Exemple #1
0
def test_linear_composition():
    A = np.random.rand(5, 4)
    B = np.random.rand(4, 3)
    x = np.random.rand(3)
    y = np.random.rand(5)

    Aop = MatVecOperator(A)
    Bop = MatVecOperator(B)
    xvec = Bop.domain.element(x)
    yvec = Aop.range.element(y)

    C = OperatorComp(Aop, Bop)

    assert C.is_linear
    assert C.adjoint.is_linear

    assert all_almost_equal(C(xvec), np.dot(A, np.dot(B, x)))
    assert all_almost_equal(C.adjoint(yvec), np.dot(B.T, np.dot(A.T, y)))
Exemple #2
0
def test_nonlinear_composition():
    A = np.random.rand(5, 4)
    B = np.random.rand(4, 3)
    x = np.random.rand(3)

    Aop = MultiplyAndSquareOp(A)
    Bop = MultiplyAndSquareOp(B)
    xvec = Bop.domain.element(x)

    C = OperatorComp(Aop, Bop)

    assert not C.is_linear

    assert all_almost_equal(C(xvec), mult_sq_np(A, mult_sq_np(B, x)))

    # Verify that incorrect order fails
    with pytest.raises(TypeError):
        C = OperatorComp(Bop, Aop)
Exemple #3
0
def test_linear_composition():
    A = np.random.rand(5, 4)
    B = np.random.rand(4, 3)
    x = np.random.rand(3)
    y = np.random.rand(5)

    Aop = MatVecOperator(A)
    Bop = MatVecOperator(B)
    xvec = Bop.domain.element(x)
    yvec = Aop.range.element(y)

    C = OperatorComp(Aop, Bop)

    assert C.is_linear
    assert C.adjoint.is_linear

    assert all_almost_equal(C(xvec), np.dot(A, np.dot(B, x)))
    assert all_almost_equal(C.adjoint(yvec), np.dot(B.T, np.dot(A.T, y)))
Exemple #4
0
def test_operator_composition(dom_eq_ran):
    """Check operator composition against NumPy reference."""
    if dom_eq_ran:
        mat1 = np.random.rand(3, 3)
        mat2 = np.random.rand(3, 3)
    else:
        mat1 = np.random.rand(5, 4)
        mat2 = np.random.rand(4, 3)

    op1 = MultiplyAndSquareOp(mat1)
    op2 = MultiplyAndSquareOp(mat2)
    xarr, x = noise_elements(op2.domain)

    comp_op = OperatorComp(op1, op2)
    assert not comp_op.is_linear
    check_call(comp_op, x, mult_sq_np(mat1, mult_sq_np(mat2, xarr)))

    # Verify that incorrect order fails
    if not dom_eq_ran:
        with pytest.raises(OpTypeError):
            OperatorComp(op2, op1)
Exemple #5
0
def test_functional_composition():
    r3 = odl.Rn(3)

    Aop = SumFunctional(r3)
    Bop = ConstantVector(r3)
    x = r3.element([1, 2, 3])
    y = 1

    C = OperatorComp(Bop, Aop)

    assert C.is_linear
    assert C.adjoint.is_linear

    assert all_almost_equal(C(x), np.sum(x) * np.ones(3))
    assert all_almost_equal(C.adjoint(x), np.sum(x) * np.ones(3))
    assert all_almost_equal(C.adjoint.adjoint(x), C(x))

    # Using operator overloading
    assert (Aop * Bop)(y) == y * 3
    assert (Aop * Bop).adjoint(y) == y * 3
    assert all_almost_equal((Bop * Aop)(x), np.sum(x) * np.ones(3))
    assert all_almost_equal((Bop * Aop).adjoint(x), np.sum(x) * np.ones(3))
Exemple #6
0
def test_functional_composition():
    r3 = odl.Rn(3)

    Aop = SumFunctional(r3)
    Bop = ConstantVector(r3)
    x = r3.element([1, 2, 3])
    y = 1

    C = OperatorComp(Bop, Aop)

    assert C.is_linear
    assert C.adjoint.is_linear

    assert all_almost_equal(C(x), np.sum(x) * np.ones(3))
    assert all_almost_equal(C.adjoint(x), np.sum(x) * np.ones(3))
    assert all_almost_equal(C.adjoint.adjoint(x), C(x))

    # Using operator overloading
    assert (Aop * Bop)(y) == y * 3
    assert (Aop * Bop).adjoint(y) == y * 3
    assert all_almost_equal((Bop * Aop)(x),
                            np.sum(x) * np.ones(3))
    assert all_almost_equal((Bop * Aop).adjoint(x),
                            np.sum(x) * np.ones(3))
Exemple #7
0
def test_linear_operator_composition(dom_eq_ran):
    """Check call and adjoint of linear operator composition."""
    if dom_eq_ran:
        mat1 = np.random.rand(3, 3)
        mat2 = np.random.rand(3, 3)
    else:
        mat1 = np.random.rand(4, 3)
        mat2 = np.random.rand(3, 4)

    op1 = MatrixOperator(mat1)
    op2 = MatrixOperator(mat2)
    xarr, x = noise_elements(op2.domain)
    yarr, y = noise_elements(op1.range)

    # Explicit instantiation
    comp_op = OperatorComp(op1, op2)
    assert comp_op.is_linear
    assert comp_op.adjoint.is_linear
    check_call(comp_op, x, np.dot(mat1, np.dot(mat2, xarr)))
    check_call(comp_op.adjoint, y, np.dot(mat2.T, np.dot(mat1.T, yarr)))

    # Using operator overloading
    check_call(op1 * op2, x, np.dot(mat1, np.dot(mat2, xarr)))
    check_call((op1 * op2).adjoint, y, np.dot(mat2.T, np.dot(mat1.T, yarr)))