Exemple #1
0
def conv2d(x,
           kernel,
           strides=(1, 1),
           border_mode='valid',
           filter_dilation=(1, 1)):
    """ Dimension is ordered by
    TH input shape: (samples, input_depth, rows, cols)
    TH kernel shape: (depth, input_depth, rows, cols)

    Parameters
    ----------
    border_mode: string
        "same", "valid" or "full".

    Note
    ----
    dim_ordering : tf-tensorflow (defaults), th-theano
        TH input shape: (samples, input_depth, conv_dim1, conv_dim2, conv_dim3)
        TF input shape: (samples, conv_dim1, conv_dim2, conv_dim3, input_depth)
        ---
        TH kernel shape: (out_depth, input_depth, kernel_dim1, kernel_dim2, kernel_dim3)
        TF kernel shape: (kernel_dim1, kernel_dim2, kernel_dim3, input_depth, out_depth)
    Only support float32 on CPU

    """
    # store original information for calculating output_shape
    image_shape = get_shape(x)
    kernel_shape = get_shape(kernel)
    strides, border_mode, filter_dilation = __validate_strides_padding_dilation(
        strides, border_mode, filter_dilation, ndim=2)
    # convert to TF order
    is_float64 = False
    if 'float64' in x.dtype.name:  # only conv in float32
        x = tf.cast(x, 'float32')
        is_float64 = True
    if 'float64' in kernel.dtype.name:
        kernel = tf.cast(kernel, 'float32')

    if filter_dilation == (1, 1):
        x = tf.nn.conv2d(x,
                         kernel,
                         strides=(1, ) + strides + (1, ),
                         padding=border_mode)
    else:
        assert filter_dilation[0] == filter_dilation[1]
        assert strides == (1, 1), 'Invalid strides for dilated convolution'
        x = tf.nn.atrous_conv2d(x,
                                kernel,
                                filter_dilation[0],
                                padding=border_mode)
    # ====== estimate output shape ====== #
    if is_float64: x = tf.cast(x, 'float64')
    add_shape(
        x,
        get_conv_output_shape(image_shape, kernel_shape, border_mode, strides,
                              filter_dilation))
    return x
Exemple #2
0
def conv2d(x, kernel, strides=(1, 1), border_mode='valid',
           filter_dilation=(1, 1)):
    """ Dimension is ordered by
    TH input shape: (samples, input_depth, rows, cols)
    TH kernel shape: (depth, input_depth, rows, cols)

    Parameters
    ----------
    border_mode: string
        "same", "valid" or "full".
    Note
    ----
    dim_ordering : tf-tensorflow (defaults), th-theano
        TH input shape: (samples, input_depth, conv_dim1, conv_dim2, conv_dim3)
        TF input shape: (samples, conv_dim1, conv_dim2, conv_dim3, input_depth)
        ---
        TH kernel shape: (out_depth, input_depth, kernel_dim1, kernel_dim2, kernel_dim3)
        TF kernel shape: (kernel_dim1, kernel_dim2, kernel_dim3, input_depth, out_depth)
    Warning
    -------
    For "same" or "half" border_mode, the shape of output only equal
    to input if kernel shape is odd.
    """
    image_shape = get_shape(x)
    kernel_shape = get_shape(kernel)
    if _any(i % 2 == 0 for i in kernel_shape[:-2]):
        print('[WARNING] Kernel shape %s contains even values, the output shape is '
              'different from the input shape in "same"-border_mode.' % str(kernel_shape[:-2]))
    strides, border_mode, filter_dilation = __validate_strides_padding_dilation(
        strides, border_mode, filter_dilation, ndim=2)
    # ====== convert input to theano format ====== #
    x = __img_theano_format(x)
    kernel = __ker_theano_format(kernel)
    conv_out = T.nnet.conv2d(x, kernel,
        border_mode=border_mode,
        subsample=strides,
        input_shape=(image_shape[0], image_shape[-1]) + image_shape[1:-1],
        filter_shape=(kernel_shape[-1], kernel_shape[-2]) + kernel_shape[:-2],
        filter_dilation=filter_dilation)
    # if border_mode == 'half':
    #     if kernel_shape[2] % 2 == 0:
    #         conv_out = conv_out[:, :, :(x.shape[2] + strides[0] - 1) // strides[0], :]
    #     if kernel_shape[3] % 2 == 0:
    #         conv_out = conv_out[:, :, :, :(x.shape[3] + strides[1] - 1) // strides[1]]
    # ====== estimate output shape ====== #
    conv_out = __img_tensorflow_format(conv_out)
    add_shape(conv_out, get_conv_output_shape(image_shape, kernel_shape,
                                              border_mode, strides,
                                              filter_dilation))
    return conv_out
Exemple #3
0
 def _initialize(self, x):
     input_shape = K.get_shape(x)
     # ====== validate init arguments ====== #
     ndim = len(input_shape) - 2
     self.ndim = ndim
     # padding
     if isinstance(self.pad, (tuple, list, int)):
         self.pad = as_tuple(self.pad, ndim, int)
     elif self.pad is None:
         self.pad = (0, ) * ndim
     # strides
     if self.strides is None:
         self.strides = (0, ) * ndim
     else:
         self.strides = as_tuple(self.strides, ndim, int)
     # dilation
     if self.dilation is None:
         self.dilation = (1, ) * ndim
     else:
         self.dilation = as_tuple(self.dilation, ndim, int)
     # filter size
     self.filter_size = as_tuple(self.filter_size, ndim, int)
     # ====== create config ====== #
     config = NNConfig(input_shape=input_shape)
     # TF kernel shape: (kernel_dim1, kernel_dim2, ..., input_depth, out_depth)
     kernel_shape = self.filter_size + (input_shape[-1], self.num_filters)
     # weights
     config.create_params(self.W_init,
                          shape=kernel_shape,
                          name='W',
                          nnops=self,
                          roles=WEIGHT)
     if self.b_init is not None:
         if self.untie_biases:
             output_shape = get_conv_output_shape(
                 input_shape,
                 kernel_shape,
                 border_mode=self.pad,
                 subsample=self.strides,
                 filter_dilation=self.dilation)
             biases_shape = output_shape[1:]
         else:
             biases_shape = (self.num_filters, )
         config.create_params(self.b_init,
                              shape=biases_shape,
                              name='b',
                              nnops=self,
                              roles=BIAS)
     return config
Exemple #4
0
def conv3d(x, kernel, strides=(1, 1, 1), border_mode='valid',
           filter_dilation=(1, 1, 1)):
    """
    Run on cuDNN if available.
    border_mode: string, "same" or "valid".

    Note
    ----
    dim_ordering : tf-tensorflow (__img_theano_format(x)
        TH input shape: (samples, input_depth, conv_dim1, conv_dim2, conv_dim3)
        TF input shape: (samples, conv_dim1, conv_dim2, conv_dim3, input_depth)
        ---
        TH kernel shape: (out_depth, input_depth, kernel_dim1, kernel_dim2, kernel_dim3)
        TF kernel shape: (kernel_dim1, kernel_dim2, kernel_dim3, input_depth, out_depth)
    """
    # get and convert volume_shape to theano format
    volume_shape = get_shape(x)
    # get and convert filter_shape to theano format
    kernel_shape = get_shape(kernel)
    if _any(i % 2 == 0 for i in kernel_shape[:-2]):
        print('[WARNING] Kernel shape %s contains even values, the output shape is '
              'different from the input shape in "same"-border_mode.' % str(kernel_shape[:-2]))
    strides, border_mode, filter_dilation = __validate_strides_padding_dilation(
        strides, border_mode, filter_dilation, ndim=3)
    # ====== convert input to theano format ====== #
    x = __img_theano_format(x)
    kernel = __ker_theano_format(kernel)
    # call convolution
    conv_out = T.nnet.conv3d(x, kernel,
        border_mode=border_mode,
        subsample=strides,
        input_shape=(volume_shape[0], volume_shape[-1]) + volume_shape[1:-1],
        filter_shape=(kernel_shape[-1], kernel_shape[-2]) + kernel_shape[:-2],
        filter_dilation=filter_dilation)
    # if border_mode == 'half':
    #     if kernel_shape[2] % 2 == 0:
    #         conv_out = conv_out[:, :, :(x.shape[2] + strides[0] - 1) // strides[0], :, :]
    #     if kernel_shape[3] % 2 == 0:
    #         conv_out = conv_out[:, :, :, :(x.shape[3] + strides[1] - 1) // strides[1], :]
    #     if kernel_shape[4] % 2 == 0:
    #         conv_out = conv_out[:, :, :, :, :(x.shape[4] + strides[2] - 1) // strides[2]]
    # back to theano form
    # convert back to tensorflow shape
    conv_out = __img_tensorflow_format(conv_out)
    # infer output shape
    output_shape = get_conv_output_shape(volume_shape, kernel_shape,
                                         border_mode, strides, filter_dilation)
    add_shape(conv_out, output_shape)
    return conv_out
Exemple #5
0
def conv3d(x,
           kernel,
           strides=(1, 1, 1),
           border_mode='valid',
           filter_dilation=(1, 1, 1)):
    """
    Note
    ----
    dim_ordering : tf-tensorflow (defaults), th-theano
        TH input shape: (samples, input_depth, conv_dim1, conv_dim2, conv_dim3)
        TF input shape: (samples, conv_dim1, conv_dim2, conv_dim3, input_depth)
        ---
        TH kernel shape: (out_depth, input_depth, kernel_dim1, kernel_dim2, kernel_dim3)
        TF kernel shape: (kernel_dim1, kernel_dim2, kernel_dim3, input_depth, out_depth)
    """
    volume_shape = get_shape(x)
    kernel_shape = get_shape(kernel)
    strides, border_mode, filter_dilation = __validate_strides_padding_dilation(
        strides, border_mode, filter_dilation, ndim=3)
    # no dilation for tensorflow
    if filter_dilation != (1, 1, 1):
        raise Exception("tensorflow has not supported 3D-dilation yet.")
    # convert to TF order
    is_float64 = False
    if 'float64' in x.dtype.name:  # only conv in float32
        x = tf.cast(x, 'float32')
        is_float64 = True
    if 'float64' in kernel.dtype.name:
        kernel = tf.cast(kernel, 'float32')
    # ====== estimate output shape ====== #
    if is_float64: x = tf.cast(x, 'float64')
    x = tf.nn.conv3d(x, kernel, (1, ) + strides + (1, ), border_mode)
    add_shape(
        x,
        get_conv_output_shape(volume_shape, kernel_shape, border_mode, strides,
                              filter_dilation))
    return x