def parameters(self): """ Return list of parameters [W, b] if fit_intercept=True [W] otherwise """ if self.fit_intercept: return [K.get_value(self._model.get('W')), K.get_value(self._model.get('b'))] else: return [K.get_value(self._model.get('W'))]
def parameters(self): """ Return list of parameters [W, b] if fit_intercept=True [W] otherwise """ if self.fit_intercept: return [ K.get_value(self._model.get('W')), K.get_value(self._model.get('b')) ] else: return [K.get_value(self._model.get('W'))]
def set_params(self, **params): # mapping: ops.name -> ops ops = {i.name: i for i in self._seq_ops.ops} for name, p in params.iteritems(): if name in ops: for param_old, param_new in zip(ops[name].parameters, p): if not isinstance(param_new, np.ndarray): param_new = K.get_value(param_new) K.set_value(param_old, param_new) return self
def test_load_save1(self): K.set_training(True) X = K.placeholder((None, 1, 28, 28)) f = N.Dense(128, activation=K.relu) y = f(X) W, b = [K.get_value(p).sum() for p in K.ComputationGraph(y).parameters] num_units = f.num_units W_init = f.W_init b_init = f.b_init activation = f.activation f = cPickle.loads(cPickle.dumps(f)) W1, b1 = [K.get_value(p).sum() for p in f.parameters] num_units1 = f.num_units W_init1 = f.W_init b_init1 = f.b_init activation1 = f.activation self.assertEqual(W1, W) self.assertEqual(b1, b) self.assertEqual(num_units1, num_units) self.assertEqual(W_init1.__name__, W_init.__name__) self.assertEqual(b_init.__name__, b_init1.__name__) self.assertEqual(activation1, activation)
def get_params(self, deep=False): """ Parameters ---------- deep: boolean if True, return the numpy array (i.e. the real values of each parameters) """ parameters = {} for ops in self._seq_ops.ops: name = ops.name params = ops.parameters if deep: params = [K.get_value(i) for i in params] parameters[name] = params return parameters
def __init__(self, lr, decay_rate=0.5): super(LRdecay, self).__init__() from odin import backend as K self.lr = lr self.lr_value = K.get_value(lr) self.decay_rate = decay_rate
def create_params(self, spec, shape, name, nnops, roles=[], nb_params=1): """ Parameters ---------- spec: variable, numpy.ndarray, function specification for initializing the weights shape: tuple, list expected shape for given variable name: str name for the variable nnops: NNOps parent operator of this parameters roles: odin.basic.VariableRole categories of this variable nb_params: int number of parameters that horizontally stacked into given `shape (e.g. nb_params=2, create 2 parameters with given `shape and horizontally stack them into 1 parameters) * do NOT support when `spec` is variable. """ if not isinstance(roles, (tuple, list)): roles = [roles] if not isinstance(nnops, NNOps): raise Exception('nnops must be instance of odin.nnet.base.NNOps') shape = tuple(shape) # convert to tuple if needed if any(d <= 0 for d in shape): raise ValueError( ("Cannot create param with a non-positive shape dimension. " "Tried to create param with shape=%r, name=%r") % (shape, name)) # ====== create parameters ====== # spec = as_tuple(spec, nb_params) spec = [_initialize_param(name, s, shape) for s in spec] # check shape returned shape = list(set([i[-1] for i in spec])) if len(shape) > 1: raise Exception( 'shape are inconsitent among all given "spec", the ' 'created shape is: %s' % str(shape)) shape = shape[0] # check spec returned spec = [i[0] for i in spec] if isinstance(spec[0], np.ndarray): with K.variable_scope(nnops.name): spec = np.concatenate(spec, axis=-1) shape = spec.shape spec = K.variable(spec, name=name) elif K.is_trainable_variable(spec[0]): if nb_params > 1: with K.variable_scope(nnops.name): spec = np.concatenate([K.get_value(i) for i in spec], axis=-1) shape = spec.shape spec = K.variable(spec, name=name) else: spec = spec[0] elif K.is_variable(spec[0]): shape = (shape[0] * nb_params,) if len(shape) == 1 \ else shape[:-1] + (shape[-1] * nb_params,) spec = K.concatenate(spec, axis=-1) # ====== assign annotations ====== # # only add role for trainable variables for i in roles: if isinstance(i, VariableRole) and K.is_trainable_variable(spec): add_role(spec, i) # return actual variable or expression # override other parameters with same name self._variables[name] = spec # set parameter attribute for NNOps setattr(nnops, name, spec) return spec