Exemple #1
0
def solve_and_create_results(m, lp_write=True, gap=0.01):
    """
    The function solves the optimization problem represented by the operational model m and returns a results table.
    It can also be chosen to write an lp file.

    :param m:   operational model   om.solph.model
    :param lp_write:  write LP-file 'True' don't write LP-file 'False'  boolean
    :param gap: allowable gap of optimization takes                     float values [0,1]
    :return: res results table                                          pd.DataFrame
    """


    if lp_write == True:
        m.write( os.path.join( 'results', 'Lifuka.lp' ), io_options={'symbolic_solver_labels': True} )

    # solve with specific optimization options (passed to pyomo)
    logging.info( "Solve optimization problem" )

    m.solve( solver='gurobi', solve_kwargs={'tee': False}, cmdline_options={'MIPGap': gap} )

    # cmdline_options = {'MIPGap': 0.01}

    # write back results from optimization object to energysystem
    logging.info( 'Print results back to energysystem' )
    res = processing.results( m )



    return res
Exemple #2
0
    def solve(self, with_duals=False, tee=True, logfile=None, solver=None):
        logging.info("Optimising using {0}.".format(solver))

        if with_duals:
            self.model.receive_duals()

        if self.debug:
            filename = os.path.join(helpers.extend_basic_path("lp_files"),
                                    "reegis.lp")
            logging.info("Store lp-file in {0}.".format(filename))
            self.model.write(filename,
                             io_options={"symbolic_solver_labels": True})

        self.model.solve(solver=solver,
                         solve_kwargs={
                             "tee": tee,
                             "logfile": logfile
                         })
        self.es.results["main"] = processing.results(self.model)
        self.es.results["meta"] = processing.meta_results(self.model)
        self.es.results["param"] = processing.parameter_as_dict(self.es)
        self.es.results["meta"]["scenario"] = self.scenario_info(solver)
        self.es.results["meta"]["in_location"] = self.location
        self.es.results["meta"]["file_date"] = datetime.datetime.fromtimestamp(
            os.path.getmtime(self.location))
        self.es.results["meta"]["oemof_version"] = logger.get_version()
        self.results = self.es.results["main"]
Exemple #3
0
 def test_output_by_type_view(self):
     results = processing.results(self.om)
     transformer_output = views.node_output_by_type(results,
                                                    node_type=Transformer)
     compare = views.node(results, 'diesel',
                          multiindex=True)['sequences'][('diesel', 'b_el1',
                                                         'flow')]
     eq_(int(transformer_output.sum()), int(compare.sum()))
Exemple #4
0
def run_oemof(es, output_filename='my_dump.oemof'):
    print('run oemof simulation')
    om = solph.Model(es)
    om.solve(solver='cbc')
    print('optimization done, processing results')
    es.results['main'] = processing.results(om)
    es.results['meta'] = processing.meta_results(om)
    es.dump(str(Path.cwd() / 'oemof_runs' / 'results'), output_filename)
    print('oemof done')
Exemple #5
0
 def test_net_storage_flow(self):
     results = processing.results(self.om)
     storage_flow = views.net_storage_flow(results,
                                           node_type=GenericStorage)
     compare = views.node(results, 'storage', multiindex=True)['sequences']
     eq_(((compare[('storage', 'b_el2', 'flow')] -
           compare[('b_el1', 'storage',
                    'flow')]).to_frame() == storage_flow.values).all()[0],
         True)
Exemple #6
0
def run_oemof_sliced(es, index):
    print('run oemof simulation')
    om = solph.Model(es)
    om.solve(solver='cbc')
    es.results['main'] = processing.results(om)
    es.results['meta'] = processing.meta_results(om)
    es.dump(str(Path.cwd() / 'oemof_runs' / 'results_sliced'),
            f"dump_{index}.oemof")
    print('oemof done')
Exemple #7
0
def write_results(es, m, p, **arguments):
    """Write results to CSV-files

    Parameters
    ----------
    es : :class:`oemof.solph.network.EnergySystem` object
        Energy system holding nodes, grouping functions and other important
        information.
    m : A solved :class:'oemof.solph.models.Model' object for dispatch or
     investment optimization
    p: datapackage.Package instance of the input datapackage
    **arguments : key word arguments
        Arguments passed from command line
    """

    # get the model name for processing and storing results from input dpkg
    modelname = p.descriptor['name'].replace(' ', '_')

    output_base_directory = os.path.join(arguments['--output-directory'],
                                         modelname)

    if not os.path.isdir(output_base_directory):
        os.makedirs(output_base_directory)

    meta_results = processing.meta_results(m)

    meta_results_path = os.path.join(output_base_directory, 'problem.csv')

    logging.info('Exporting solver information to {}'.format(
        os.path.abspath(meta_results_path)))

    pd.DataFrame({
        'objective': {
            modelname: meta_results['objective']},
        'solver_time': {
            modelname: meta_results['solver']['Time']},
        'constraints': {
            modelname: meta_results['problem']['Number of constraints']},
        'variables': {
            modelname: meta_results['problem']['Number of variables']}})\
                .to_csv(meta_results_path)

    results = processing.results(m)

    _write_results = {
        'default': default_results,
        'component': component_results,
        'bus': bus_results} \
        [arguments['--output-orient']]

    logging.info('Exporting results to {}'.format(
        os.path.abspath(output_base_directory)))

    _write_results(es, results, path=output_base_directory, model=m)

    return True
Exemple #8
0
def solve_and_create_results(m, lp_write=False, gap=0.01):
    if lp_write == True:
        m.write(os.path.join('results', 'Lifuka.lp'),
                io_options={'symbolic_solver_labels': True})

    # solve with specific optimization options (passed to pyomo)
    logging.info("Solve optimization problem")

    m.solve(solver='gurobi',
            solve_kwargs={'tee': False},
            cmdline_options={'MIPGap': gap})

    # cmdline_options = {'MIPGap': 0.01}

    # write back results from optimization object to energysystem
    logging.info('Print results back to energysystem')
    res = processing.results(m)

    return res
def run_model(params, wind_invest=False, pv_invest=False, storage_invest=False):
    logging.info('Initialize the energy system')
    energysystem = solph.EnergySystem(timeindex=date_time_index)
    Node.registry = energysystem
    logging.info('Create oemof objects')
    bgas = solph.Bus(label="natural_gas")
    bel = solph.Bus(label="electricity")

    solph.Sink(label='excess_bel', inputs={bel: solph.Flow()})

    solph.Source(label='rgas', outputs={bgas: solph.Flow(nominal_value=params['rgas_nom_val'],
                                                         summed_max=1)})

    solph.Source(label='wind', outputs={bel: solph.Flow(
            actual_value=data['wind'], nominal_value=params['wind_nom_val'], fixed=True)})

    solph.Source(label='pv', outputs={bel: solph.Flow(
           actual_value=data['pv'], nominal_value=params['pv_nom_val'], fixed=True)})

    solph.Sink(label='demand', inputs={bel: solph.Flow(
        actual_value=data['demand_el'], fixed=True, nominal_value=1)})

    solph.Transformer(
        label="pp_gas",
        inputs={bgas: solph.Flow()},
        outputs={bel: solph.Flow(nominal_value=10e10, variable_costs=50)},
        conversion_factors={bel: 0.58})


    logging.info('Optimise the energy system')

    om = solph.Model(energysystem)

    logging.info('Solve the optimization problem')
    om.solve(solver='cbc')

    energysystem.results['main'] = processing.convert_keys_to_strings(processing.results(om))
    energysystem.results['param'] = processing.convert_keys_to_strings(processing.param_results(energysystem))


    return energysystem, om
Exemple #10
0
def test_regression_investment_storage(solver='cbc'):
    """The problem was infeasible if the existing capacity and the maximum was
    defined in the Flow.
    """

    logging.info('Initialize the energy system')
    date_time_index = pd.date_range('1/1/2012', periods=4, freq='H')

    energysystem = solph.EnergySystem(timeindex=date_time_index)
    Node.registry = energysystem

    # Buses
    bgas = solph.Bus(label=('natural', 'gas'))
    bel = solph.Bus(label='electricity')

    solph.Sink(label='demand',
               inputs={
                   bel:
                   solph.Flow(actual_value=[209643, 207497, 200108, 191892],
                              fixed=True,
                              nominal_value=1)
               })

    # Sources
    solph.Source(label='rgas', outputs={bgas: solph.Flow()})

    # Transformer
    solph.Transformer(label='pp_gas',
                      inputs={bgas: solph.Flow()},
                      outputs={bel: solph.Flow(nominal_value=300000)},
                      conversion_factors={bel: 0.58})

    # Investment storage
    solph.components.GenericStorage(
        label='storage',
        inputs={
            bel:
            solph.Flow(
                investment=solph.Investment(existing=625046 / 6, maximum=0))
        },
        outputs={
            bel:
            solph.Flow(
                investment=solph.Investment(existing=104174.33, maximum=1))
        },
        loss_rate=0.00,
        initial_storage_level=0,
        invest_relation_input_capacity=1 / 6,
        invest_relation_output_capacity=1 / 6,
        inflow_conversion_factor=1,
        outflow_conversion_factor=0.8,
        investment=solph.Investment(ep_costs=50, existing=625046),
    )

    # Solve model
    om = solph.Model(energysystem)
    om.solve(solver=solver)

    # Results
    results = processing.results(om)

    electricity_bus = views.node(results, 'electricity')
    my_results = electricity_bus['sequences'].sum(axis=0).to_dict()
    storage = energysystem.groups['storage']
    my_results['storage_invest'] = results[(storage,
                                            None)]['scalars']['invest']
Exemple #11
0
def test_optimise_storage_size(filename="storage_investment.csv",
                               solver='cbc'):
    global PP_GAS

    logging.info('Initialize the energy system')
    date_time_index = pd.date_range('1/1/2012', periods=400, freq='H')

    energysystem = solph.EnergySystem(timeindex=date_time_index)
    Node.registry = energysystem

    full_filename = os.path.join(os.path.dirname(__file__), filename)
    data = pd.read_csv(full_filename, sep=",")

    # Buses
    bgas = solph.Bus(label="natural_gas")
    bel = solph.Bus(label="electricity")

    # Sinks
    solph.Sink(label='excess_bel', inputs={bel: solph.Flow()})

    solph.Sink(label='demand',
               inputs={
                   bel:
                   solph.Flow(actual_value=data['demand_el'],
                              fixed=True,
                              nominal_value=1)
               })

    # Sources
    solph.Source(label='rgas',
                 outputs={
                     bgas:
                     solph.Flow(nominal_value=194397000 * 400 / 8760,
                                summed_max=1)
                 })

    solph.Source(label='wind',
                 outputs={
                     bel:
                     solph.Flow(actual_value=data['wind'],
                                nominal_value=1000000,
                                fixed=True)
                 })

    solph.Source(label='pv',
                 outputs={
                     bel:
                     solph.Flow(actual_value=data['pv'],
                                nominal_value=582000,
                                fixed=True)
                 })

    # Transformer
    PP_GAS = solph.Transformer(
        label='pp_gas',
        inputs={bgas: solph.Flow()},
        outputs={bel: solph.Flow(nominal_value=10e10, variable_costs=50)},
        conversion_factors={bel: 0.58})

    # Investment storage
    epc = economics.annuity(capex=1000, n=20, wacc=0.05)
    solph.components.GenericStorage(
        label='storage',
        inputs={bel: solph.Flow(variable_costs=10e10)},
        outputs={bel: solph.Flow(variable_costs=10e10)},
        loss_rate=0.00,
        initial_storage_level=0,
        invest_relation_input_capacity=1 / 6,
        invest_relation_output_capacity=1 / 6,
        inflow_conversion_factor=1,
        outflow_conversion_factor=0.8,
        investment=solph.Investment(ep_costs=epc, existing=6851),
    )

    # Solve model
    om = solph.Model(energysystem)
    om.receive_duals()
    om.solve(solver=solver)
    energysystem.results['main'] = processing.results(om)
    energysystem.results['meta'] = processing.meta_results(om)

    # Check dump and restore
    energysystem.dump()
Exemple #12
0
 def setup(self):
     self.results = processing.results(optimization_model)
     self.param_results = processing.parameter_as_dict(optimization_model)
Exemple #13
0
    def results(self):
        """ Returns a nested dictionary of the results of this optimization
        """
        result = processing.results(self)

        return result
def storage_example():
    # read time series
    timeseries = pd.read_csv(
        os.path.join(os.path.dirname(__file__), 'storage_data.csv'))
    # create an energy system
    idx = pd.date_range('1/1/2017', periods=len(timeseries), freq='H')
    es = solph.EnergySystem(timeindex=idx)

    for data_set in DATA:
        name = data_set['name']

        # power bus
        bel = solph.Bus(label='bel_{0}'.format(name))
        es.add(bel)

        es.add(
            solph.Source(label='source_el_{0}'.format(name),
                         outputs={
                             bel:
                             solph.Flow(variable_costs=PARAMETER['el_price'])
                         }))

        es.add(
            solph.Source(label='pv_el_{0}'.format(name),
                         outputs={
                             bel:
                             solph.Flow(actual_value=timeseries['pv_el'],
                                        nominal_value=1,
                                        fixed=True)
                         }))

        es.add(
            solph.Sink(label='demand_el_{0}'.format(name),
                       inputs={
                           bel:
                           solph.Flow(actual_value=timeseries['demand_el'],
                                      nominal_value=1,
                                      fixed=True)
                       }))

        es.add(
            solph.Sink(
                label='shunt_el_{0}'.format(name),
                inputs={bel:
                        solph.Flow(variable_costs=PARAMETER['sh_price'])}))

        # Electric Storage
        es.add(
            solph.components.GenericStorage(
                label='storage_elec_{0}'.format(name),
                nominal_storage_capacity=PARAMETER['nominal_storage_capacity'],
                inputs={bel: solph.Flow()},
                outputs={bel: solph.Flow()},
                initial_storage_level=data_set['initial_storage_level'],
                balanced=data_set['balanced']))

    # create an optimization problem and solve it
    om = solph.Model(es)

    # solve model
    om.solve(solver='cbc')

    # create result object
    results = processing.results(om)

    flows = [x for x in results if x[1] is not None]
    components = [x for x in results if x[1] is None]

    storage_cap = pd.DataFrame()
    costs = pd.Series()
    balance = pd.Series()

    for flow in [x for x in flows if 'source_el' in x[0].label]:
        name = '_'.join(flow[0].label.split('_')[2:])
        print(name, float(results[flow]['sequences'].sum()))
        costs[name] = float(results[flow]['sequences'].sum() *
                            PARAMETER['el_price'])

    for flow in [x for x in flows if 'shunt_el' in x[1].label]:
        name = '_'.join(flow[1].label.split('_')[2:])
        costs[name] += float(results[flow]['sequences'].sum() *
                             PARAMETER['sh_price'])

    storages = [x[0] for x in components if 'storage' in x[0].label]
    idx = results[storages[0], None]['sequences']['capacity'].index
    last = idx[-1]
    prev = idx[0] - 1
    for s in storages:
        name = s.label
        storage_cap[name] = results[s, None]['sequences']['capacity']
        storage_cap.loc[prev, name] = results[s, None]['scalars']['init_cap']
        balance[name] = (storage_cap.loc[last][name] -
                         storage_cap.loc[prev][name])

    if plt is not None:
        storage_cap.plot(drawstyle="steps-mid", subplots=False, sharey=True)
        storage_cap.plot(drawstyle="steps-mid", subplots=True, sharey=True)
        costs.plot(kind='bar', ax=plt.subplots()[1])
        balance.plot(kind='bar',
                     linewidth=1,
                     edgecolor='#000000',
                     ax=plt.subplots()[1])
        plt.show()

    print(storage_cap)
    print(costs)
    print(balance)
Exemple #15
0
def run_smooth(model):
    # Run the smooth simulation framework.
    # Parameters:
    #  model: smooth model object containing parameters for components, simulation and busses.
    """ INITIALIZATION """
    # CHECK IF COMPONENT NAMES ARE UNIQUE
    # Check if all component names are unique, otherwise throw an error. Therefor first get all component names.
    comp_names = []
    for this_comp in model['components']:
        comp_names.append(this_comp['name'])

    # Then check if all component names are unique.
    for this_comp_name in comp_names:
        if comp_names.count(this_comp_name) is not 1:
            raise ValueError(
                'Component name "{}" is not unique, please name components unique.'
                .format(this_comp_name))

    # GET SIMULATION PARAMETERS
    # Create an object with the simulation parameters.
    sim_params = sp(model['sim_params'])

    # CREATE COMPONENT OBJECTS
    components = []
    for this_comp in model['components']:
        # Add simulation parameters to the components so they can be used
        this_comp['sim_params'] = sim_params
        # Loop through all components of the model and load the component classes.
        this_comp_name = this_comp['component']
        # Import the module of the component.
        this_comp_module = importlib.import_module(
            'smooth.components.component_' + this_comp_name)
        # While class name is camel case, underscores has to be removed and letters after underscores have to be capital
        class_name = ''
        if this_comp_name.isupper():
            class_name = this_comp_name
        else:
            this_comp_name_split = this_comp_name.split('_')
            for this_comp_name_part in this_comp_name_split:
                class_name += this_comp_name_part.capitalize()
        # Load the class (which by convention has a name with a capital first letter and camel case).
        this_comp_class = getattr(this_comp_module, class_name)
        # Initialize the component.
        this_comp_obj = this_comp_class(this_comp)
        # Check if this component is valid.
        this_comp_obj.check_validity()
        # Add this component to the list containing all components.
        components.append(this_comp_obj)
    """ SIMULATION """
    for i_interval in range(sim_params.n_intervals):
        # Save the interval index of this run to the sim_params to make it usable later on.
        sim_params.i_interval = i_interval
        if sim_params.print_progress:
            print('Simulating interval {}/{}'.format(i_interval,
                                                     sim_params.n_intervals))

        # Initialize the oemof energy system for this time step.
        this_time_index = sim_params.date_time_index[i_interval:(i_interval +
                                                                 1)]
        oemof_model = solph.EnergySystem(timeindex=this_time_index,
                                         freq='{}min'.format(
                                             sim_params.interval_time))
        """ CREATE THE OEMOF MODEL FOR THIS INTERVAL """
        # Create all busses and save them to a dict for later use in the components.
        busses = {}

        for i_bus in model['busses']:
            # Create this bus and append it to the "busses" dict.
            busses[i_bus] = solph.Bus(label=i_bus)
            # Add the bus to the simulation model.
            oemof_model.add(busses[i_bus])

        # Prepare the simulation.
        for this_comp in components:
            # Execute the prepare simulation step (if this component has one).
            this_comp.prepare_simulation(components)
            # Get the oemof representation of this component.
            this_oemof_model = this_comp.create_oemof_model(
                busses, oemof_model)
            if this_oemof_model is not None:
                # Add the component to the oemof model.
                oemof_model.add(this_oemof_model)
            else:
                # If None is given back, no model is supposed to be added.
                pass
        """ RUN THE SIMULATION """
        # Do the simulation for this time step.
        model_to_solve = solph.Model(oemof_model)

        for this_comp in components:
            this_comp.update_constraints(busses, model_to_solve)

        if i_interval == 0:
            # Save the set of linear equations for the first interval.
            model_to_solve.write('./oemof_model.lp',
                                 io_options={'symbolic_solver_labels': True})

        model_to_solve.solve(solver='cbc', solve_kwargs={'tee': False})
        """ CHECK IF SOLVING WAS SUCCESSFUL """
        # Get the meta results.
        # meta_results = processing.meta_results(model_to_solve)
        """ HANDLE RESULTS """
        # Get the results of this oemof run.
        results = processing.results(model_to_solve)

        # Loop through every component and call the result handling functions
        for this_comp in components:
            # Update the flows
            this_comp.update_flows(results, sim_params)
            # Update the states.
            this_comp.update_states(results, sim_params)
            # Update the costs and artificial costs.
            this_comp.update_costs(results, sim_params)

    # Calculate the annuity for each component.
    for this_comp in components:
        this_comp.generate_results()

    return components
Exemple #16
0
 def setup(self):
     self.results = processing.results(optimization_model)
Exemple #17
0
def test_tuples_as_labels_example(filename="storage_investment.csv",
                                  solver='cbc'):

    logging.info('Initialize the energy system')
    date_time_index = pd.date_range('1/1/2012', periods=40, freq='H')

    energysystem = solph.EnergySystem(timeindex=date_time_index)
    Node.registry = energysystem

    full_filename = os.path.join(os.path.dirname(__file__), filename)
    data = pd.read_csv(full_filename, sep=",")

    # Buses
    bgas = solph.Bus(label=Label('bus', 'natural_gas', None))
    bel = solph.Bus(label=Label('bus', 'electricity', ''))

    # Sinks
    solph.Sink(label=Label('sink', 'electricity', 'excess'),
               inputs={bel: solph.Flow()})

    solph.Sink(label=Label('sink', 'electricity', 'demand'),
               inputs={
                   bel:
                   solph.Flow(actual_value=data['demand_el'],
                              fixed=True,
                              nominal_value=1)
               })

    # Sources
    solph.Source(label=Label('source', 'natural_gas', 'commodity'),
                 outputs={
                     bgas:
                     solph.Flow(nominal_value=194397000 * 400 / 8760,
                                summed_max=1)
                 })

    solph.Source(label=Label('renewable', 'electricity', 'wind'),
                 outputs={
                     bel:
                     solph.Flow(actual_value=data['wind'],
                                nominal_value=1000000,
                                fixed=True)
                 })

    solph.Source(label=Label('renewable', 'electricity', 'pv'),
                 outputs={
                     bel:
                     solph.Flow(actual_value=data['pv'],
                                nominal_value=582000,
                                fixed=True)
                 })

    # Transformer
    solph.Transformer(
        label=Label('pp', 'electricity', 'natural_gas'),
        inputs={bgas: solph.Flow()},
        outputs={bel: solph.Flow(nominal_value=10e10, variable_costs=50)},
        conversion_factors={bel: 0.58})

    # Investment storage
    solph.components.GenericStorage(
        label=Label('storage', 'electricity', 'battery'),
        nominal_capacity=204685,
        inputs={bel: solph.Flow(variable_costs=10e10)},
        outputs={bel: solph.Flow(variable_costs=10e10)},
        capacity_loss=0.00,
        initial_capacity=0,
        invest_relation_input_capacity=1 / 6,
        invest_relation_output_capacity=1 / 6,
        inflow_conversion_factor=1,
        outflow_conversion_factor=0.8,
    )

    # Solve model
    om = solph.Model(energysystem)
    om.solve(solver=solver)
    energysystem.results['main'] = processing.results(om)
    energysystem.results['meta'] = processing.meta_results(om)

    # Check dump and restore
    energysystem.dump()
    es = solph.EnergySystem()
    es.restore()

    # Results
    results = es.results['main']
    meta = es.results['meta']

    electricity_bus = views.node(results, 'bus_electricity_')
    my_results = electricity_bus['sequences'].sum(axis=0).to_dict()
    storage = es.groups['storage_electricity_battery']
    storage_node = views.node(results, storage)
    my_results['max_load'] = storage_node['sequences'].max()[((storage, None),
                                                              'capacity')]
    commodity_bus = views.node(results, 'bus_natural_gas_None')

    gas_usage = commodity_bus['sequences'][(('source_natural_gas_commodity',
                                             'bus_natural_gas_None'), 'flow')]

    my_results['gas_usage'] = gas_usage.sum()

    stor_invest_dict = {
        'gas_usage': 1304112,
        'max_load': 0,
        (('bus_electricity_', 'sink_electricity_demand'), 'flow'): 8239764,
        (('bus_electricity_', 'sink_electricity_excess'), 'flow'): 22036732,
        (('bus_electricity_', 'storage_electricity_battery'), 'flow'): 0,
        (('pp_electricity_natural_gas', 'bus_electricity_'), 'flow'): 756385,
        (('renewable_electricity_pv', 'bus_electricity_'), 'flow'): 744132,
        (('renewable_electricity_wind', 'bus_electricity_'), 'flow'): 28775978,
        ((
            'storage_electricity_battery',
            'bus_electricity_',
        ), 'flow'): 0
    }

    for key in stor_invest_dict.keys():
        eq_(int(round(my_results[key])), int(round(stor_invest_dict[key])))

    # Solver results
    eq_(str(meta['solver']['Termination condition']), 'optimal')
    eq_(meta['solver']['Error rc'], 0)
    eq_(str(meta['solver']['Status']), 'ok')

    # Problem results
    eq_(int(meta['problem']['Lower bound']), 37819254)
    eq_(int(meta['problem']['Upper bound']), 37819254)
    eq_(meta['problem']['Number of variables'], 280)
    eq_(meta['problem']['Number of constraints'], 162)
    eq_(meta['problem']['Number of nonzeros'], 519)
    eq_(meta['problem']['Number of objectives'], 1)
    eq_(str(meta['problem']['Sense']), 'minimize')

    # Objective function
    eq_(round(meta['objective']), 37819254)
Exemple #18
0
logging.info('Optimise the energy system')

# initialise the operational model
om = solph.Model(energysystem)

# if tee_switch is true solver messages will be displayed
logging.info('Solve the optimization problem')
om.solve(solver='cbc', solve_kwargs={'tee': True})

##########################################################################
# Check and plot the results
##########################################################################

# check if the new result object is working for custom components
results = processing.results(om)

custom_storage = views.node(results, 'storage')
electricity_bus = views.node(results, 'electricity')

meta_results = processing.meta_results(om)
pp.pprint(meta_results)

my_results = electricity_bus['scalars']

# installed capacity of storage in GWh
my_results['storage_invest_GWh'] = (
    results[(storage, None)]['scalars']['invest'] / 1e6)

# resulting renewable energy share
my_results['res_share'] = (1 - results[(pp_gas, bel)]['sequences'].sum() /
Exemple #19
0
def test_dispatch_example(solver='cbc', periods=24 * 5):
    """Create an energy system and optimize the dispatch at least costs."""
    Node.registry = None

    filename = os.path.join(os.path.dirname(__file__), 'input_data.csv')
    data = pd.read_csv(filename, sep=",")

    # ######################### create energysystem components ################

    # resource buses
    bcoal = Bus(label='coal', balanced=False)
    bgas = Bus(label='gas', balanced=False)
    boil = Bus(label='oil', balanced=False)
    blig = Bus(label='lignite', balanced=False)

    # electricity and heat
    bel = Bus(label='b_el')
    bth = Bus(label='b_th')

    # an excess and a shortage variable can help to avoid infeasible problems
    excess_el = Sink(label='excess_el', inputs={bel: Flow()})
    # shortage_el = Source(label='shortage_el',
    #                      outputs={bel: Flow(variable_costs=200)})

    # sources
    ep_wind = economics.annuity(capex=1000, n=20, wacc=0.05)
    wind = Source(label='wind',
                  outputs={
                      bel:
                      Flow(actual_value=data['wind'],
                           fixed=True,
                           investment=Investment(ep_costs=ep_wind,
                                                 existing=100))
                  })

    ep_pv = economics.annuity(capex=1500, n=20, wacc=0.05)
    pv = Source(label='pv',
                outputs={
                    bel:
                    Flow(actual_value=data['pv'],
                         fixed=True,
                         investment=Investment(ep_costs=ep_pv, existing=80))
                })

    # demands (electricity/heat)
    demand_el = Sink(label='demand_elec',
                     inputs={
                         bel:
                         Flow(nominal_value=85,
                              actual_value=data['demand_el'],
                              fixed=True)
                     })

    demand_th = Sink(label='demand_therm',
                     inputs={
                         bth:
                         Flow(nominal_value=40,
                              actual_value=data['demand_th'],
                              fixed=True)
                     })

    # power plants
    pp_coal = Transformer(
        label='pp_coal',
        inputs={bcoal: Flow()},
        outputs={bel: Flow(nominal_value=20.2, variable_costs=25)},
        conversion_factors={bel: 0.39})

    pp_lig = Transformer(
        label='pp_lig',
        inputs={blig: Flow()},
        outputs={bel: Flow(nominal_value=11.8, variable_costs=19)},
        conversion_factors={bel: 0.41})

    pp_gas = Transformer(
        label='pp_gas',
        inputs={bgas: Flow()},
        outputs={bel: Flow(nominal_value=41, variable_costs=40)},
        conversion_factors={bel: 0.50})

    pp_oil = Transformer(
        label='pp_oil',
        inputs={boil: Flow()},
        outputs={bel: Flow(nominal_value=5, variable_costs=50)},
        conversion_factors={bel: 0.28})

    # combined heat and power plant (chp)
    pp_chp = Transformer(label='pp_chp',
                         inputs={bgas: Flow()},
                         outputs={
                             bel: Flow(nominal_value=30, variable_costs=42),
                             bth: Flow(nominal_value=40)
                         },
                         conversion_factors={
                             bel: 0.3,
                             bth: 0.4
                         })

    # heatpump with a coefficient of performance (COP) of 3
    b_heat_source = Bus(label='b_heat_source')

    heat_source = Source(label='heat_source', outputs={b_heat_source: Flow()})

    cop = 3
    heat_pump = Transformer(label='el_heat_pump',
                            inputs={
                                bel: Flow(),
                                b_heat_source: Flow()
                            },
                            outputs={bth: Flow(nominal_value=10)},
                            conversion_factors={
                                bel: 1 / 3,
                                b_heat_source: (cop - 1) / cop
                            })

    datetimeindex = pd.date_range('1/1/2012', periods=periods, freq='H')
    energysystem = EnergySystem(timeindex=datetimeindex)
    energysystem.add(bcoal, bgas, boil, bel, bth, blig, excess_el, wind, pv,
                     demand_el, demand_th, pp_coal, pp_lig, pp_oil, pp_gas,
                     pp_chp, b_heat_source, heat_source, heat_pump)

    # ################################ optimization ###########################

    # create optimization model based on energy_system
    optimization_model = Model(energysystem=energysystem)

    # solve problem
    optimization_model.solve(solver=solver)

    # write back results from optimization object to energysystem
    optimization_model.results()

    # ################################ results ################################

    # generic result object
    results = processing.results(om=optimization_model)

    # subset of results that includes all flows into and from electrical bus
    # sequences are stored within a pandas.DataFrames and scalars e.g.
    # investment values within a pandas.Series object.
    # in this case the entry data['scalars'] does not exist since no investment
    # variables are used
    data = views.node(results, 'b_el')

    # generate results to be evaluated in tests
    comp_results = data['sequences'].sum(axis=0).to_dict()
    comp_results['pv_capacity'] = results[(pv, bel)]['scalars'].invest
    comp_results['wind_capacity'] = results[(wind, bel)]['scalars'].invest

    test_results = {
        (('wind', 'b_el'), 'flow'): 9239,
        (('pv', 'b_el'), 'flow'): 1147,
        (('b_el', 'demand_elec'), 'flow'): 7440,
        (('b_el', 'excess_el'), 'flow'): 6261,
        (('pp_chp', 'b_el'), 'flow'): 477,
        (('pp_lig', 'b_el'), 'flow'): 850,
        (('pp_gas', 'b_el'), 'flow'): 934,
        (('pp_coal', 'b_el'), 'flow'): 1256,
        (('pp_oil', 'b_el'), 'flow'): 0,
        (('b_el', 'el_heat_pump'), 'flow'): 202,
        'pv_capacity': 44,
        'wind_capacity': 246,
    }

    for key in test_results.keys():
        eq_(int(round(comp_results[key])), int(round(test_results[key])))
Exemple #20
0
 def test_error_from_nan_values(self):
     trsf = self.es.groups['diesel']
     bus = self.es.groups['b_el1']
     self.mod.flow[trsf, bus, 5] = float('nan')
     with assert_raises(ValueError):
         processing.results(self.mod)
Exemple #21
0
energysystem.add(
    solph.Transformer(label="pp_gas",
                      inputs={bgas: solph.Flow()},
                      outputs={bel: solph.Flow(nominal_value=200)},
                      conversion_factors={bel: 0.58}))

# initialise the operational model
model = solph.Model(energysystem)

# add the emission constraint
constraints.emission_limit(model, limit=100)

# print out the emission constraint
model.integral_limit_emission_factor_constraint.pprint()
model.integral_limit_emission_factor.pprint()

# solve the model
model.solve()

# print out the amount of emissions from the emission constraint
print(model.integral_limit_emission_factor())

results = processing.results(model)

if plt is not None:
    data = views.node(results, 'electricity')['sequences']
    ax = data.plot(kind='line', grid=True)
    ax.set_xlabel('Time (h)')
    ax.set_ylabel('P (MW)')
    plt.show()
Exemple #22
0
def run_model_dessau(config_path, results_dir):
    r"""
    Create the energy system and run the optimisation model.

    Parameters
    ----------
    config_path : Path to experiment config
    results_dir : Directory for results

    Returns
    -------
    energysystem.results : Dict containing results
    """
    abs_path = os.path.dirname(os.path.abspath(os.path.join(__file__, '..')))
    with open(config_path, 'r') as ymlfile:
        cfg = yaml.load(ymlfile)

    # load input parameter
    in_param = pd.read_csv(os.path.join(abs_path, cfg['input_parameter']), index_col=[1, 2])['var_value']
    wacc = in_param['general', 'wacc']

    # load timeseries
    demand_heat_timeseries = pd.read_csv(os.path.join(results_dir, cfg['timeseries']['timeseries_demand_heat']),
                                         index_col=0, names=['demand_heat'], sep=',')['demand_heat']
    print(demand_heat_timeseries.head())

    # create timeindex
    if cfg['debug']:
        number_timesteps = 200
    else:
        number_timesteps = 8760

    date_time_index = pd.date_range('1/1/2017',
                                    periods=number_timesteps,
                                    freq='H')

    logging.info('Initialize the energy system')
    energysystem = solph.EnergySystem(timeindex=date_time_index)

    #####################################################################
    logging.info('Create oemof objects')
    #####################################################################

    bgas = solph.Bus(label="natural_gas", balanced=False)
    bel = solph.Bus(label="electricity", balanced=False)
    bth_prim = solph.Bus(label="heat_prim")
    bth_sec = solph.Bus(label="heat_sec")
    bth_end = solph.Bus(label="heat_end")

    energysystem.add(bgas, bth_prim, bth_sec, bth_end, bel)

    # energysystem.add(solph.Sink(label='excess_heat',
        # inputs={bth: solph.Flow()}))

    energysystem.add(solph.Source(label='shortage_heat',
        outputs={bth_prim: solph.Flow(variable_costs=in_param['shortage_heat','var_costs'])}))

    # energysystem.add(solph.Source(label='rgas',
    #     outputs={bgas: solph.Flow(
    #         variable_costs=0)}))

    if cfg['investment']['invest_chp']:
        energysystem.add(solph.Transformer(
            label='ccgt',
            inputs={bgas: solph.Flow(variable_costs=in_param['bgas','price_gas'])},
            outputs={bth_prim: solph.Flow(
                investment=solph.Investment(
                    ep_costs=economics.annuity(
                        capex=in_param['ccgt','capex'], n=in_param['ccgt','inv_period'], wacc=wacc)),
                variable_costs=0)},
            conversion_factors={bth_prim: 0.5}))

    else:
        energysystem.add(solph.Transformer(
            label='ccgt',
            inputs={bgas: solph.Flow(variable_costs=in_param['bgas','price_gas'])},
            outputs={bth_prim: solph.Flow(
                nominal_value=in_param['ccgt','nominal_value'],
                variable_costs=0)},
            conversion_factors={bth_prim: 0.5}))

    if cfg['investment']['invest_pth']:
        energysystem.add(solph.Transformer(
            label='power_to_heat',
            inputs={bel: solph.Flow(variable_costs=in_param['bel','price_el'])},
            outputs={bth_prim: solph.Flow(
                investment=solph.Investment(
                    ep_costs=economics.annuity(
                        capex=in_param['power_to_heat','capex'], n=in_param['power_to_heat','inv_period'], wacc=wacc)),
                variable_costs=0)},
            conversion_factors={bth_prim: 1}))

    else:
        energysystem.add(solph.Transformer(label='power_to_heat',
            inputs={bel: solph.Flow(variable_costs=in_param['bel','price_el'])},
            outputs={bth_prim: solph.Flow(
                nominal_value=in_param['power_to_heat','nominal_value'],
                variable_costs=0)},
            conversion_factors={bth_prim: 1}))

    energysystem.add(solph.Transformer(
        label='dhn_prim',
        inputs={bth_prim: solph.Flow()},
        outputs={bth_sec: solph.Flow()},
        conversion_factors={bth_sec: 1.}))

    energysystem.add(solph.Transformer(
        label='dhn_sec',
        inputs={bth_sec: solph.Flow()},
        outputs={bth_end: solph.Flow()},
        conversion_factors={bth_end: 1.}))

    energysystem.add(solph.Sink(
        label='demand_heat',
        inputs={bth_end: solph.Flow(
            actual_value=demand_heat_timeseries,
            fixed=True,
            nominal_value=1.,
            summed_min=1)}))

    energysystem.add(solph.components.GenericStorage(
        label='storage_heat',
        nominal_capacity=in_param['storage_heat','nominal_capacity'],
        inputs={bth_prim: solph.Flow(
            variable_costs=0,
            nominal_value=in_param['storage_heat','input_nominal_value'])},
        outputs={bth_prim: solph.Flow(
            nominal_value=in_param['storage_heat','output_nominal_value'])},
        capacity_loss=in_param['storage_heat','capacity_loss'],
        initial_capacity=in_param['storage_heat','initial_capacity'],
        capacity_max=in_param['storage_heat','nominal_capacity'],
        inflow_conversion_factor=1,
        outflow_conversion_factor=1))

    energysystem_graph = graph.create_nx_graph(energysystem)
    graph_file_name = os.path.join(results_dir, 'energysystem_graph.pkl')
    nx.readwrite.write_gpickle(G=energysystem_graph, path=graph_file_name)

    #####################################################################
    logging.info('Solve the optimization problem')


    om = solph.Model(energysystem)
    om.solve(solver=cfg['solver'], solve_kwargs={'tee': True})

    if cfg['debug']:
        filename = os.path.join(
            oemof.tools.helpers.extend_basic_path('lp_files'),
            'app_district_heating.lp')
        logging.info('Store lp-file in {0}.'.format(filename))
        om.write(filename, io_options={'symbolic_solver_labels': True})


    #####################################################################
    logging.info('Check the results')
    #####################################################################

    energysystem.results['main'] = processing.results(om)
    energysystem.results['meta'] = processing.meta_results(om)
    energysystem.results['param'] = processing.parameter_as_dict(om)
    energysystem.dump(dpath=results_dir + '/optimisation_results', filename='es.dump')

    return energysystem.results
Exemple #23
0
def test_gen_caes():
    # read sequence data
    full_filename = os.path.join(os.path.dirname(__file__), 'generic_caes.csv')
    data = pd.read_csv(full_filename)

    # select periods
    periods = len(data) - 1

    # create an energy system
    idx = pd.date_range('1/1/2017', periods=periods, freq='H')
    es = solph.EnergySystem(timeindex=idx)
    Node.registry = es

    # resources
    bgas = solph.Bus(label='bgas')

    solph.Source(label='rgas', outputs={bgas: solph.Flow(variable_costs=20)})

    # power
    bel_source = solph.Bus(label='bel_source')
    solph.Source(label='source_el',
                 outputs={
                     bel_source:
                     solph.Flow(variable_costs=data['price_el_source'])
                 })

    bel_sink = solph.Bus(label='bel_sink')
    solph.Sink(
        label='sink_el',
        inputs={bel_sink: solph.Flow(variable_costs=data['price_el_sink'])})

    # dictionary with parameters for a specific CAES plant
    # based on thermal modelling and linearization techniques
    concept = {
        'cav_e_in_b': 0,
        'cav_e_in_m': 0.6457267578,
        'cav_e_out_b': 0,
        'cav_e_out_m': 0.3739636077,
        'cav_eta_temp': 1.0,
        'cav_level_max': 211.11,
        'cmp_p_max_b': 86.0918959849,
        'cmp_p_max_m': 0.0679999932,
        'cmp_p_min': 1,
        'cmp_q_out_b': -19.3996965679,
        'cmp_q_out_m': 1.1066036114,
        'cmp_q_tes_share': 0,
        'exp_p_max_b': 46.1294016678,
        'exp_p_max_m': 0.2528340303,
        'exp_p_min': 1,
        'exp_q_in_b': -2.2073411014,
        'exp_q_in_m': 1.129249765,
        'exp_q_tes_share': 0,
        'tes_eta_temp': 1.0,
        'tes_level_max': 0.0
    }

    # generic compressed air energy storage (caes) plant
    solph.custom.GenericCAES(label='caes',
                             electrical_input={bel_source: solph.Flow()},
                             fuel_input={bgas: solph.Flow()},
                             electrical_output={bel_sink: solph.Flow()},
                             params=concept,
                             fixed_costs=0)

    # create an optimization problem and solve it
    om = solph.Model(es)

    # solve model
    om.solve(solver='cbc')

    # create result object
    results = processing.results(om)

    data = views.node(results, 'caes',
                      keep_none_type=True)['sequences'].sum(axis=0).to_dict()

    test_dict = {
        (('caes', None), 'cav_level'): 25658.82964382,
        (('caes', None), 'exp_p'): 5020.801997000007,
        (('caes', None), 'exp_q_fuel_in'): 5170.880360999999,
        (('caes', None), 'tes_e_out'): 0.0,
        (('caes', None), 'exp_st'): 226.0,
        (('bgas', 'caes'), 'flow'): 5170.880360999999,
        (('caes', None), 'cav_e_out'): 1877.5972265299995,
        (('caes', None), 'exp_p_max'): 17512.352336,
        (('caes', None), 'cmp_q_waste'): 2499.9125993000007,
        (('caes', None), 'cmp_p'): 2907.7271520000004,
        (('caes', None), 'exp_q_add_in'): 0.0,
        (('caes', None), 'cmp_st'): 37.0,
        (('caes', None), 'cmp_q_out_sum'): 2499.9125993000007,
        (('caes', None), 'tes_level'): 0.0,
        (('caes', None), 'tes_e_in'): 0.0,
        (('caes', None), 'exp_q_in_sum'): 5170.880360999999,
        (('caes', None), 'cmp_p_max'): 22320.76334300001,
        (('caes', 'bel_sink'), 'flow'): 5020.801997000007,
        (('bel_source', 'caes'), 'flow'): 2907.7271520000004,
        (('caes', None), 'cav_e_in'): 1877.597226
    }

    for key in test_dict.keys():
        eq_(int(round(data[key])), int(round(test_dict[key])))
Exemple #24
0
def test_dispatch_one_time_step(solver='cbc', periods=1):
    """Create an energy system and optimize the dispatch at least costs."""

    # ######################### create energysystem components ################
    Node.registry = None

    # resource buses
    bgas = Bus(label='gas', balanced=False)

    # electricity and heat
    bel = Bus(label='b_el')
    bth = Bus(label='b_th')

    # an excess and a shortage variable can help to avoid infeasible problems
    excess_el = Sink(label='excess_el', inputs={bel: Flow()})

    # sources
    wind = Source(
        label='wind',
        outputs={bel: Flow(actual_value=0.5, nominal_value=66.3, fixed=True)})

    # demands (electricity/heat)
    demand_el = Sink(
        label='demand_elec',
        inputs={bel: Flow(nominal_value=85, actual_value=0.3, fixed=True)})

    demand_th = Sink(
        label='demand_therm',
        inputs={bth: Flow(nominal_value=40, actual_value=0.2, fixed=True)})

    # combined heat and power plant (chp)
    pp_chp = Transformer(label='pp_chp',
                         inputs={bgas: Flow()},
                         outputs={
                             bel: Flow(nominal_value=30, variable_costs=42),
                             bth: Flow(nominal_value=40)
                         },
                         conversion_factors={
                             bel: 0.3,
                             bth: 0.4
                         })

    # heatpump with a coefficient of performance (COP) of 3
    b_heat_source = Bus(label='b_heat_source')

    heat_source = Source(label='heat_source', outputs={b_heat_source: Flow()})

    cop = 3
    heat_pump = Transformer(label='heat_pump',
                            inputs={
                                bel: Flow(),
                                b_heat_source: Flow()
                            },
                            outputs={bth: Flow(nominal_value=10)},
                            conversion_factors={
                                bel: 1 / 3,
                                b_heat_source: (cop - 1) / cop
                            })

    energysystem = EnergySystem(timeindex=[1])
    energysystem.add(bgas, bel, bth, excess_el, wind, demand_el, demand_th,
                     pp_chp, b_heat_source, heat_source, heat_pump)

    # ################################ optimization ###########################

    # create optimization model based on energy_system
    optimization_model = Model(energysystem=energysystem, timeincrement=1)

    # solve problem
    optimization_model.solve(solver=solver)

    # write back results from optimization object to energysystem
    optimization_model.results()

    # ################################ results ################################
    data = views.node(processing.results(om=optimization_model), 'b_el')

    # generate results to be evaluated in tests
    results = data['sequences'].sum(axis=0).to_dict()

    test_results = {
        (('wind', 'b_el'), 'flow'): 33,
        (('b_el', 'demand_elec'), 'flow'): 26,
        (('b_el', 'excess_el'), 'flow'): 5,
        (('b_el', 'heat_pump'), 'flow'): 3,
    }

    for key in test_results.keys():
        eq_(int(round(results[key])), int(round(test_results[key])))
Exemple #25
0
 def test_multiindex_sequences(self):
     results = processing.results(self.om)
     bel1 = views.node(results, 'b_el1', multiindex=True)
     eq_(int(bel1['sequences'][('diesel', 'b_el1', 'flow')].sum()), 2875)
Exemple #26
0
def test_connect_invest():
    date_time_index = pd.date_range('1/1/2012', periods=24 * 7, freq='H')

    energysystem = solph.EnergySystem(timeindex=date_time_index)
    Node.registry = energysystem

    # Read data file
    full_filename = os.path.join(os.path.dirname(__file__),
                                 'connect_invest.csv')
    data = pd.read_csv(full_filename, sep=",")

    logging.info('Create oemof objects')

    # create electricity bus
    bel1 = solph.Bus(label="electricity1")
    bel2 = solph.Bus(label="electricity2")

    # create excess component for the electricity bus to allow overproduction
    solph.Sink(label='excess_bel', inputs={bel2: solph.Flow()})
    solph.Source(label='shortage',
                 outputs={bel2: solph.Flow(variable_costs=50000)})

    # create fixed source object representing wind power plants
    solph.Source(label='wind',
                 outputs={
                     bel1:
                     solph.Flow(actual_value=data['wind'],
                                nominal_value=1000000,
                                fixed=True)
                 })

    # create simple sink object representing the electrical demand
    solph.Sink(label='demand',
               inputs={
                   bel1:
                   solph.Flow(actual_value=data['demand_el'],
                              fixed=True,
                              nominal_value=1)
               })

    storage = solph.components.GenericStorage(
        label='storage',
        inputs={bel1: solph.Flow(variable_costs=10e10)},
        outputs={bel1: solph.Flow(variable_costs=10e10)},
        capacity_loss=0.00,
        initial_capacity=0,
        nominal_input_capacity_ratio=1 / 6,
        nominal_output_capacity_ratio=1 / 6,
        inflow_conversion_factor=1,
        outflow_conversion_factor=0.8,
        investment=solph.Investment(ep_costs=0.2),
    )

    line12 = solph.Transformer(
        label="line12",
        inputs={bel1: solph.Flow()},
        outputs={bel2: solph.Flow(investment=solph.Investment(ep_costs=20))})

    line21 = solph.Transformer(
        label="line21",
        inputs={bel2: solph.Flow()},
        outputs={bel1: solph.Flow(investment=solph.Investment(ep_costs=20))})

    om = solph.Model(energysystem)

    solph.constraints.equate_variables(om, om.InvestmentFlow.invest[line12,
                                                                    bel2],
                                       om.InvestmentFlow.invest[line21,
                                                                bel1], 2)
    solph.constraints.equate_variables(
        om, om.InvestmentFlow.invest[line12, bel2],
        om.GenericInvestmentStorageBlock.invest[storage])

    # if tee_switch is true solver messages will be displayed
    logging.info('Solve the optimization problem')
    om.solve(solver='cbc')

    # check if the new result object is working for custom components
    results = processing.results(om)

    my_results = dict()
    my_results['line12'] = float(views.node(results, 'line12')['scalars'])
    my_results['line21'] = float(views.node(results, 'line21')['scalars'])
    stor_res = views.node(results, 'storage')['scalars']
    my_results['storage_in'] = stor_res.iloc[0]  # ('electricity1', 'storage')
    my_results['storage'] = stor_res.iloc[1]  # ('storage', 'None')
    my_results['storage_out'] = stor_res.iloc[2]  # ('storage', 'electricity1')

    connect_invest_dict = {
        'line12': 814705,
        'line21': 1629410,
        'storage': 814705,
        'storage_in': 135784,
        'storage_out': 135784
    }

    for key in connect_invest_dict.keys():
        eq_(int(round(my_results[key])), int(round(connect_invest_dict[key])))
Exemple #27
0
 def test_duals(self):
     results = processing.results(self.om)
     bel = views.node(results, 'b_el1', multiindex=True)
     eq_(int(bel['sequences']['b_el1', 'None', 'duals'].sum()), 48)
def run_model(params, wind_invest=False, pv_invest=False, storage_invest=False):
    logging.info('Initialize the energy system')
    energysystem = solph.EnergySystem(timeindex=date_time_index)
    Node.registry = energysystem
    logging.info('Create oemof objects')
    bgas = solph.Bus(label="natural_gas")
    bel = solph.Bus(label="electricity")

    solph.Sink(label='excess_bel', inputs={bel: solph.Flow()})

    solph.Source(label='rgas', outputs={bgas: solph.Flow(nominal_value=params['rgas_nom_val'],
                                                         summed_max=1)})

    if wind_invest == True:
        solph.Source(label='wind', outputs={bel: solph.Flow(
            actual_value=data['wind'], fixed=True,
            investment=solph.Investment(ep_costs=params['epc_wind']))})
    else:
        solph.Source(label='wind', outputs={bel: solph.Flow(
            actual_value=data['wind'], nominal_value=params['wind_nom_val'], fixed=True)})

    if pv_invest == True:
        pv = solph.Source(label='pv', outputs={bel: solph.Flow(
            actual_value=data['pv'], fixed=True,
            investment=solph.Investment(ep_costs=params['epc_pv']))})
    else:
        solph.Source(label='pv', outputs={bel: solph.Flow(
           actual_value=data['pv'], nominal_value=params['pv_nom_val'], fixed=True)})

    solph.Sink(label='demand', inputs={bel: solph.Flow(
        actual_value=data['demand_el'], fixed=True, nominal_value=1)})

    solph.Transformer(
        label="pp_gas",
        inputs={bgas: solph.Flow()},
        outputs={bel: solph.Flow(nominal_value=10e10, variable_costs=50)},
        conversion_factors={bel: 0.58})


    storage = solph.components.GenericStorage(
        label='storage',
        inputs={bel: solph.Flow(variable_costs=10e10)},
        outputs={bel: solph.Flow(variable_costs=10e10)},
        capacity_loss=0.00, initial_capacity=0,
        nominal_input_capacity_ratio=1/6,
        nominal_output_capacity_ratio=1/6,
        inflow_conversion_factor=1, outflow_conversion_factor=0.8,
        investment=solph.Investment(ep_costs=params['epc_storage']),
    )

    logging.info('Optimise the energy system')

    om = solph.Model(energysystem)
    test_var = 2
    print(test_var)

    logging.info('Solve the optimization problem')
    om.solve(solver='cbc')

    string_results = processing.convert_keys_to_strings(processing.results(om))
    electricity_results = views.node(string_results, 'electricity')
    param_dict = processing.convert_keys_to_strings(processing.parameter_as_dict(energysystem))
    param_dict_scalars = {key: value['scalars'] for (key,value) in param_dict.items()}

    print(string_results.keys())
    print(string_results[('wind','electricity')]['scalars']['invest'])
    print(string_results[('pv','electricity')]['scalars']['invest'])
Exemple #29
0
p_max = 3000
eta = 0.95
storage = solph.components.GenericStorage(
    nominal_storage_capacity=4000,
    initial_storage_level=0.5,
    inflow_conversion_factor=eta,
    outflow_conversion_factor=eta,
    label='storage',
    inputs={b1: solph.Flow(nominal_value=p_max)},
    outputs={b1: solph.Flow(nominal_value=p_max)})

es.add(storage)

# solving

om = solph.Model(es)
logging.info('Build model')
om.solve(solver='cbc')
logging.info('Solved model')

# debug equations should be used with 3 timesteps to have a readable file
# om.write('./equations.lp', io_options={'symbolic_solver_labels': True})

es.results['main'] = processing.results(om)
es.results['meta'] = processing.meta_results(om)

es.dump('results', 'my_dump.oemof')

plot_oemof_results(Path.cwd() / 'results', 'my_dump.oemof')
plt.show()
Exemple #30
0
# Adding all the components to the energy system

es.add(excess_el, demand_el, el_storage, th_storage, pv, shortage_el, elbus,
       thbus)

# Create the model for optimization and run the optimization

opt_model = Model(es)
opt_model.solve(solver='cbc')

logging.info('Optimization successful')

# Collect and plot the results

results = processing.results(opt_model)

results_el = views.node(results, 'electricity')
meta_results = processing.meta_results(opt_model)
pp.pprint(meta_results)

el_sequences = results_el['sequences']

to_el = {
    key[0][0]: key
    for key in el_sequences.keys()
    if key[0][1] == 'electricity' and key[1] == 'flow'
}
to_el = [to_el.pop('pv')] + list(to_el.values())
el_prod = el_sequences[to_el]