Exemple #1
0
    def test_real_perfect_overlap(self):
        """
        Test on decomposed image
        """

        numTiles = [2, 3, 4]
        overlap = [0.4]

        for img in IMGS:
            conv = find_fittest_converter(img)
            data = conv.read_data(img)[0]
            img = ensure2DImage(data)

            for n in numTiles:
                for o in overlap:
                    [tiles, _] = decompose_image(
                        img, o, n, "horizontalZigzag", False)

                    weaver = MeanWeaver()
                    for t in tiles:
                        weaver.addTile(t)

                    sz = len(weaver.getFullImage())
                    w = weaver.getFullImage()

                    numpy.testing.assert_allclose(w, img[:sz, :sz], rtol=1)
Exemple #2
0
    def test_gradient(self):
        """
        Test if gradient appears in two images with different constant values
        """

        img0 = numpy.ones((100, 100)) * 256
        img1 = numpy.zeros((100, 100))

        md0 = {
            model.MD_SW_VERSION: "1.0-test",
            model.MD_DESCRIPTION: u"test",
            model.MD_ACQ_DATE: time.time(),
            model.MD_BPP: 12,
            model.MD_BINNING: (1, 2),  # px, px
            model.MD_PIXEL_SIZE: (1, 1),  # m/px
            model.MD_POS: (50, 50),  # m
            model.MD_EXP_TIME: 1.2,  # s
            model.MD_IN_WL: (500e-9, 520e-9),  # m
        }
        in0 = model.DataArray(img0, md0)

        md1 = {
            model.MD_SW_VERSION: "1.0-test",
            model.MD_DESCRIPTION: u"test",
            model.MD_ACQ_DATE: time.time(),
            model.MD_BPP: 12,
            model.MD_BINNING: (1, 2),  # px, px
            model.MD_PIXEL_SIZE: (1, 1),  # m/px
            model.MD_POS: (120, 50),  # m
            model.MD_EXP_TIME: 1.2,  # s
            model.MD_IN_WL: (500e-9, 520e-9),  # m
        }
        in1 = model.DataArray(img1, md1)

        weaver = MeanWeaver()
        weaver.addTile(in0)
        weaver.addTile(in1)
        outd = weaver.getFullImage()

        # Visualize overlap mask
        #from PIL import Image
        # Image.fromarray(outd).show()

        # Test that values in overlapping region decrease from left to right
        o = outd[
            10:-10, 70:
            100]  # the gradient is going to be small on the edges, so only check middle part
        for row in o:
            # the gradient can be small, so only test that the left pixel has a lower
            # value than the value of the right pixel
            self.assertLess(row[-1], row[0])
Exemple #3
0
    def test_gradient(self):
        """
        Test if gradient appears in two images with different constant values
        """

        img0 = numpy.ones((100, 100)) * 256
        img1 = numpy.zeros((100, 100))

        md0 = {
            model.MD_SW_VERSION: "1.0-test",
            model.MD_DESCRIPTION: u"test",
            model.MD_ACQ_DATE: time.time(),
            model.MD_BPP: 12,
            model.MD_BINNING: (1, 2),  # px, px
            model.MD_PIXEL_SIZE: (1, 1),  # m/px
            model.MD_POS: (50, 50),  # m
            model.MD_EXP_TIME: 1.2,  # s
            model.MD_IN_WL: (500e-9, 520e-9),  # m
        }
        in0 = model.DataArray(img0, md0)

        md1 = {
            model.MD_SW_VERSION: "1.0-test",
            model.MD_DESCRIPTION: u"test",
            model.MD_ACQ_DATE: time.time(),
            model.MD_BPP: 12,
            model.MD_BINNING: (1, 2),  # px, px
            model.MD_PIXEL_SIZE: (1, 1),  # m/px
            model.MD_POS: (120, 50),  # m
            model.MD_EXP_TIME: 1.2,  # s
            model.MD_IN_WL: (500e-9, 520e-9),  # m
        }
        in1 = model.DataArray(img1, md1)

        weaver = MeanWeaver()
        weaver.addTile(in0)
        weaver.addTile(in1)
        outd = weaver.getFullImage()

        # Visualize overlap mask
        #from PIL import Image
        # Image.fromarray(outd).show()

        # Test that values in overlapping region decrease from left to right
        o = outd[10:-10, 70:100]  # the gradient is going to be small on the edges, so only check middle part
        for row in o:
            # the gradient can be small, so only test that the left pixel has a lower
            # value than the value of the right pixel
            self.assertLess(row[-1], row[0])
Exemple #4
0
    def test_synthetic_perfect_overlap(self):
        """
        Test on synthetic image with exactly matching overlap, weaved image should be equal to original image
        """

        img0 = numpy.zeros((100, 100))
        img1 = numpy.zeros((100, 100))

        img0[:, 80:90] = 1
        img1[:, 10:20] = 1

        exp_out = numpy.zeros((100, 170))
        exp_out[:, 80:90] = 1

        md0 = {
            model.MD_SW_VERSION: "1.0-test",
            model.MD_DESCRIPTION: u"test",
            model.MD_ACQ_DATE: time.time(),
            model.MD_BPP: 12,
            model.MD_BINNING: (1, 2),  # px, px
            model.MD_PIXEL_SIZE: (1, 1),  # m/px
            model.MD_POS: (50, 50),  # m
            model.MD_EXP_TIME: 1.2,  # s
            model.MD_IN_WL: (500e-9, 520e-9),  # m
        }
        in0 = model.DataArray(img0, md0)

        md1 = {
            model.MD_SW_VERSION: "1.0-test",
            model.MD_DESCRIPTION: u"test",
            model.MD_ACQ_DATE: time.time(),
            model.MD_BPP: 12,
            model.MD_BINNING: (1, 2),  # px, px
            model.MD_PIXEL_SIZE: (1, 1),  # m/px
            model.MD_POS: (120, 50),  # m
            model.MD_EXP_TIME: 1.2,  # s
            model.MD_IN_WL: (500e-9, 520e-9),  # m
        }
        in1 = model.DataArray(img1, md1)

        weaver = MeanWeaver()
        weaver.addTile(in0)
        weaver.addTile(in1)
        outd = weaver.getFullImage()

        numpy.testing.assert_equal(outd, exp_out)
Exemple #5
0
    def test_one_tile(self):
        """
        Test that when there is only one tile, it's returned as-is
        """
        img12 = numpy.zeros((2048, 1937), dtype=numpy.uint16) + 4000
        md = {
            model.MD_SW_VERSION: "1.0-test",
            model.MD_DESCRIPTION: u"test",
            model.MD_ACQ_DATE: time.time(),
            model.MD_BPP: 12,
            model.MD_BINNING: (1, 2),  # px, px
            model.MD_PIXEL_SIZE: (1e-6, 2e-5),  # m/px
            model.MD_POS: (1e-3, -30e-3),  # m
            model.MD_EXP_TIME: 1.2,  # s
            model.MD_IN_WL: (500e-9, 520e-9),  # m
            model.MD_DIMS: "YX",
        }
        intile = model.DataArray(img12, md)

        weaver = MeanWeaver()
        weaver.addTile(intile)
        outd = weaver.getFullImage()

        self.assertEqual(outd.shape, intile.shape)
        numpy.testing.assert_array_equal(outd, intile)
        self.assertEqual(outd.metadata, intile.metadata)

        # Same thing but with a typical SEM data
        img8 = numpy.zeros((256, 356), dtype=numpy.uint8) + 40
        md8 = {
            model.MD_DESCRIPTION: u"test sem",
            model.MD_ACQ_DATE: time.time(),
            model.MD_PIXEL_SIZE: (1.3e-6, 1.3e-6),  # m/px
            model.MD_POS: (10e-3, 30e-3),  # m
            model.MD_DWELL_TIME: 1.2e-6,  # s
            model.MD_DIMS: "YX",
        }
        intile = model.DataArray(img8, md8)

        weaver = MeanWeaver()
        weaver.addTile(intile)
        outd = weaver.getFullImage()

        self.assertEqual(outd.shape, intile.shape)
        numpy.testing.assert_array_equal(outd, intile)
        self.assertEqual(outd.metadata, intile.metadata)
Exemple #6
0
    def test_synthetic_perfect_overlap(self):
        """
        Test on synthetic image with exactly matching overlap, weaved image should be equal to original image
        """

        img0 = numpy.zeros((100, 100))
        img1 = numpy.zeros((100, 100))

        img0[:, 80:90] = 1
        img1[:, 10:20] = 1

        exp_out = numpy.zeros((100, 170))
        exp_out[:, 80:90] = 1

        md0 = {
            model.MD_SW_VERSION: "1.0-test",
            model.MD_DESCRIPTION: u"test",
            model.MD_ACQ_DATE: time.time(),
            model.MD_BPP: 12,
            model.MD_BINNING: (1, 2),  # px, px
            model.MD_PIXEL_SIZE: (1, 1),  # m/px
            model.MD_POS: (50, 50),  # m
            model.MD_EXP_TIME: 1.2,  # s
            model.MD_IN_WL: (500e-9, 520e-9),  # m
        }
        in0 = model.DataArray(img0, md0)

        md1 = {
            model.MD_SW_VERSION: "1.0-test",
            model.MD_DESCRIPTION: u"test",
            model.MD_ACQ_DATE: time.time(),
            model.MD_BPP: 12,
            model.MD_BINNING: (1, 2),  # px, px
            model.MD_PIXEL_SIZE: (1, 1),  # m/px
            model.MD_POS: (120, 50),  # m
            model.MD_EXP_TIME: 1.2,  # s
            model.MD_IN_WL: (500e-9, 520e-9),  # m
        }
        in1 = model.DataArray(img1, md1)

        weaver = MeanWeaver()
        weaver.addTile(in0)
        weaver.addTile(in1)
        outd = weaver.getFullImage()

        numpy.testing.assert_equal(outd, exp_out)
Exemple #7
0
    def test_real_perfect_overlap(self):
        """
        Test on decomposed image
        """

        numTiles = [2, 3, 4]
        overlap = [0.4]

        for img in IMGS:
            conv = find_fittest_converter(img)
            data = conv.read_data(img)[0]
            img = ensure2DImage(data)

            for n in numTiles:
                for o in overlap:
                    [tiles, _] = decompose_image(img, o, n, "horizontalZigzag",
                                                 False)

                    weaver = MeanWeaver()
                    for t in tiles:
                        weaver.addTile(t)

                    sz = len(weaver.getFullImage())
                    w = weaver.getFullImage()

                    numpy.testing.assert_allclose(w, img[:sz, :sz], rtol=1)
Exemple #8
0
    def test_one_tile(self):
        """
        Test that when there is only one tile, it's returned as-is
        """
        img12 = numpy.zeros((2048, 1937), dtype=numpy.uint16) + 4000
        md = {
            model.MD_SW_VERSION: "1.0-test",
            model.MD_DESCRIPTION: u"test",
            model.MD_ACQ_DATE: time.time(),
            model.MD_BPP: 12,
            model.MD_BINNING: (1, 2),  # px, px
            model.MD_PIXEL_SIZE: (1e-6, 2e-5),  # m/px
            model.MD_POS: (1e-3, -30e-3),  # m
            model.MD_EXP_TIME: 1.2,  # s
            model.MD_IN_WL: (500e-9, 520e-9),  # m
        }
        intile = model.DataArray(img12, md)

        weaver = MeanWeaver()
        weaver.addTile(intile)
        outd = weaver.getFullImage()

        self.assertEqual(outd.shape, intile.shape)
        numpy.testing.assert_array_equal(outd, intile)
        self.assertEqual(outd.metadata, intile.metadata)

        # Same thing but with a typical SEM data
        img8 = numpy.zeros((256, 356), dtype=numpy.uint8) + 40
        md8 = {
            model.MD_DESCRIPTION: u"test sem",
            model.MD_ACQ_DATE: time.time(),
            model.MD_PIXEL_SIZE: (1.3e-6, 1.3e-6),  # m/px
            model.MD_POS: (10e-3, 30e-3),  # m
            model.MD_DWELL_TIME: 1.2e-6,  # s
        }
        intile = model.DataArray(img8, md8)

        weaver = CollageWeaverReverse()
        weaver.addTile(intile)
        outd = weaver.getFullImage()

        self.assertEqual(outd.shape, intile.shape)
        numpy.testing.assert_array_equal(outd, intile)
        self.assertEqual(outd.metadata, intile.metadata)