Exemple #1
0
def test_equals(as_midp):
    vec1 = np.arange(2, 6)
    vec2 = np.arange(-4, 5, 2)

    grid1 = TensorGrid(vec1, as_midp=as_midp)
    grid1_diff_midp = TensorGrid(vec1, as_midp=not as_midp)
    grid2 = TensorGrid(vec1, vec2, as_midp=as_midp)
    grid2_again = TensorGrid(vec1, vec2, as_midp=as_midp)
    grid2_rev = TensorGrid(vec2, vec1, as_midp=as_midp)

    assert grid1 == grid1
    assert not grid1 != grid1
    assert grid1 != grid1_diff_midp
    assert grid2 == grid2
    assert not grid2 != grid2
    assert grid2 == grid2_again
    assert not grid1 == grid2
    assert not grid2 == grid2_rev
    assert not grid2 == (vec1, vec2)

    # Fuzzy check
    grid1 = TensorGrid(vec1, vec2)
    grid2 = TensorGrid(vec1 + (0.1, 0.05, 0, -0.1),
                       vec2 + (0.1, 0.05, 0, -0.1, -0.1))
    assert grid1.approx_equals(grid2, tol=0.15)
    assert grid2.approx_equals(grid1, tol=0.15)

    grid2 = TensorGrid(vec1 + (0.11, 0.05, 0, -0.1),
                       vec2 + (0.1, 0.05, 0, -0.1, -0.1))
    assert not grid1.approx_equals(grid2, tol=0.1)
    grid2 = TensorGrid(vec1 + (0.1, 0.05, 0, -0.1),
                       vec2 + (0.1, 0.05, 0, -0.11, -0.1))
    assert not grid1.approx_equals(grid2, tol=0.1)
Exemple #2
0
def test_contains(as_midp):
    vec1 = np.arange(2, 6)
    vec2 = np.arange(-4, 5, 2)

    grid = TensorGrid(vec1, vec2, as_midp=as_midp)

    point_list = []
    for x in vec1:
        for y in vec2:
            point_list.append((x, y))

    assert all(p in grid for p in point_list)

    assert not (0, 0) in grid
    assert (0, 0) not in grid
    assert (2, 0, 0) not in grid

    # Fuzzy check
    assert grid.approx_contains((2.1, -2.1), tol=0.15)
    assert not grid.approx_contains((2.2, -2.1), tol=0.15)

    # 1d points
    grid = TensorGrid(vec1, as_midp=as_midp)
    assert 3 in grid
    assert 7 not in grid
Exemple #3
0
def test_element(as_midp):
    vec1 = np.arange(2, 6)
    vec2 = np.arange(-4, 5, 2)

    grid = TensorGrid(vec1, vec2, as_midp=as_midp)
    some_pt = grid.element()
    assert some_pt in grid
Exemple #4
0
def test_tensorgrid_element():
    vec1 = np.array([2, 3, 4, 5])
    vec2 = np.array([-4, -2, 0, 2, 4])

    grid = TensorGrid(vec1, vec2)
    some_pt = grid.element()
    assert some_pt in grid
Exemple #5
0
def test_tensorgrid_contains():
    vec1 = np.array([2, 3, 4, 5])
    vec2 = np.array([-4, -2, 0, 2, 4])

    grid = TensorGrid(vec1, vec2)

    point_list = []
    for x in vec1:
        for y in vec2:
            point_list.append((x, y))

    assert all(p in grid for p in point_list)

    assert not (0, 0) in grid
    assert (0, 0) not in grid
    assert (2, 0, 0) not in grid
    assert [None, object] not in grid

    # Fuzzy check
    assert grid.approx_contains((2.1, -2.1), atol=0.15)
    assert not grid.approx_contains((2.2, -2.1), atol=0.15)

    # 1d points
    grid = TensorGrid(vec1)
    assert 3 in grid
    assert 7 not in grid
Exemple #6
0
def test_tensorgrid_element():
    vec1 = np.array([2, 3, 4, 5])
    vec2 = np.array([-4, -2, 0, 2, 4])

    grid = TensorGrid(vec1, vec2)
    some_pt = grid.element()
    assert some_pt in grid
Exemple #7
0
def test_meshgrid(as_midp):
    vec1 = (0, 1)
    vec2 = (-1, 0, 1)
    vec3 = (2, 3, 4, 5)

    # Sparse meshgrid
    mgx = np.array(vec1)[:, np.newaxis, np.newaxis]
    mgy = np.array(vec2)[np.newaxis, :, np.newaxis]
    mgz = np.array(vec3)[np.newaxis, np.newaxis, :]

    grid = TensorGrid(vec1, vec2, vec3, as_midp=as_midp)
    xx, yy, zz = grid.meshgrid()
    assert all_equal(mgx, xx)
    assert all_equal(mgy, yy)
    assert all_equal(mgz, zz)

    xx, yy, zz = grid.meshgrid()
    assert all_equal(mgx, xx)
    assert all_equal(mgy, yy)
    assert all_equal(mgz, zz)

    # Fortran ordering
    grid = TensorGrid(vec1, vec2, vec3, order='F', as_midp=as_midp)
    xx, yy, zz = grid.meshgrid()
    assert all(arr.flags.f_contiguous for arr in (xx, yy, zz))
Exemple #8
0
def test_tensorgrid_ndim():
    vec1 = np.array([2, 3, 4, 5])
    vec2 = np.array([-4, -2, 0, 2, 4])
    vec3 = np.linspace(-2, 2, 50)

    grid1 = TensorGrid(vec1)
    grid2 = TensorGrid(vec1, vec2, vec3)

    assert grid1.ndim == 1
    assert grid2.ndim == 3
Exemple #9
0
def test_tensorgrid_insert():
    vec1 = np.array([2, 3, 4, 5])
    vec2 = np.array([-4, -2, 0, 2, 4])
    vec3 = np.array([-1, 0])
    scalar = 0.5

    grid = TensorGrid(vec1, vec2)
    grid2 = TensorGrid(scalar, vec3)

    # Test all positions
    ins_grid = grid.insert(0, grid2)
    assert ins_grid == TensorGrid(scalar, vec3, vec1, vec2)

    ins_grid = grid.insert(1, grid2)
    assert ins_grid == TensorGrid(vec1, scalar, vec3, vec2)

    ins_grid = grid.insert(2, grid2)
    assert ins_grid == TensorGrid(vec1, vec2, scalar, vec3)

    ins_grid = grid.insert(-1, grid2)
    assert ins_grid == TensorGrid(vec1, scalar, vec3, vec2)

    with pytest.raises(IndexError):
        grid.insert(3, grid2)

    with pytest.raises(IndexError):
        grid.insert(-4, grid2)
Exemple #10
0
def test_regulargrid_insert():
    minpt = (0.75, 0, -5)
    maxpt = (1.25, 0, 1)
    shape = (2, 1, 3)

    minpt2 = (1, 1)
    maxpt2 = (3, 1)
    shape2 = (5, 1)

    grid = RegularGrid(minpt, maxpt, shape)
    grid2 = RegularGrid(minpt2, maxpt2, shape2)

    # Test all positions
    ins_grid = grid.insert(0, grid2)
    assert isinstance(ins_grid, RegularGrid)
    ins_minpt = minpt2 + minpt
    ins_maxpt = maxpt2 + maxpt
    ins_shape = shape2 + shape
    assert ins_grid == RegularGrid(ins_minpt, ins_maxpt, ins_shape)

    ins_grid = grid.insert(1, grid2)
    ins_minpt = minpt[:1] + minpt2 + minpt[1:]
    ins_maxpt = maxpt[:1] + maxpt2 + maxpt[1:]
    ins_shape = shape[:1] + shape2 + shape[1:]
    assert ins_grid == RegularGrid(ins_minpt, ins_maxpt, ins_shape)

    ins_grid = grid.insert(2, grid2)
    ins_minpt = minpt[:2] + minpt2 + minpt[2:]
    ins_maxpt = maxpt[:2] + maxpt2 + maxpt[2:]
    ins_shape = shape[:2] + shape2 + shape[2:]
    assert ins_grid == RegularGrid(ins_minpt, ins_maxpt, ins_shape)
    ins_grid = grid.insert(-1, grid2)
    assert ins_grid == RegularGrid(ins_minpt, ins_maxpt, ins_shape)

    ins_grid = grid.insert(3, grid2)
    ins_minpt = minpt + minpt2
    ins_maxpt = maxpt + maxpt2
    ins_shape = shape + shape2
    assert ins_grid == RegularGrid(ins_minpt, ins_maxpt, ins_shape)

    # Insert a TensorGrid
    vec = [-1, 0, 3]
    tgrid = TensorGrid(vec)
    ins_tgrid = grid.insert(3, tgrid)
    assert isinstance(ins_tgrid, TensorGrid)
    assert ins_tgrid == TensorGrid(*(grid.coord_vectors + (vec, )))

    with pytest.raises(IndexError):
        grid.insert(4, grid2)

    with pytest.raises(IndexError):
        grid.insert(-5, grid2)

    with pytest.raises(TypeError):
        grid.insert(0, [1, 2])
Exemple #11
0
def test_tensorgrid_shape():
    vec1 = np.array([2, 3, 4, 5])
    vec2 = np.linspace(-2, 2, 50)
    scalar = 0.5

    grid1 = TensorGrid(vec1)
    grid2 = TensorGrid(vec1, vec2)
    grid3 = TensorGrid(scalar, vec2)

    assert grid1.shape == (4, )
    assert grid2.shape == (4, 50)
    assert grid3.shape == (1, 50)
Exemple #12
0
def test_tensorgrid_size():
    vec1 = np.array([2, 3, 4, 5])
    vec2 = np.linspace(-2, 2, 50)
    scalar = 0.5

    grid1 = TensorGrid(vec1)
    grid2 = TensorGrid(vec1, vec2)
    grid3 = TensorGrid(scalar, vec2)

    assert grid1.size == 4
    assert grid2.size == 200
    assert grid3.size == 50
Exemple #13
0
def test_tensorgrid_init():
    sorted1 = np.array([2, 3, 4, 5])
    sorted2 = np.array([-4, -2, 0, 2, 4])
    sorted3 = np.linspace(-1, 2, 50)
    scalar = 0.5

    # Just test if the code runs
    TensorGrid(sorted1)
    TensorGrid(sorted1, sorted2)
    TensorGrid(sorted1, sorted1)
    TensorGrid(sorted1, sorted2, sorted3)
    TensorGrid(sorted2, scalar, sorted1)
Exemple #14
0
def test_tensorgrid_minpt_maxpt():
    vec1 = np.array([2, 3, 4, 5])
    vec2 = np.array([-4, -2, 0, 2, 4])
    vec3 = np.array([-1, 0])
    scalar = 0.5

    grid = TensorGrid(vec1, vec2, vec3)
    assert all_equal(grid.min_pt, (2, -4, -1))
    assert all_equal(grid.max_pt, (5, 4, 0))

    grid = TensorGrid(vec1, scalar, vec2, scalar)
    assert all_equal(grid.min_pt, (2, 0.5, -4, 0.5))
    assert all_equal(grid.max_pt, (5, 0.5, 4, 0.5))
Exemple #15
0
    def corners(self, order='C'):
        """The corner points in a single array.

        Parameters
        ----------
        order : {'C', 'F'}
            The ordering of the axes in which the corners appear in
            the output. 'C' means that the first axis varies slowest
            and the last one fastest, vice versa in 'F' ordering.

        Returns
        -------
        corners : `numpy.ndarray`
            The size of the array is ``2^m * ndim``, where ``m``
            is the number of non-degenerate axes, i.e. the corners are
            stored as rows.

        Examples
        --------
        >>> rbox = IntervalProd([-1, 2, 0], [-0.5, 3, 0.5])
        >>> rbox.corners()
        array([[-1. ,  2. ,  0. ],
               [-1. ,  2. ,  0.5],
               [-1. ,  3. ,  0. ],
               [-1. ,  3. ,  0.5],
               [-0.5,  2. ,  0. ],
               [-0.5,  2. ,  0.5],
               [-0.5,  3. ,  0. ],
               [-0.5,  3. ,  0.5]])
        >>> rbox.corners(order='F')
        array([[-1. ,  2. ,  0. ],
               [-0.5,  2. ,  0. ],
               [-1. ,  3. ,  0. ],
               [-0.5,  3. ,  0. ],
               [-1. ,  2. ,  0.5],
               [-0.5,  2. ,  0.5],
               [-1. ,  3. ,  0.5],
               [-0.5,  3. ,  0.5]])
        """
        from odl.discr.grid import TensorGrid
        if order not in ('C', 'F'):
            raise ValueError('order {} not understood.'.format(order))

        minmax_vecs = [0] * self.ndim
        for axis in self._ideg:
            minmax_vecs[axis] = self.begin[axis]
        for axis in self._inondeg:
            minmax_vecs[axis] = (self.begin[axis], self.end[axis])

        minmax_grid = TensorGrid(*minmax_vecs)
        return minmax_grid.points(order=order)
Exemple #16
0
def test_cell_sizes():
    vec1 = np.array([1, 3])
    vec2 = np.array([-1, 0, 1])
    vec3 = np.array([2, 4, 5, 10])
    scalar = 0.5

    cs1, cs2, cs3 = [np.diff(vec) for vec in (vec1, vec2, vec3)]
    csscal = 0

    # Grid as set
    grid = TensorGrid(vec1, vec2, vec3, as_midp=False)
    assert all_equal(grid.cell_sizes(), (cs1, cs2, cs3))

    grid = TensorGrid(vec1, scalar, vec3, as_midp=False)
    assert all_equal(grid.cell_sizes(), (cs1, csscal, cs3))

    # Grid as tesselation
    cs1 = (2, 2)
    cs2 = (1, 1, 1)
    cs3 = (2, 1.5, 3, 5)

    grid = TensorGrid(vec1, vec2, vec3, as_midp=True)
    assert all_equal(grid.cell_sizes(), (cs1, cs2, cs3))

    grid = TensorGrid(vec1, scalar, vec3, as_midp=True)
    assert all_equal(grid.cell_sizes(), (cs1, csscal, cs3))
Exemple #17
0
    def corners(self, order='C'):
        """The corner points in a single array.

        Parameters
        ----------
        order : {'C', 'F'}
            The ordering of the axes in which the corners appear in
            the output. 'C' means that the first axis varies slowest
            and the last one fastest, vice versa in 'F' ordering.

        Returns
        -------
        corners : `numpy.ndarray`
            The size of the array is ``2^m * ndim``, where ``m``
            is the number of non-degenerate axes, i.e. the corners are
            stored as rows.

        Examples
        --------
        >>> rbox = IntervalProd([-1, 2, 0], [-0.5, 3, 0.5])
        >>> rbox.corners()
        array([[-1. ,  2. ,  0. ],
               [-1. ,  2. ,  0.5],
               [-1. ,  3. ,  0. ],
               [-1. ,  3. ,  0.5],
               [-0.5,  2. ,  0. ],
               [-0.5,  2. ,  0.5],
               [-0.5,  3. ,  0. ],
               [-0.5,  3. ,  0.5]])
        >>> rbox.corners(order='F')
        array([[-1. ,  2. ,  0. ],
               [-0.5,  2. ,  0. ],
               [-1. ,  3. ,  0. ],
               [-0.5,  3. ,  0. ],
               [-1. ,  2. ,  0.5],
               [-0.5,  2. ,  0.5],
               [-1. ,  3. ,  0.5],
               [-0.5,  3. ,  0.5]])
        """
        from odl.discr.grid import TensorGrid

        minmax_vecs = [0] * self.ndim
        for axis in self._ideg:
            minmax_vecs[axis] = self.begin[axis]
        for axis in self._inondeg:
            minmax_vecs[axis] = (self.begin[axis], self.end[axis])

        minmax_grid = TensorGrid(*minmax_vecs)
        return minmax_grid.points(order=order)
Exemple #18
0
    def corners(self, order='C'):
        """Return the corner points as a single array.

        Parameters
        ----------
        order : {'C', 'F'}, optional
            Ordering of the axes in which the corners appear in
            the output. ``'C'`` means that the first axis varies slowest
            and the last one fastest, vice versa in ``'F'`` ordering.

        Returns
        -------
        corners : `numpy.ndarray`
            Array containing the corner coordinates. The size of the
            array is ``2^m x ndim``, where ``m`` is the number of
            non-degenerate axes, i.e. the corners are stored as rows.

        Examples
        --------
        >>> rbox = IntervalProd([-1, 2, 0], [-0.5, 3, 0.5])
        >>> rbox.corners()
        array([[-1. ,  2. ,  0. ],
               [-1. ,  2. ,  0.5],
               [-1. ,  3. ,  0. ],
               [-1. ,  3. ,  0.5],
               [-0.5,  2. ,  0. ],
               [-0.5,  2. ,  0.5],
               [-0.5,  3. ,  0. ],
               [-0.5,  3. ,  0.5]])
        >>> rbox.corners(order='F')
        array([[-1. ,  2. ,  0. ],
               [-0.5,  2. ,  0. ],
               [-1. ,  3. ,  0. ],
               [-0.5,  3. ,  0. ],
               [-1. ,  2. ,  0.5],
               [-0.5,  2. ,  0.5],
               [-1. ,  3. ,  0.5],
               [-0.5,  3. ,  0.5]])
        """
        from odl.discr.grid import TensorGrid

        minmax_vecs = [0] * self.ndim
        for axis in self.ideg:
            minmax_vecs[axis] = self.min_pt[axis]
        for axis in self.inondeg:
            minmax_vecs[axis] = (self.min_pt[axis], self.max_pt[axis])

        minmax_grid = TensorGrid(*minmax_vecs)
        return minmax_grid.points(order=order)
Exemple #19
0
def test_tensorgrid_contains():
    vec1 = np.array([2, 3, 4, 5])
    vec2 = np.array([-4, -2, 0, 2, 4])

    grid = TensorGrid(vec1, vec2)

    point_list = []
    for x in vec1:
        for y in vec2:
            point_list.append((x, y))

    assert all(p in grid for p in point_list)

    assert not (0, 0) in grid
    assert (0, 0) not in grid
    assert (2, 0, 0) not in grid
    assert [None, object] not in grid

    # Fuzzy check
    assert grid.approx_contains((2.1, -2.1), atol=0.15)
    assert not grid.approx_contains((2.2, -2.1), atol=0.15)

    # 1d points
    grid = TensorGrid(vec1)
    assert 3 in grid
    assert 7 not in grid
Exemple #20
0
def test_tensorgrid_init_raise():
    # Check different error scenarios

    # Good input
    sorted1 = np.array([2, 3, 4, 5])
    sorted2 = np.array([-4, -2, 0, 2, 4])

    # Bad input
    unsorted = np.arange(4)
    unsorted[2] = -1
    with_dups = np.arange(4)
    with_dups[3] = 2
    unsorted_with_dups = unsorted.copy()
    unsorted_with_dups[3] = 0
    with_nan = np.arange(4, dtype=float)
    with_nan[3] = np.nan
    with_inf = np.arange(4, dtype=float)
    with_inf[3] = np.inf
    empty = np.arange(0)
    bad_shape = np.array([[1, 2], [3, 4]])

    with pytest.raises(ValueError):
        TensorGrid()

    with pytest.raises(ValueError):
        TensorGrid(sorted1, unsorted, sorted2)

    with pytest.raises(ValueError):
        TensorGrid(sorted1, with_dups, sorted2)

    with pytest.raises(ValueError):
        TensorGrid(sorted1, unsorted_with_dups, sorted2)

    with pytest.raises(ValueError):
        TensorGrid(sorted1, with_nan, sorted2)

    with pytest.raises(ValueError):
        TensorGrid(sorted1, with_inf, sorted2)

    with pytest.raises(ValueError):
        TensorGrid(sorted1, empty, sorted2)

    with pytest.raises(ValueError):
        TensorGrid(sorted1, bad_shape)
Exemple #21
0
def test_convex_hull():
    vec1 = (1, 3)
    vec2 = (-1, 0, 1)
    vec3 = (2, 4, 5, 10)
    scalar = 0.5

    # Grid as set
    grid = TensorGrid(vec1, vec2, vec3, as_midp=False)
    begin = (vec1[0], vec2[0], vec3[0])
    end = (vec1[-1], vec2[-1], vec3[-1])
    chull = odl.IntervalProd(begin, end)
    assert grid.convex_hull() == chull

    # With degenerate axis
    grid = TensorGrid(vec1, vec2, scalar, as_midp=False)
    begin = (vec1[0], vec2[0], scalar)
    end = (vec1[-1], vec2[-1], scalar)
    chull = odl.IntervalProd(begin, end)
    assert grid.convex_hull() == chull

    # Grid as tesselation
    grid = TensorGrid(vec1, vec2, vec3, as_midp=True)
    cs1 = (2, 2)
    cs2 = (1, 1, 1)
    cs3 = (2, 1.5, 3, 5)
    begin = (vec1[0] - cs1[0] / 2.,
             vec2[0] - cs2[0] / 2.,
             vec3[0] - cs3[0] / 2.)
    end = (vec1[-1] + cs1[-1] / 2.,
           vec2[-1] + cs2[-1] / 2.,
           vec3[-1] + cs3[-1] / 2.)
    chull = odl.IntervalProd(begin, end)
    assert grid.convex_hull() == chull

    # With degenerate axis
    grid = TensorGrid(vec1, vec2, scalar, as_midp=True)
    begin = (vec1[0] - cs1[0] / 2., vec2[0] - cs2[0] / 2., scalar)
    end = (vec1[-1] + cs1[-1] / 2., vec2[-1] + cs2[-1] / 2., scalar)
    chull = odl.IntervalProd(begin, end)
    assert grid.convex_hull() == chull
Exemple #22
0
def test_tensorgrid_meshgrid():
    vec1 = (0, 1)
    vec2 = (-1, 0, 1)
    vec3 = (2, 3, 4, 5)

    # Sparse meshgrid
    mgx = np.array(vec1)[:, None, None]
    mgy = np.array(vec2)[None, :, None]
    mgz = np.array(vec3)[None, None, :]

    grid = TensorGrid(vec1, vec2, vec3)
    xx, yy, zz = grid.meshgrid
    assert all_equal(mgx, xx)
    assert all_equal(mgy, yy)
    assert all_equal(mgz, zz)

    xx, yy, zz = grid.meshgrid
    assert all_equal(mgx, xx)
    assert all_equal(mgy, yy)
    assert all_equal(mgz, zz)
Exemple #23
0
def test_tensorgrid_getitem():
    vec1 = (0, 1, 2)
    vec2 = (-1, 0, 1)
    vec3 = (2, 3, 4, 5)
    vec4 = (1, 3)
    vec1_sub = (1, )
    vec2_sub = (-1, )
    vec3_sub = (3, 4)
    vec4_sub = (1, )

    grid = TensorGrid(vec1, vec2, vec3, vec4)

    # Single indices yield points as an array
    assert all_equal(grid[1, 0, 1, 0], (1.0, -1.0, 3.0, 1.0))

    with pytest.raises(IndexError):
        grid[1, 0, 1, 0, 0]

    with pytest.raises(IndexError):
        grid[0, 3, 0, 0]

    # Slices return new TensorGrid's
    assert grid == grid[...]

    sub_grid = TensorGrid(vec1_sub, vec2_sub, vec3_sub, vec4_sub)
    assert grid[1, 0, 1:3, 0] == sub_grid
    assert grid[-2, :1, 1:3, :1] == sub_grid
    assert grid[1, 0, ..., 1:3, 0] == sub_grid

    sub_grid = TensorGrid(vec1_sub, vec2, vec3, vec4)
    assert grid[1, :, :, :] == sub_grid
    assert grid[1, ...] == sub_grid
    assert grid[1] == sub_grid

    sub_grid = TensorGrid(vec1, vec2, vec3, vec4_sub)
    assert grid[:, :, :, 0] == sub_grid
    assert grid[..., 0] == sub_grid

    sub_grid = TensorGrid(vec1_sub, vec2, vec3, vec4_sub)
    assert grid[1, :, :, 0] == sub_grid
    assert grid[1, ..., 0] == sub_grid
    assert grid[1, :, :, ..., 0] == sub_grid

    # Fewer indices
    assert grid[0] == grid[0, :, :, :]
    assert grid[0, 1:] == grid[0, 1:, :, :]
    assert grid[0, 1:, :-1] == grid[0, 1:, :-1, :]

    # Indexing with lists
    sub_grid = TensorGrid([0, 2], vec2, vec3, vec4)
    assert grid[[0, 2]] == sub_grid
    assert grid[[0, 1]] == grid[0:2, ...]

    # Two ellipses not allowed
    with pytest.raises(ValueError):
        grid[1, ..., ..., 0]

    # Too many indices
    with pytest.raises(IndexError):
        grid[1, 0, 1:2, 0, :]

    # Empty axes not allowed
    with pytest.raises(ValueError):
        grid[1, 0, None, 0]

    # One-dimensional grid
    grid = TensorGrid(vec3)
    assert grid == grid[...]

    sub_grid = TensorGrid(vec3_sub)
    assert grid[1:3] == sub_grid
Exemple #24
0
def test_tensorgrid_corners():
    vec1 = np.array([2, 3, 4, 5])
    vec2 = np.array([-4, -2, 0, 2, 4])
    vec3 = np.array([-1, 0])
    scalar = 0.5

    minmax1 = (vec1[0], vec1[-1])
    minmax2 = (vec2[0], vec2[-1])
    minmax3 = (vec3[0], vec3[-1])

    # C ordering
    corners = []
    for x1 in minmax1:
        for x2 in minmax2:
            for x3 in minmax3:
                corners.append(np.array((x1, x2, x3), dtype=float))

    grid = TensorGrid(vec1, vec2, vec3)
    assert all_equal(corners, grid.corners())
    assert all_equal(corners, grid.corners(order='C'))

    # minpt and maxpt should appear at the beginning and the end, resp.
    assert all_equal(grid.min_pt, grid.corners()[0])
    assert all_equal(grid.max_pt, grid.corners()[-1])

    # F ordering
    corners = []
    for x3 in minmax3:
        for x2 in minmax2:
            for x1 in minmax1:
                corners.append(np.array((x1, x2, x3), dtype=float))

    assert all_equal(corners, grid.corners(order='F'))

    # Degenerate axis 1
    corners = []
    for x2 in minmax2:
        for x3 in minmax3:
            corners.append(np.array((scalar, x2, x3), dtype=float))

    grid = TensorGrid(scalar, vec2, vec3)
    assert all_equal(corners, grid.corners())

    # Degenerate axis 2
    corners = []
    for x1 in minmax1:
        for x3 in minmax3:
            corners.append(np.array((x1, scalar, x3), dtype=float))

    grid = TensorGrid(vec1, scalar, vec3)
    assert all_equal(corners, grid.corners())

    # Degenerate axis 3
    corners = []
    for x1 in minmax1:
        for x2 in minmax2:
            corners.append(np.array((x1, x2, scalar), dtype=float))

    grid = TensorGrid(vec1, vec2, scalar)
    assert all_equal(corners, grid.corners())

    # All degenerate
    corners = [(scalar, scalar)]
    grid = TensorGrid(scalar, scalar)
    assert all_equal(corners, grid.corners())
Exemple #25
0
def test_tensorgrid_points():
    vec1 = np.array([2, 3, 4, 5])
    vec2 = np.array([-4, -2, 0, 2, 4])
    scalar = 0.5

    # C ordering
    points = []
    for x1 in vec1:
        for x2 in vec2:
            points.append(np.array((x1, x2), dtype=float))

    grid = TensorGrid(vec1, vec2)
    assert all_equal(points, grid.points())
    assert all_equal(points, grid.points(order='C'))
    assert all_equal(grid.min_pt, grid.points()[0])
    assert all_equal(grid.max_pt, grid.points()[-1])

    # F ordering
    points = []
    for x2 in vec2:
        for x1 in vec1:
            points.append(np.array((x1, x2), dtype=float))

    grid = TensorGrid(vec1, vec2)
    assert all_equal(points, grid.points(order='F'))

    # Degenerate axis 1
    points = []
    for x1 in vec1:
        for x2 in vec2:
            points.append(np.array((scalar, x1, x2), dtype=float))

    grid = TensorGrid(scalar, vec1, vec2)
    assert all_equal(points, grid.points())

    # Degenerate axis 2
    points = []
    for x1 in vec1:
        for x2 in vec2:
            points.append(np.array((x1, scalar, x2), dtype=float))

    grid = TensorGrid(vec1, scalar, vec2)
    assert all_equal(points, grid.points())

    # Degenerate axis 3
    points = []
    for x1 in vec1:
        for x2 in vec2:
            points.append(np.array((x1, x2, scalar), dtype=float))

    grid = TensorGrid(vec1, vec2, scalar)
    assert all_equal(points, grid.points())

    # Bad input
    with pytest.raises(ValueError):
        grid.points(order='A')
Exemple #26
0
def test_tensorgrid_is_subgrid():
    vec1 = np.array([2, 3, 4, 5])
    vec1_sup = np.array([2, 3, 4, 5, 6, 7])
    vec2 = np.array([-4, -2, 0, 2, 4])
    vec2_sup = np.array([-6, -4, -2, 0, 2, 4, 6])
    vec2_sub = np.array([-4, -2, 0, 2])
    scalar = 0.5

    grid = TensorGrid(vec1, vec2)
    assert grid.is_subgrid(grid)

    sup_grid = TensorGrid(vec1_sup, vec2_sup)
    assert grid.is_subgrid(sup_grid)
    assert not sup_grid.is_subgrid(grid)

    not_sup_grid = TensorGrid(vec1_sup, vec2_sub)
    assert not grid.is_subgrid(not_sup_grid)
    assert not not_sup_grid.is_subgrid(grid)

    # Fuzzy check
    fuzzy_vec1_sup = vec1_sup + (0.1, 0.05, 0, -0.1, 0, 0.1)
    fuzzy_vec2_sup = vec2_sup + (0.1, 0.05, 0, -0.1, 0, 0.1, 0.05)
    fuzzy_sup_grid = TensorGrid(fuzzy_vec1_sup, fuzzy_vec2_sup)
    assert grid.is_subgrid(fuzzy_sup_grid, atol=0.15)

    fuzzy_vec2_sup = vec2_sup + (0.1, 0.05, 0, -0.1, 0, 0.11, 0.05)
    fuzzy_sup_grid = TensorGrid(fuzzy_vec1_sup, fuzzy_vec2_sup)
    assert not grid.is_subgrid(fuzzy_sup_grid, atol=0.1)

    # Changes in the non-overlapping part don't matter
    fuzzy_vec2_sup = vec2_sup + (0.1, 0.05, 0, -0.1, 0, 0.05, 0.11)
    fuzzy_sup_grid = TensorGrid(fuzzy_vec1_sup, fuzzy_vec2_sup)
    assert grid.is_subgrid(fuzzy_sup_grid, atol=0.15)

    # With degenerate axis
    grid = TensorGrid(vec1, scalar, vec2)
    sup_grid = TensorGrid(vec1_sup, scalar, vec2_sup)
    assert grid.is_subgrid(sup_grid)

    fuzzy_sup_grid = TensorGrid(vec1, scalar + 0.1, vec2)
    assert grid.is_subgrid(fuzzy_sup_grid, atol=0.15)
Exemple #27
0
def test_regulargrid_getitem():
    minpt = (0.75, 0, -5, 4)
    maxpt = (1.25, 0, 1, 13)
    shape = (2, 1, 5, 4)

    grid = RegularGrid(minpt, maxpt, shape)

    # Single indices yield points as an array
    indices = [1, 0, 1, 1]
    values = [vec[i] for i, vec in zip(indices, grid.coord_vectors)]
    assert all_equal(grid[1, 0, 1, 1], values)

    indices = [0, 0, 4, 3]
    values = [vec[i] for i, vec in zip(indices, grid.coord_vectors)]
    assert all_equal(grid[0, 0, 4, 3], values)

    with pytest.raises(IndexError):
        grid[1, 0, 1, 2, 0]

    with pytest.raises(IndexError):
        grid[1, 1, 6, 2]

    with pytest.raises(IndexError):
        grid[1, 0, 4, 6]

    # Slices return new RegularGrid's
    assert grid == grid[...]

    # Use TensorGrid implementation as reference here
    tensor_grid = TensorGrid(*grid.coord_vectors)

    test_slice = np.s_[1, :, ::2, ::3]
    assert all_equal(grid[test_slice].coord_vectors,
                     tensor_grid[test_slice].coord_vectors)
    assert all_equal(grid[1:2, :, ::2, ::3].coord_vectors,
                     tensor_grid[test_slice].coord_vectors)
    assert all_equal(grid[1:2, :, ::2, ..., ::3].coord_vectors,
                     tensor_grid[test_slice].coord_vectors)

    test_slice = np.s_[0:1, :, :, 2:4]
    assert all_equal(grid[test_slice].coord_vectors,
                     tensor_grid[test_slice].coord_vectors)
    assert all_equal(grid[:1, :, :, 2:].coord_vectors,
                     tensor_grid[test_slice].coord_vectors)
    assert all_equal(grid[:-1, ..., 2:].coord_vectors,
                     tensor_grid[test_slice].coord_vectors)

    test_slice = np.s_[:, 0, :, :]
    assert all_equal(grid[test_slice].coord_vectors,
                     tensor_grid[test_slice].coord_vectors)
    assert all_equal(grid[:, 0, ...].coord_vectors,
                     tensor_grid[test_slice].coord_vectors)
    assert all_equal(grid[0:2, :, ...].coord_vectors,
                     tensor_grid[test_slice].coord_vectors)
    assert all_equal(grid[...].coord_vectors,
                     tensor_grid[test_slice].coord_vectors)

    test_slice = np.s_[:, :, 0::2, :]
    assert all_equal(grid[test_slice].coord_vectors,
                     tensor_grid[test_slice].coord_vectors)
    assert all_equal(grid[..., 0::2, :].coord_vectors,
                     tensor_grid[test_slice].coord_vectors)

    test_slice = np.s_[..., 1, :]
    assert all_equal(grid[test_slice].coord_vectors,
                     tensor_grid[test_slice].coord_vectors)
    assert all_equal(grid[:, :, 1, :].coord_vectors,
                     tensor_grid[test_slice].coord_vectors)

    # Fewer indices
    assert grid[1:] == grid[1:, :, :, :]
    assert grid[1:, 0] == grid[1:, 0, :, :]
    assert grid[1:, 0, :-1] == grid[1:, 0, :-1, :]

    # Two ellipses not allowed
    with pytest.raises(ValueError):
        grid[1, ..., ..., 0]

    # Too many axes
    with pytest.raises(IndexError):
        grid[1, 0, 1:2, 0, :]

    # New axes not supported
    with pytest.raises(ValueError):
        grid[1, 0, None, 1, 0]

    # Empty axes not allowed
    with pytest.raises(ValueError):
        grid[1, 0, 0:0, 1]
    with pytest.raises(ValueError):
        grid[1, 1:, 0, 1]

    # One-dimensional grid
    grid = RegularGrid(1, 5, 5)
    assert grid == grid[...]

    sub_grid = RegularGrid(1, 5, 3)
    assert grid[::2], sub_grid
Exemple #28
0
def test_points(as_midp):
    vec1 = np.arange(2, 6)
    vec2 = np.arange(-4, 5, 2)
    scalar = 0.5

    # C ordering
    points = []
    for x1 in vec1:
        for x2 in vec2:
            points.append(np.array((x1, x2), dtype=float))

    grid = TensorGrid(vec1, vec2, as_midp=as_midp)
    assert all_equal(points, grid.points())
    assert all_equal(points, grid.points(order='C'))
    assert all_equal(grid.min_pt, grid.points()[0])
    assert all_equal(grid.max_pt, grid.points()[-1])

    # F ordering
    points = []
    for x2 in vec2:
        for x1 in vec1:
            points.append(np.array((x1, x2), dtype=float))

    grid = TensorGrid(vec1, vec2, as_midp=as_midp)
    assert all_equal(points, grid.points(order='F'))

    # Degenerate axis 1
    points = []
    for x1 in vec1:
        for x2 in vec2:
            points.append(np.array((scalar, x1, x2), dtype=float))

    grid = TensorGrid(scalar, vec1, vec2, as_midp=as_midp)
    assert all_equal(points, grid.points())

    # Degenerate axis 2
    points = []
    for x1 in vec1:
        for x2 in vec2:
            points.append(np.array((x1, scalar, x2), dtype=float))

    grid = TensorGrid(vec1, scalar, vec2, as_midp=as_midp)
    assert all_equal(points, grid.points())

    # Degenerate axis 3
    points = []
    for x1 in vec1:
        for x2 in vec2:
            points.append(np.array((x1, x2, scalar), dtype=float))

    grid = TensorGrid(vec1, vec2, scalar, as_midp=as_midp)
    assert all_equal(points, grid.points())
Exemple #29
0
def test_regulargrid_is_subgrid():
    minpt = (0.75, 0, -5)
    maxpt = (1.25, 0, 1)
    shape = (2, 1, 5)

    # Optimized cases
    grid = RegularGrid(minpt, maxpt, shape)
    assert grid.is_subgrid(grid)

    smaller_shape = (1, 1, 5)
    not_sup_grid = RegularGrid(minpt, maxpt, smaller_shape)
    assert not grid.is_subgrid(not_sup_grid)

    larger_minpt = (0.85, 0, -4)
    not_sup_grid = RegularGrid(larger_minpt, maxpt, shape)
    assert not grid.is_subgrid(not_sup_grid)

    smaller_maxpt = (1.15, 0, 0)
    not_sup_grid = RegularGrid(minpt, smaller_maxpt, shape)
    assert not grid.is_subgrid(not_sup_grid)

    # Real checks
    minpt_sup1 = (-0.25, -2, -5)
    maxpt_sup1 = (1.25, 2, 1)
    shape_sup1 = (4, 3, 9)
    sup_grid = RegularGrid(minpt_sup1, maxpt_sup1, shape_sup1)
    assert grid.is_subgrid(sup_grid)
    assert not sup_grid.is_subgrid(grid)

    minpt_sup2 = (0.5, 0, -5)
    maxpt_sup2 = (1.5, 0, 1)
    shape_sup2 = (5, 1, 9)
    sup_grid = RegularGrid(minpt_sup2, maxpt_sup2, shape_sup2)
    assert grid.is_subgrid(sup_grid)
    assert not sup_grid.is_subgrid(grid)

    shape_not_sup1 = (4, 3, 10)
    not_sup_grid = RegularGrid(minpt_sup1, maxpt_sup1, shape_not_sup1)
    assert not grid.is_subgrid(not_sup_grid)
    assert not not_sup_grid.is_subgrid(grid)

    minpt_not_sup1 = (-0.25, -2.5, -5)
    not_sup_grid = RegularGrid(minpt_not_sup1, maxpt_sup1, shape_sup1)
    assert not grid.is_subgrid(not_sup_grid)
    assert not not_sup_grid.is_subgrid(grid)

    maxpt_not_sup1 = (1.35, 2.0001, 1)
    not_sup_grid = RegularGrid(minpt_sup1, maxpt_not_sup1, shape_sup1)
    assert not grid.is_subgrid(not_sup_grid)
    assert not not_sup_grid.is_subgrid(grid)

    # Should also work for TensorGrid's
    vec1_sup = (0.75, 1, 1.25, 7)
    vec2_sup = (0, )
    vec3_sup = (-5, -3.5, -3, -2, -0.5, 0, 1, 9.5)

    tensor_sup_grid = TensorGrid(vec1_sup, vec2_sup, vec3_sup)
    assert grid.is_subgrid(tensor_sup_grid)

    vec1_not_sup = (1, 1.25, 7)
    vec2_not_sup = (0, )
    vec3_not_sup = (-4, -2, 1)

    tensor_not_sup_grid = TensorGrid(vec1_not_sup, vec2_not_sup, vec3_not_sup)
    assert not grid.is_subgrid(tensor_not_sup_grid)

    # Fuzzy check
    shape_sup = (4, 3, 9)

    minpt_fuzzy_sup1 = (-0.24, -2, -5.01)
    minpt_fuzzy_sup2 = (-0.24, -2, -5)
    maxpt_fuzzy_sup1 = (1.24, 2, 1)
    maxpt_fuzzy_sup2 = (1.25, 2, 1.01)

    fuzzy_sup_grid = RegularGrid(minpt_fuzzy_sup1, maxpt_fuzzy_sup1, shape_sup)
    assert grid.is_subgrid(fuzzy_sup_grid, atol=0.015)
    assert not grid.is_subgrid(fuzzy_sup_grid, atol=0.005)

    fuzzy_sup_grid = RegularGrid(minpt_fuzzy_sup2, maxpt_fuzzy_sup2, shape_sup)
    assert grid.is_subgrid(fuzzy_sup_grid, atol=0.015)
    assert not grid.is_subgrid(fuzzy_sup_grid, atol=0.005)
Exemple #30
0
def test_tensorgrid_equals():
    vec1 = np.array([2, 3, 4, 5])
    vec2 = np.array([-4, -2, 0, 2, 4])

    grid1 = TensorGrid(vec1)
    grid2 = TensorGrid(vec1, vec2)
    grid2_again = TensorGrid(vec1, vec2)
    grid2_rev = TensorGrid(vec2, vec1)

    assert grid1 == grid1
    assert not grid1 != grid1
    assert grid2 == grid2
    assert not grid2 != grid2
    assert grid2 == grid2_again
    assert not grid1 == grid2
    assert not grid2 == grid2_rev
    assert not grid2 == (vec1, vec2)

    # Fuzzy check
    grid1 = TensorGrid(vec1, vec2)
    grid2 = TensorGrid(vec1 + (0.1, 0.05, 0, -0.1),
                       vec2 + (0.1, 0.05, 0, -0.1, -0.1))
    assert grid1.approx_equals(grid1, atol=0.0)
    assert grid1.approx_equals(grid2, atol=0.15)
    assert grid2.approx_equals(grid1, atol=0.15)

    grid2 = TensorGrid(vec1 + (0.11, 0.05, 0, -0.1),
                       vec2 + (0.1, 0.05, 0, -0.1, -0.1))
    assert not grid1.approx_equals(grid2, atol=0.1)
    grid2 = TensorGrid(vec1 + (0.1, 0.05, 0, -0.1),
                       vec2 + (0.1, 0.05, 0, -0.11, -0.1))
    assert not grid1.approx_equals(grid2, atol=0.1)
Exemple #31
0
def test_tensorgrid_points():
    vec1 = np.array([2, 3, 4, 5])
    vec2 = np.array([-4, -2, 0, 2, 4])
    scalar = 0.5

    # C ordering
    points = []
    for x1 in vec1:
        for x2 in vec2:
            points.append(np.array((x1, x2), dtype=float))

    grid = TensorGrid(vec1, vec2)
    assert all_equal(points, grid.points())
    assert all_equal(points, grid.points(order='C'))
    assert all_equal(grid.min_pt, grid.points()[0])
    assert all_equal(grid.max_pt, grid.points()[-1])

    # F ordering
    points = []
    for x2 in vec2:
        for x1 in vec1:
            points.append(np.array((x1, x2), dtype=float))

    grid = TensorGrid(vec1, vec2)
    assert all_equal(points, grid.points(order='F'))

    # Degenerate axis 1
    points = []
    for x1 in vec1:
        for x2 in vec2:
            points.append(np.array((scalar, x1, x2), dtype=float))

    grid = TensorGrid(scalar, vec1, vec2)
    assert all_equal(points, grid.points())

    # Degenerate axis 2
    points = []
    for x1 in vec1:
        for x2 in vec2:
            points.append(np.array((x1, scalar, x2), dtype=float))

    grid = TensorGrid(vec1, scalar, vec2)
    assert all_equal(points, grid.points())

    # Degenerate axis 3
    points = []
    for x1 in vec1:
        for x2 in vec2:
            points.append(np.array((x1, x2, scalar), dtype=float))

    grid = TensorGrid(vec1, vec2, scalar)
    assert all_equal(points, grid.points())

    # Bad input
    with pytest.raises(ValueError):
        grid.points(order='A')
Exemple #32
0
def test_tensor_is_subgrid(as_midp):
    vec1 = np.arange(2, 6)
    vec1_sup = np.arange(2, 8)
    vec2 = np.arange(-4, 5, 2)
    vec2_sup = np.arange(-6, 7, 2)
    vec2_sub = np.arange(-4, 3, 2)
    scalar = 0.5

    grid = TensorGrid(vec1, vec2, as_midp=as_midp)
    assert grid.is_subgrid(grid)

    sup_grid = TensorGrid(vec1_sup, vec2_sup, as_midp=as_midp)
    assert grid.is_subgrid(sup_grid)
    assert not sup_grid.is_subgrid(grid)

    not_sup_grid = TensorGrid(vec1_sup, vec2_sub, as_midp=as_midp)
    assert not grid.is_subgrid(not_sup_grid)
    assert not not_sup_grid.is_subgrid(grid)

    # Fuzzy check
    fuzzy_vec1_sup = vec1_sup + (0.1, 0.05, 0, -0.1, 0, 0.1)
    fuzzy_vec2_sup = vec2_sup + (0.1, 0.05, 0, -0.1, 0, 0.1, 0.05)
    fuzzy_sup_grid = TensorGrid(fuzzy_vec1_sup, fuzzy_vec2_sup,
                                as_midp=as_midp)
    assert grid.is_subgrid(fuzzy_sup_grid, tol=0.15)

    fuzzy_vec2_sup = vec2_sup + (0.1, 0.05, 0, -0.1, 0, 0.11, 0.05)
    fuzzy_sup_grid = TensorGrid(fuzzy_vec1_sup, fuzzy_vec2_sup,
                                as_midp=as_midp)
    assert not grid.is_subgrid(fuzzy_sup_grid, tol=0.1)

    # Changes in the non-overlapping part don't matter
    fuzzy_vec2_sup = vec2_sup + (0.1, 0.05, 0, -0.1, 0, 0.05, 0.11)
    fuzzy_sup_grid = TensorGrid(fuzzy_vec1_sup, fuzzy_vec2_sup,
                                as_midp=as_midp)
    assert grid.is_subgrid(fuzzy_sup_grid, tol=0.15)

    # With degenerate axis
    grid = TensorGrid(vec1, scalar, vec2, as_midp=as_midp)
    sup_grid = TensorGrid(vec1_sup, scalar, vec2_sup, as_midp=as_midp)
    assert grid.is_subgrid(sup_grid)

    fuzzy_sup_grid = TensorGrid(vec1, scalar + 0.1, vec2, as_midp=as_midp)
    assert grid.is_subgrid(fuzzy_sup_grid, tol=0.15)
Exemple #33
0
def test_min_max():
    vec1 = np.arange(2, 6)
    vec2 = np.arange(-4, 5, 2)
    vec3 = np.arange(-1, 1)
    scalar = 0.5

    grid = TensorGrid(vec1, vec2, vec3, as_midp=False)
    assert all_equal(grid.min(), (2, -4, -1))
    assert all_equal(grid.max(), (5, 4, 0))

    grid = TensorGrid(vec1, scalar, vec2, scalar, as_midp=False)
    assert all_equal(grid.min(), (2, 0.5, -4, 0.5))
    assert all_equal(grid.max(), (5, 0.5, 4, 0.5))

    grid = TensorGrid(vec1, vec2, vec3, as_midp=True)
    assert all_equal(grid.min(), (1.5, -5, -1.5))
    assert all_equal(grid.max(), (5.5, 5, 0.5))

    grid = TensorGrid(vec1, scalar, vec2, scalar, as_midp=True)
    assert all_equal(grid.min(), (1.5, 0.5, -5, 0.5))
    assert all_equal(grid.max(), (5.5, 0.5, 5, 0.5))
Exemple #34
0
def test_tensorgrid_equals():
    vec1 = np.array([2, 3, 4, 5])
    vec2 = np.array([-4, -2, 0, 2, 4])

    grid1 = TensorGrid(vec1)
    grid2 = TensorGrid(vec1, vec2)
    grid2_again = TensorGrid(vec1, vec2)
    grid2_rev = TensorGrid(vec2, vec1)

    assert grid1 == grid1
    assert not grid1 != grid1
    assert grid2 == grid2
    assert not grid2 != grid2
    assert grid2 == grid2_again
    assert not grid1 == grid2
    assert not grid2 == grid2_rev
    assert not grid2 == (vec1, vec2)

    # Fuzzy check
    grid1 = TensorGrid(vec1, vec2)
    grid2 = TensorGrid(vec1 + (0.1, 0.05, 0, -0.1),
                       vec2 + (0.1, 0.05, 0, -0.1, -0.1))
    assert grid1.approx_equals(grid1, atol=0.0)
    assert grid1.approx_equals(grid2, atol=0.15)
    assert grid2.approx_equals(grid1, atol=0.15)

    grid2 = TensorGrid(vec1 + (0.11, 0.05, 0, -0.1),
                       vec2 + (0.1, 0.05, 0, -0.1, -0.1))
    assert not grid1.approx_equals(grid2, atol=0.1)
    grid2 = TensorGrid(vec1 + (0.1, 0.05, 0, -0.1),
                       vec2 + (0.1, 0.05, 0, -0.11, -0.1))
    assert not grid1.approx_equals(grid2, atol=0.1)
Exemple #35
0
def test_tensorgrid_is_subgrid():
    vec1 = np.array([2, 3, 4, 5])
    vec1_sup = np.array([2, 3, 4, 5, 6, 7])
    vec2 = np.array([-4, -2, 0, 2, 4])
    vec2_sup = np.array([-6, -4, -2, 0, 2, 4, 6])
    vec2_sub = np.array([-4, -2, 0, 2])
    scalar = 0.5

    grid = TensorGrid(vec1, vec2)
    assert grid.is_subgrid(grid)

    sup_grid = TensorGrid(vec1_sup, vec2_sup)
    assert grid.is_subgrid(sup_grid)
    assert not sup_grid.is_subgrid(grid)

    not_sup_grid = TensorGrid(vec1_sup, vec2_sub)
    assert not grid.is_subgrid(not_sup_grid)
    assert not not_sup_grid.is_subgrid(grid)

    # Fuzzy check
    fuzzy_vec1_sup = vec1_sup + (0.1, 0.05, 0, -0.1, 0, 0.1)
    fuzzy_vec2_sup = vec2_sup + (0.1, 0.05, 0, -0.1, 0, 0.1, 0.05)
    fuzzy_sup_grid = TensorGrid(fuzzy_vec1_sup, fuzzy_vec2_sup)
    assert grid.is_subgrid(fuzzy_sup_grid, atol=0.15)

    fuzzy_vec2_sup = vec2_sup + (0.1, 0.05, 0, -0.1, 0, 0.11, 0.05)
    fuzzy_sup_grid = TensorGrid(fuzzy_vec1_sup, fuzzy_vec2_sup)
    assert not grid.is_subgrid(fuzzy_sup_grid, atol=0.1)

    # Changes in the non-overlapping part don't matter
    fuzzy_vec2_sup = vec2_sup + (0.1, 0.05, 0, -0.1, 0, 0.05, 0.11)
    fuzzy_sup_grid = TensorGrid(fuzzy_vec1_sup, fuzzy_vec2_sup)
    assert grid.is_subgrid(fuzzy_sup_grid, atol=0.15)

    # With degenerate axis
    grid = TensorGrid(vec1, scalar, vec2)
    sup_grid = TensorGrid(vec1_sup, scalar, vec2_sup)
    assert grid.is_subgrid(sup_grid)

    fuzzy_sup_grid = TensorGrid(vec1, scalar + 0.1, vec2)
    assert grid.is_subgrid(fuzzy_sup_grid, atol=0.15)
Exemple #36
0
def test_tensorgrid_insert():
    vec1 = np.array([2, 3, 4, 5])
    vec2 = np.array([-4, -2, 0, 2, 4])
    vec3 = np.array([-1, 0])
    scalar = 0.5

    grid = TensorGrid(vec1, vec2)
    grid2 = TensorGrid(scalar, vec3)

    # Test all positions
    ins_grid = grid.insert(0, grid2)
    assert ins_grid == TensorGrid(scalar, vec3, vec1, vec2)

    ins_grid = grid.insert(1, grid2)
    assert ins_grid == TensorGrid(vec1, scalar, vec3, vec2)

    ins_grid = grid.insert(2, grid2)
    assert ins_grid == TensorGrid(vec1, vec2, scalar, vec3)

    ins_grid = grid.insert(-1, grid2)
    assert ins_grid == TensorGrid(vec1, scalar, vec3, vec2)

    with pytest.raises(IndexError):
        grid.insert(3, grid2)

    with pytest.raises(IndexError):
        grid.insert(-4, grid2)
Exemple #37
0
def test_corners(as_midp):
    vec1 = np.arange(2, 6)
    vec2 = np.arange(-4, 5, 2)
    vec3 = np.arange(-1, 1)
    scalar = 0.5

    minmax1 = (vec1[0], vec1[-1])
    minmax2 = (vec2[0], vec2[-1])
    minmax3 = (vec3[0], vec3[-1])

    # C ordering
    corners = []
    for x1 in minmax1:
        for x2 in minmax2:
            for x3 in minmax3:
                corners.append(np.array((x1, x2, x3), dtype=float))

    grid = TensorGrid(vec1, vec2, vec3, as_midp=as_midp)
    assert all_equal(corners, grid.corners())
    assert all_equal(corners, grid.corners(order='C'))

    # minpt and maxpt should appear at the beginning and the end, resp.
    assert all_equal(grid.min_pt, grid.corners()[0])
    assert all_equal(grid.max_pt, grid.corners()[-1])

    # F ordering
    corners = []
    for x3 in minmax3:
        for x2 in minmax2:
            for x1 in minmax1:
                corners.append(np.array((x1, x2, x3), dtype=float))

    assert all_equal(corners, grid.corners(order='F'))

    # Degenerate axis 1
    corners = []
    for x2 in minmax2:
        for x3 in minmax3:
            corners.append(np.array((scalar, x2, x3), dtype=float))

    grid = TensorGrid(scalar, vec2, vec3)
    assert all_equal(corners, grid.corners())

    # Degenerate axis 2
    corners = []
    for x1 in minmax1:
        for x3 in minmax3:
            corners.append(np.array((x1, scalar, x3), dtype=float))

    grid = TensorGrid(vec1, scalar, vec3, as_midp=as_midp)
    assert all_equal(corners, grid.corners())

    # Degenerate axis 3
    corners = []
    for x1 in minmax1:
        for x2 in minmax2:
            corners.append(np.array((x1, x2, scalar), dtype=float))

    grid = TensorGrid(vec1, vec2, scalar, as_midp=as_midp)
    assert all_equal(corners, grid.corners())

    # All degenerate
    corners = [(scalar, scalar)]
    grid = TensorGrid(scalar, scalar)
    assert all_equal(corners, grid.corners())