" Step 3: Resample Datasets so they are the same shape """
print("CRU31_Dataset.values shape: (times, lats, lons) - %s" %
      (cru31_dataset.values.shape, ))
print("KNMI_Dataset.values shape: (times, lats, lons) - %s" %
      (knmi_dataset.values.shape, ))
print(
    "Our two datasets have a mis-match in time. We will subset on time to %s years\n"
    % YEARS)

# Create a Bounds object to use for subsetting
new_bounds = Bounds(min_lat, max_lat, min_lon, max_lon, start_time, end_time)
knmi_dataset = dsp.subset(new_bounds, knmi_dataset)

print("CRU31_Dataset.values shape: (times, lats, lons) - %s" %
      (cru31_dataset.values.shape, ))
print("KNMI_Dataset.values shape: (times, lats, lons) - %s \n" %
      (knmi_dataset.values.shape, ))

print("Temporally Rebinning the Datasets to a Single Timestep")
# To run FULL temporal Rebinning use a timedelta > 366 days.  I used 999 in this example
knmi_dataset = dsp.temporal_rebin(knmi_dataset, datetime.timedelta(days=999))
cru31_dataset = dsp.temporal_rebin(cru31_dataset, datetime.timedelta(days=999))

print("KNMI_Dataset.values shape: %s" % (knmi_dataset.values.shape, ))
print("CRU31_Dataset.values shape: %s \n\n" % (cru31_dataset.values.shape, ))
""" Spatially Regrid the Dataset Objects to a 1/2 degree grid """
# Using the bounds we will create a new set of lats and lons on 1 degree step
Exemple #36
0
""" Step 2: Fetch an OCW Dataset Object from the data_source.rcmed module """
print(
    "Working with the rcmed interface to get CRU3.1 Monthly Mean Precipitation"
)
# the dataset_id and the parameter id were determined from
# https://rcmes.jpl.nasa.gov/content/data-rcmes-database
CRU31 = rcmed.parameter_dataset(10, 37, LAT_MIN, LAT_MAX, LON_MIN, LON_MAX,
                                START, END)
""" Step 3: Processing Datasets so they are the same shape """
print("Processing datasets ...")
CRU31 = dsp.normalize_dataset_datetimes(CRU31, 'monthly')
print("... on units")
CRU31 = dsp.water_flux_unit_conversion(CRU31)

for member, each_target_dataset in enumerate(target_datasets):
    target_datasets[member] = dsp.subset(target_datasets[member], EVAL_BOUNDS)
    target_datasets[member] = dsp.water_flux_unit_conversion(
        target_datasets[member])
    target_datasets[member] = dsp.normalize_dataset_datetimes(
        target_datasets[member], 'monthly')

print("... spatial regridding")
new_lats = np.arange(LAT_MIN, LAT_MAX, gridLatStep)
new_lons = np.arange(LON_MIN, LON_MAX, gridLonStep)
CRU31 = dsp.spatial_regrid(CRU31, new_lats, new_lons)

for member, each_target_dataset in enumerate(target_datasets):
    target_datasets[member] = dsp.spatial_regrid(target_datasets[member],
                                                 new_lats, new_lons)

# find the total annual mean. Note the function exists in util.py as def
target_datasets.append(local.load_file(FILE_3, varName, name="UCT"))

""" Step 2: Fetch an OCW Dataset Object from the data_source.rcmed module """
print("Working with the rcmed interface to get CRU3.1 Monthly Mean Precipitation")
# the dataset_id and the parameter id were determined from  
# https://rcmes.jpl.nasa.gov/content/data-rcmes-database 
CRU31 = rcmed.parameter_dataset(10, 37, LAT_MIN, LAT_MAX, LON_MIN, LON_MAX, START, END)

""" Step 3: Processing Datasets so they are the same shape """
print("Processing datasets ...")
CRU31 = dsp.normalize_dataset_datetimes(CRU31, 'monthly')
print("... on units")
CRU31 = dsp.water_flux_unit_conversion(CRU31)

for member, each_target_dataset in enumerate(target_datasets):
	target_datasets[member] = dsp.subset(target_datasets[member], EVAL_BOUNDS)
	target_datasets[member] = dsp.water_flux_unit_conversion(target_datasets[member])
	target_datasets[member] = dsp.normalize_dataset_datetimes(target_datasets[member], 'monthly') 		
		
print("... spatial regridding")
new_lats = np.arange(LAT_MIN, LAT_MAX, gridLatStep)
new_lons = np.arange(LON_MIN, LON_MAX, gridLonStep)
CRU31 = dsp.spatial_regrid(CRU31, new_lats, new_lons)

for member, each_target_dataset in enumerate(target_datasets):
	target_datasets[member] = dsp.spatial_regrid(target_datasets[member], new_lats, new_lons)
	
#find the total annual mean. Note the function exists in util.py as def calc_climatology_year(dataset):
_,CRU31.values = utils.calc_climatology_year(CRU31)

for member, each_target_dataset in enumerate(target_datasets):
Exemple #38
0
knmi_dataset.name = "knmi"
wrf_dataset.name = "wrf"

# Date values from loaded datasets might not always fall on reasonable days.
# With monthly data, we could have data falling on the 1st, 15th, or some other
# day of the month. Let's fix that real quick.
################################################################################
knmi_dataset = dsp.normalize_dataset_datetimes(knmi_dataset, 'monthly')
wrf_dataset = dsp.normalize_dataset_datetimes(wrf_dataset, 'monthly')

# We're only going to run this evaluation over a years worth of data. We'll
# make a Bounds object and use it to subset our datasets.
################################################################################
subset = Bounds(-45, 42, -24, 60, datetime.datetime(1989, 1, 1), datetime.datetime(1989, 12, 1))
knmi_dataset = dsp.subset(subset, knmi_dataset)
wrf_dataset = dsp.subset(subset, wrf_dataset)

# Temporally re-bin the data into a monthly timestep.
################################################################################
knmi_dataset = dsp.temporal_rebin(knmi_dataset, datetime.timedelta(days=30))
wrf_dataset = dsp.temporal_rebin(wrf_dataset, datetime.timedelta(days=30))

# Spatially regrid the datasets onto a 1 degree grid.
################################################################################
# Get the bounds of the reference dataset and use it to create a new
# set of lat/lon values on a 1 degree step
# Using the bounds we will create a new set of lats and lons on 1 degree step
min_lat, max_lat, min_lon, max_lon = knmi_dataset.spatial_boundaries()
new_lons = numpy.arange(min_lon, max_lon, 1)
new_lats = numpy.arange(min_lat, max_lat, 1)
# under the License.

import ocw.dataset as ds
import ocw.data_source.local as local
import ocw.dataset_processor as dsp
import ocw.plotter as plotter

import numpy as np
import numpy.ma as ma
''' data source: https://dx.doi.org/10.6084/m9.figshare.3753321.v1
    AOD_monthly_2000-Mar_2016-FEB_from_MISR_L3_JOINT.nc is publicly available.'''
dataset = local.load_file(
    'AOD_monthly_2000-MAR_2016-FEB_from_MISR_L3_JOINT.nc', 'nonabsorbing_ave')
''' Subset the data for East Asia'''
Bounds = ds.Bounds(lat_min=20, lat_max=57.7, lon_min=90, lon_max=150)
dataset = dsp.subset(dataset, Bounds)
'''The original dataset includes nonabsorbing AOD values between March 2000 and February 2015. 
dsp.temporal_subset will extract data in September-October-November.'''
dataset_SON = dsp.temporal_subset(dataset,
                                  month_start=9,
                                  month_end=11,
                                  average_each_year=True)

ny, nx = dataset_SON.values.shape[1:]

# multi-year mean aod
clim_aod = ma.zeros([3, ny, nx])

clim_aod[0, :] = ma.mean(dataset_SON.values, axis=0)  # 16-year mean
clim_aod[1, :] = ma.mean(dataset_SON.values[-5:, :],
                         axis=0)  # the last 5-year mean
    ssl._create_default_https_context = ssl._create_unverified_context

# rectangular boundary
min_lat = 15.75
max_lat = 55.75
min_lon = -125.75
max_lon = -66.75

start_time = datetime(1998, 1, 1)
end_time = datetime(1998, 12, 31)

TRMM_dataset = rcmed.parameter_dataset(3, 36, min_lat, max_lat, min_lon, max_lon,
                                       start_time, end_time)

Cuba_and_Bahamas_bounds = Bounds(
    boundary_type='countries', countries=['Cuba', 'Bahamas'])
# to mask out the data over Mexico and Canada
TRMM_dataset2 = dsp.subset(
    TRMM_dataset, Cuba_and_Bahamas_bounds, extract=False)

plotter.draw_contour_map(ma.mean(TRMM_dataset2.values, axis=0), TRMM_dataset2.lats,
                         TRMM_dataset2.lons, fname='TRMM_without_Cuba_and_Bahamas')

NCA_SW_bounds = Bounds(boundary_type='us_states', us_states=[
                       'CA', 'NV', 'UT', 'AZ', 'NM', 'CO'])
# to mask out the data over Mexico and Canada
TRMM_dataset3 = dsp.subset(TRMM_dataset2, NCA_SW_bounds, extract=True)

plotter.draw_contour_map(ma.mean(TRMM_dataset3.values, axis=0),
                         TRMM_dataset3.lats, TRMM_dataset3.lons, fname='TRMM_NCA_SW')
    max_lon = np.min([max_lon, dataset.lons.max()])

if not 'boundary_type' in space_info:
    bounds = Bounds(lat_min=min_lat,
                    lat_max=max_lat,
                    lon_min=min_lon,
                    lon_max=max_lon,
                    start=start_time,
                    end=end_time)
else:
    bounds = Bounds(boundary_type=space_info['boundary_type'],
                    start=start_time,
                    end=end_time)

for i, dataset in enumerate(datasets):
    datasets[i] = dsp.subset(dataset, bounds)
    if dataset.temporal_resolution() != temporal_resolution:
        datasets[i] = dsp.temporal_rebin(datasets[i], temporal_resolution)

# Temporally subset both observation and model datasets
# for the user specified season
month_start = time_info['month_start']
month_end = time_info['month_end']
average_each_year = time_info['average_each_year']

# For now we will treat the first listed dataset as the reference dataset for
# evaluation purposes.
for i, dataset in enumerate(datasets):
    datasets[i] = dsp.temporal_subset(dataset, month_start, month_end,
                                      average_each_year)
Exemple #42
0
LON_MAX = 55
START = datetime.datetime(1999, 1, 1)
END = datetime.datetime(2000, 12, 1)
SEASON_MONTH_START = 1
SEASON_MONTH_END = 12

EVAL_BOUNDS = Bounds(LAT_MIN, LAT_MAX, LON_MIN, LON_MAX, START, END)

# Normalize the time values of our datasets so they fall on expected days
# of the month. For example, monthly data will be normalized so that:
# 15 Jan 2014, 15 Feb 2014 => 1 Jan 2014, 1 Feb 2014
ref_dataset = dsp.normalize_dataset_datetimes(ref_dataset, "monthly")
target_dataset = dsp.normalize_dataset_datetimes(target_dataset, "monthly")

# Subset down the evaluation datasets to our selected evaluation bounds.
target_dataset = dsp.subset(EVAL_BOUNDS, target_dataset)
ref_dataset = dsp.subset(EVAL_BOUNDS, ref_dataset)

# Do a monthly temporal rebin of the evaluation datasets.
target_dataset = dsp.temporal_rebin(target_dataset,
                                    datetime.timedelta(days=30))
ref_dataset = dsp.temporal_rebin(ref_dataset, datetime.timedelta(days=30))

# Spatially regrid onto a 1 degree lat/lon grid within our evaluation bounds.
new_lats = np.arange(LAT_MIN, LAT_MAX, 1.0)
new_lons = np.arange(LON_MIN, LON_MAX, 1.0)
target_dataset = dsp.spatial_regrid(target_dataset, new_lats, new_lons)
ref_dataset = dsp.spatial_regrid(ref_dataset, new_lats, new_lons)

# Load the datasets for the evaluation.
mean_bias = metrics.MeanBias()
 def test_out_of_dataset_bounds_start(self):
     self.subregion.start = datetime.datetime(1999, 1, 1)
     with self.assertRaises(ValueError):
         dp.subset(self.target_dataset, self.subregion)
 def test_subset_name(self):
     subset = dp.subset(self.target_dataset, self.subregion)
     self.assertEqual(subset.name, self.name)
Exemple #45
0
    max_lon = np.min([max_lon, dataset.lons.max()])

if not 'boundary_type' in space_info:
    bounds = Bounds(lat_min=min_lat,
                    lat_max=max_lat,
                    lon_min=min_lon,
                    lon_max=max_lon,
                    start=start_time,
                    end=end_time)
else:
    bounds = Bounds(boundary_type=space_info['boundary_type'],
                    start=start_time,
                    end=end_time)

for i, dataset in enumerate(obs_datasets):
    obs_datasets[i] = dsp.subset(dataset, bounds)
    if dataset.temporal_resolution() != temporal_resolution:
        obs_datasets[i] = dsp.temporal_rebin(dataset, temporal_resolution)

for i, dataset in enumerate(model_datasets):
    model_datasets[i] = dsp.subset(dataset, bounds)
    if dataset.temporal_resolution() != temporal_resolution:
        model_datasets[i] = dsp.temporal_rebin(dataset, temporal_resolution)

# Temporally subset both observation and model datasets
# for the user specified season
month_start = time_info['month_start']
month_end = time_info['month_end']
average_each_year = time_info['average_each_year']

# TODO: Fully support multiple observation / reference datasets.
                                        parameter_id,
                                        min_lat,
                                        max_lat,
                                        min_lon,
                                        max_lon,
                                        start_time,
                                        end_time)

""" Step 3: Resample Datasets so they are the same shape """
print("CRU31_Dataset.values shape: (times, lats, lons) - %s" % (cru31_dataset.values.shape,))
print("KNMI_Dataset.values shape: (times, lats, lons) - %s" % (knmi_dataset.values.shape,))
print("Our two datasets have a mis-match in time. We will subset on time to %s years\n" % YEARS)

# Create a Bounds object to use for subsetting
new_bounds = Bounds(min_lat, max_lat, min_lon, max_lon, start_time, end_time)
knmi_dataset = dsp.subset(knmi_dataset, new_bounds)

print("CRU31_Dataset.values shape: (times, lats, lons) - %s" % (cru31_dataset.values.shape,))
print("KNMI_Dataset.values shape: (times, lats, lons) - %s \n" % (knmi_dataset.values.shape,))

print("Temporally Rebinning the Datasets to a Single Timestep")
# To run FULL temporal Rebinning 
knmi_dataset = dsp.temporal_rebin(knmi_dataset, temporal_resolution = 'full')
cru31_dataset = dsp.temporal_rebin(cru31_dataset, temporal_resolution = 'full')

print("KNMI_Dataset.values shape: %s" % (knmi_dataset.values.shape,))
print("CRU31_Dataset.values shape: %s \n\n" % (cru31_dataset.values.shape,))
 
""" Spatially Regrid the Dataset Objects to a 1/2 degree grid """
# Using the bounds we will create a new set of lats and lons on 0.5 degree step
new_lons = np.arange(min_lon, max_lon, 0.5)
Exemple #47
0
# With monthly data, we could have data falling on the 1st, 15th, or some other
# day of the month. Let's fix that real quick.
##########################################################################
knmi_dataset = dsp.normalize_dataset_datetimes(knmi_dataset, 'monthly')
wrf_dataset = dsp.normalize_dataset_datetimes(wrf_dataset, 'monthly')

# We're only going to run this evaluation over a years worth of data. We'll
# make a Bounds object and use it to subset our datasets.
##########################################################################
subset = Bounds(lat_min=-45,
                lat_max=42,
                lon_min=-24,
                lon_max=60,
                start=datetime.datetime(1989, 1, 1),
                end=datetime.datetime(1989, 12, 1))
knmi_dataset = dsp.subset(knmi_dataset, subset)
wrf_dataset = dsp.subset(wrf_dataset, subset)

# Temporally re-bin the data into a monthly timestep.
##########################################################################
knmi_dataset = dsp.temporal_rebin(knmi_dataset, temporal_resolution='monthly')
wrf_dataset = dsp.temporal_rebin(wrf_dataset, temporal_resolution='monthly')

# Spatially regrid the datasets onto a 1 degree grid.
##########################################################################
# Get the bounds of the reference dataset and use it to create a new
# set of lat/lon values on a 1 degree step
# Using the bounds we will create a new set of lats and lons on 1 degree step
min_lat, max_lat, min_lon, max_lon = knmi_dataset.spatial_boundaries()
new_lons = numpy.arange(min_lon, max_lon, 1)
new_lats = numpy.arange(min_lat, max_lat, 1)
 def test_out_of_dataset_bounds_lon_max(self):
     self.subregion.lon_max = 180
     with self.assertRaises(ValueError):
         dp.subset(self.target_dataset, self.subregion)
Exemple #49
0
end_time = min([end_time, dataset_end])

cru31_dataset = dsp.temporal_rebin(cru31_dataset, temporal_resolution='annual')
dataset_start, dataset_end = cru31_dataset.temporal_boundaries()
start_time = max([start_time, dataset_start])
end_time = min([end_time, dataset_end])

print("Time Range is: %s to %s" % (start_time.strftime("%Y-%m-%d"),
                                   end_time.strftime("%Y-%m-%d")))

# Create a Bounds object to use for subsetting
new_bounds = Bounds(lat_min=min_lat, lat_max=max_lat, lon_min=min_lon,
                    lon_max=max_lon, start=start_time, end=end_time)

# Subset our model datasets so they are the same size
knmi_dataset = dsp.subset(knmi_dataset, new_bounds)
wrf311_dataset = dsp.subset(wrf311_dataset, new_bounds)

# Spatially Regrid the Dataset Objects to a 1/2 degree grid.
# Using the bounds we will create a new set of lats and lons on 1/2 degree step
new_lons = np.arange(min_lon, max_lon, 0.5)
new_lats = np.arange(min_lat, max_lat, 0.5)

# Spatially regrid datasets using the new_lats, new_lons numpy arrays
knmi_dataset = dsp.spatial_regrid(knmi_dataset, new_lats, new_lons)
wrf311_dataset = dsp.spatial_regrid(wrf311_dataset, new_lats, new_lons)
cru31_dataset = dsp.spatial_regrid(cru31_dataset, new_lats, new_lons)

# Generate an ensemble dataset from knmi and wrf models
ensemble_dataset = dsp.ensemble([knmi_dataset, wrf311_dataset])
 def test_out_of_dataset_bounds_end(self):
     self.subregion.end = datetime.datetime(2011, 1, 1)
     with self.assertRaises(ValueError):
         dp.subset(self.target_dataset, self.subregion)
 def test_subset_name(self):
     subset = dp.subset(self.subregion, self.target_dataset)
     self.assertEqual(subset.name, self.name)
print("CRU31_Dataset.values shape: (times, lats, lons) - %s" %
      (cru31_dataset.values.shape, ))
print("KNMI_Dataset.values shape: (times, lats, lons) - %s" %
      (knmi_dataset.values.shape, ))
print(
    "Our two datasets have a mis-match in time. We will subset on time to %s years\n"
    % YEARS)

# Create a Bounds object to use for subsetting
new_bounds = Bounds(lat_min=min_lat,
                    lat_max=max_lat,
                    lon_min=min_lon,
                    lon_max=max_lon,
                    start=start_time,
                    end=end_time)
knmi_dataset = dsp.subset(knmi_dataset, new_bounds)

print("CRU31_Dataset.values shape: (times, lats, lons) - %s" %
      (cru31_dataset.values.shape, ))
print("KNMI_Dataset.values shape: (times, lats, lons) - %s \n" %
      (knmi_dataset.values.shape, ))

print("Temporally Rebinning the Datasets to a Single Timestep")
# To run FULL temporal Rebinning
knmi_dataset = dsp.temporal_rebin(knmi_dataset, temporal_resolution='full')
cru31_dataset = dsp.temporal_rebin(cru31_dataset, temporal_resolution='full')

print("KNMI_Dataset.values shape: %s" % (knmi_dataset.values.shape, ))
print("CRU31_Dataset.values shape: %s \n\n" % (cru31_dataset.values.shape, ))
""" Spatially Regrid the Dataset Objects to a 1/2 degree grid """
# Using the bounds we will create a new set of lats and lons on 0.5 degree step
                      average_each_year=True)

""" Temporal subset of model_dataset """
model_dataset_subset = [dsp.temporal_slice(dataset,start_time=start_date, end_time=end_date)
                        for dataset in model_dataset]
model_dataset_season = [dsp.temporal_subset(dataset, month_start, month_end,
                      average_each_year=True) for dataset in model_dataset_subset]


""" Spatial subset of obs_dataset and generate time series """
obs_timeseries = np.zeros([nyear, n_region])   # region index 0-6: NW, SW, NGP, SGP, MW, NE, SE
model_timeseries = np.zeros([nmodel, nyear, n_region])

for iregion in np.arange(n_region):
    obs_timeseries[:, iregion] = utils.calc_time_series(
                         dsp.subset(obs_dataset_season, regional_bounds[iregion]))
    for imodel in np.arange(nmodel):
        model_timeseries[imodel, :, iregion] = utils.calc_time_series(
                         dsp.subset(model_dataset_season[imodel], regional_bounds[iregion]))

year = np.arange(nyear)

regional_trends_obs = np.zeros(n_region)
regional_trends_obs_error = np.zeros(n_region)
regional_trends_model = np.zeros([nmodel, n_region])
regional_trends_model_error = np.zeros([nmodel, n_region])
regional_trends_ens = np.zeros(n_region)
regional_trends_ens_error = np.zeros(n_region)

for iregion in np.arange(n_region):
    regional_trends_obs[iregion], regional_trends_obs_error[iregion] = utils.calculate_temporal_trend_of_time_series(
""" Step 3: Resample Datasets so they are the same shape """

print("Temporally Rebinning the Datasets to an Annual Timestep")
# To run annual temporal Rebinning,
knmi_dataset = dsp.temporal_rebin(knmi_dataset, temporal_resolution = 'annual')
wrf311_dataset = dsp.temporal_rebin(wrf311_dataset, temporal_resolution = 'annual')
cru31_dataset = dsp.temporal_rebin(cru31_dataset, temporal_resolution = 'annual')

# Running Temporal Rebin early helps negate the issue of datasets being on different 
# days of the month (1st vs. 15th)
# Create a Bounds object to use for subsetting
new_bounds = Bounds(min_lat, max_lat, min_lon, max_lon, start_time, end_time)

# Subset our model datasets so they are the same size
knmi_dataset = dsp.subset(knmi_dataset, new_bounds)
wrf311_dataset = dsp.subset(wrf311_dataset, new_bounds)

""" Spatially Regrid the Dataset Objects to a 1/2 degree grid """
# Using the bounds we will create a new set of lats and lons on 1/2 degree step
new_lons = np.arange(min_lon, max_lon, 0.5)
new_lats = np.arange(min_lat, max_lat, 0.5)
 
# Spatially regrid datasets using the new_lats, new_lons numpy arrays
knmi_dataset = dsp.spatial_regrid(knmi_dataset, new_lats, new_lons)
wrf311_dataset = dsp.spatial_regrid(wrf311_dataset, new_lats, new_lons)
cru31_dataset = dsp.spatial_regrid(cru31_dataset, new_lats, new_lons)

# Generate an ensemble dataset from knmi and wrf models
ensemble_dataset = dsp.ensemble([knmi_dataset, wrf311_dataset])
 def test_out_of_dataset_bounds_lat_min(self):
     self.subregion.lat_min = -90
     with self.assertRaises(ValueError):
         dp.subset(self.subregion, self.target_dataset)
 def test_subset_name_propagation(self):
     subset_name = 'foo_subset_name'
     subset = dp.subset(self.subregion, self.target_dataset, subset_name)
     self.assertEqual(subset.name, subset_name)
    file_path='./data/WRF24_2010_summer/',
    filename_pattern=['wrf2dout*'])

# Step 2: Load the spatial filter (Bukovsky region mask).

Bukovsky_mask = Bounds(
    boundary_type='user',
    user_mask_file='Bukovsky_regions.nc',
    mask_variable_name='Bukovsky',
    longitude_name='lon',
    latitude_name='lat')

# Step 3: Spatial subset the WRF data (for Northern Great Plains, user_mask_values=[10]).

WRF_dataset_filtered = \
    dsp.subset(WRF_dataset, Bukovsky_mask, user_mask_values=[10])

# Step 4: Analyze the wet spells.
duration1, peak1, total1 = \
    metrics.wet_spell_analysis(GPM_dataset_filtered, threshold=0.1, nyear=1, dt=0.5)

duration2, peak2, total2 =\
    metrics.wet_spell_analysis(WRF_dataset_filtered.values, threshold=0.1, nyear=1, dt=0.5)

# Step 5: Calculate the joint PDF(JPDF) of spell_duration and peak_rainfall.

histo2d_GPM = \
    metrics.calc_joint_histogram(data_array1=duration1, data_array2=peak1,
                                 bins_for_data1=np.append(np.arange(25)+0.5, [48.5, 120.5]),
                                 bins_for_data2=[0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10, 20, 30])
histo2d_GPM = histo2d_GPM/np.sum(histo2d_GPM) * 100.