Exemple #1
0
 def test_equal_number_of_plots_and_old_shape(self):
     nplots = 4
     oldshape = (2, 2)
     expected_shape = (2, 2)
     new_shape = plotter._best_grid_shape(nplots, oldshape)
     self.assertEqual(new_shape, expected_shape)
Exemple #2
0
 def test_returned_shape_large(self):
     nplots = 57
     oldshape = (220, 12)
     expected_shape = (5, 12)
     new_shape = plotter._best_grid_shape(nplots, oldshape)
     self.assertEqual(new_shape, expected_shape)
Exemple #3
0
 def test_invalid_shape(self):
     nplots = 2532
     oldshape = (22, 12)
     with self.assertRaises(ValueError):
         plotter._best_grid_shape(nplots, oldshape)
 def test_equal_number_of_plots_and_old_shape(self):
     nplots = 4
     oldshape = (2, 2)
     expected_shape = (2, 2)
     new_shape = plotter._best_grid_shape(nplots, oldshape)
     self.assertEqual(new_shape, expected_shape)
Exemple #5
0
 def test_returned_shape_small(self):
     nplots = 2
     oldshape = (2, 2)
     expected_shape = (1, 2)
     new_shape = plotter._best_grid_shape(nplots, oldshape)
     self.assertEqual(new_shape, expected_shape)
 def test_invalid_shape(self):
     nplots = 2532
     oldshape = (22, 12)
     with self.assertRaises(ValueError):
         plotter._best_grid_shape(nplots, oldshape)
 def test_returned_shape_large(self):
     nplots = 57
     oldshape = (12, 220)
     expected_shape = (12, 5)
     new_shape = plotter._best_grid_shape(nplots, oldshape)
     self.assertEqual(new_shape, expected_shape)
 def test_returned_shape_small(self):
     nplots = 2
     oldshape = (2, 2)
     expected_shape = (2, 1)
     new_shape = plotter._best_grid_shape(nplots, oldshape)
     self.assertEqual(new_shape, expected_shape)
Exemple #9
0
def Map_plot_bias_of_multiyear_climatology(obs_dataset, obs_name, model_datasets, model_names,
                                      file_name, row, column, map_projection=None):
    '''Draw maps of observed multi-year climatology and biases of models"'''

    # calculate climatology of observation data
    obs_clim = utils.calc_temporal_mean(obs_dataset)
    # determine the metrics
    map_of_bias = metrics.TemporalMeanBias()

    # create the Evaluation object
    bias_evaluation = Evaluation(obs_dataset, # Reference dataset for the evaluation
                                 model_datasets, # list of target datasets for the evaluation
                                 [map_of_bias, map_of_bias])
    # run the evaluation (bias calculation)
    bias_evaluation.run()

    rcm_bias = bias_evaluation.results[0]

    fig = plt.figure()

    lat_min = obs_dataset.lats.min()
    lat_max = obs_dataset.lats.max()
    lon_min = obs_dataset.lons.min()
    lon_max = obs_dataset.lons.max()

    string_list = list(string.ascii_lowercase)
    nmodels = len(model_datasets)
    row, column = plotter._best_grid_shape((row, column), nmodels + 1)
    ax = fig.add_subplot(row,column,1)
    if map_projection == 'npstere':
        m = Basemap(ax=ax, projection ='npstere', boundinglat=lat_min, lon_0=0,
            resolution = 'l', fix_aspect=True)
    else:
        m = Basemap(ax=ax, projection ='cyl', llcrnrlat = lat_min, urcrnrlat = lat_max,
            llcrnrlon = lon_min, urcrnrlon = lon_max, resolution = 'l', fix_aspect=True)
    if obs_dataset.lons.ndim == 1 and obs_dataset.lats.ndim == 1:
        lons, lats = np.meshgrid(obs_dataset.lons, obs_dataset.lats)
    if obs_dataset.lons.ndim == 2 and obs_dataset.lats.ndim == 2:
        lons = obs_dataset.lons
        lats = obs_dataset.lats

    x,y = m(lons, lats)

    m.drawcoastlines(linewidth=1)
    m.drawcountries(linewidth=1)
    m.drawstates(linewidth=0.5, color='w')
    max = m.contourf(x,y,obs_clim,levels = plotter._nice_intervals(obs_dataset.values, 10), extend='both',cmap='rainbow')
    ax.annotate('(a) \n' + obs_name,xy=(lon_min, lat_min))
    cax = fig.add_axes([0.02, 1.-float(1./row)+1./row*0.25, 0.01, 1./row*0.5])
    plt.colorbar(max, cax = cax)
    clevs = plotter._nice_intervals(rcm_bias, 11)
    for imodel in np.arange(nmodels):

        ax = fig.add_subplot(row, column,2+imodel)
        if map_projection == 'npstere':
            m = Basemap(ax=ax, projection ='npstere', boundinglat=lat_min, lon_0=0,
                resolution = 'l', fix_aspect=True)
        else:
            m = Basemap(ax=ax, projection ='cyl', llcrnrlat = lat_min, urcrnrlat = lat_max,
                llcrnrlon = lon_min, urcrnrlon = lon_max, resolution = 'l', fix_aspect=True)
        m.drawcoastlines(linewidth=1)
        m.drawcountries(linewidth=1)
        m.drawstates(linewidth=0.5, color='w')
        max = m.contourf(x,y,rcm_bias[imodel,:],levels = clevs, extend='both', cmap='RdBu_r')
        ax.annotate('('+string_list[imodel+1]+')  \n '+model_names[imodel],xy=(lon_min, lat_min))

    cax = fig.add_axes([0.91, 0.5, 0.015, 0.4])
    plt.colorbar(max, cax = cax)

    plt.subplots_adjust(hspace=0.01,wspace=0.05)

    fig.savefig(file_name,dpi=600,bbox_inches='tight')
def Map_plot_bias_of_multiyear_climatology(obs_dataset, obs_name, model_datasets, model_names,
                                      file_name, row, column, map_projection=None):
    '''Draw maps of observed multi-year climatology and biases of models"'''

    # calculate climatology of observation data
    obs_clim = utils.calc_temporal_mean(obs_dataset)
    # determine the metrics
    map_of_bias = metrics.TemporalMeanBias()

    # create the Evaluation object
    bias_evaluation = Evaluation(obs_dataset, # Reference dataset for the evaluation
                                 model_datasets, # list of target datasets for the evaluation
                                 [map_of_bias, map_of_bias])
    # run the evaluation (bias calculation)
    bias_evaluation.run()

    rcm_bias = bias_evaluation.results[0]

    fig = plt.figure()

    lat_min = obs_dataset.lats.min()
    lat_max = obs_dataset.lats.max()
    lon_min = obs_dataset.lons.min()
    lon_max = obs_dataset.lons.max()

    string_list = list(string.ascii_lowercase)
    nmodels = len(model_datasets)
    row, column = plotter._best_grid_shape(nmodels + 1, (row, column))
    ax = fig.add_subplot(row,column,1)
    if map_projection == 'npstere':
        m = Basemap(ax=ax, projection ='npstere', boundinglat=lat_min, lon_0=0,
            resolution = 'l', fix_aspect=True)
    else:
        m = Basemap(ax=ax, projection ='cyl', llcrnrlat = lat_min, urcrnrlat = lat_max,
            llcrnrlon = lon_min, urcrnrlon = lon_max, resolution = 'l', fix_aspect=True)
    if obs_dataset.lons.ndim == 1 and obs_dataset.lats.ndim == 1:
        lons, lats = np.meshgrid(obs_dataset.lons, obs_dataset.lats)
    if obs_dataset.lons.ndim == 2 and obs_dataset.lats.ndim == 2:
        lons = obs_dataset.lons
        lats = obs_dataset.lats

    x,y = m(lons, lats)

    m.drawcoastlines(linewidth=1)
    m.drawcountries(linewidth=1)
    m.drawstates(linewidth=0.5, color='w')
    max = m.contourf(x,y,obs_clim,levels = plotter._nice_intervals(obs_dataset.values, 10), extend='both',cmap='rainbow')
    ax.annotate('(a) \n' + obs_name,xy=(lon_min, lat_min))
    cax = fig.add_axes([0.02, 1.-float(1./row)+1./row*0.25, 0.01, 1./row*0.5])
    plt.colorbar(max, cax = cax)
    clevs = plotter._nice_intervals(rcm_bias, 11)
    for imodel in np.arange(nmodels):

        ax = fig.add_subplot(row, column,2+imodel)
        if map_projection == 'npstere':
            m = Basemap(ax=ax, projection ='npstere', boundinglat=lat_min, lon_0=0,
                resolution = 'l', fix_aspect=True)
        else:
            m = Basemap(ax=ax, projection ='cyl', llcrnrlat = lat_min, urcrnrlat = lat_max,
                llcrnrlon = lon_min, urcrnrlon = lon_max, resolution = 'l', fix_aspect=True)
        m.drawcoastlines(linewidth=1)
        m.drawcountries(linewidth=1)
        m.drawstates(linewidth=0.5, color='w')
        max = m.contourf(x,y,rcm_bias[imodel,:],levels = clevs, extend='both', cmap='RdBu_r')
        ax.annotate('('+string_list[imodel+1]+')  \n '+model_names[imodel],xy=(lon_min, lat_min))

    cax = fig.add_axes([0.91, 0.5, 0.015, 0.4])
    plt.colorbar(max, cax = cax)

    plt.subplots_adjust(hspace=0.01,wspace=0.05)

    fig.savefig(file_name,dpi=600,bbox_inches='tight')