from oemof import outputlib
from oemof.solph import EnergySystem, Model, Bus, Sink, Source, Transformer, Flow


periods = 20

timeindex = pd.date_range(start='2020-01-01', periods=periods, freq='H')

x = np.arange(0, periods, 1)
demand_ts = 0.5 * np.cos(x) + 1
print(demand_ts)

es = EnergySystem(timeindex=timeindex)

el_bus = Bus(label='el_bus')

demand = Sink(
    label='el_demand',
    inputs={
        el_bus: Flow(
            nominal_value=10,
            actual_value=demand_ts,
            fixed=True
        )
    }
)

pp1 = Source(
    label='powerplant_1',
    outputs={
Exemple #2
0
import os
import pandas as pd
from oemof.solph import (Bus, Sink, Source, Flow, Transformer, Model,
                         EnergySystem)

filename = os.path.join(os.path.dirname(__file__), 'input_data.csv')
data = pd.read_csv(filename, sep=",")

bcoal = Bus(label='coal', balanced=False)
bgas = Bus(label='gas', balanced=False)
boil = Bus(label='oil', balanced=False)
blig = Bus(label='lignite', balanced=False)

# electricity and heat
bel = Bus(label='b_el')
bth = Bus(label='b_th')

# an excess and a shortage variable can help to avoid infeasible problems
excess_el = Sink(label='excess_el', inputs={bel: Flow()})
# shortage_el = Source(label='shortage_el',
#                      outputs={bel: Flow(variable_costs=200)})

# sources
wind = Source(label='wind',
              outputs={
                  bel:
                  Flow(actual_value=data['wind'],
                       nominal_value=66.3,
                       fixed=True)
              })
Exemple #3
0
import matplotlib.pyplot as plt

solver = "cbc"

# Create an energy system and optimize the dispatch at least costs.
# ####################### initialize and provide data #####################

datetimeindex = pd.date_range("1/1/2016", periods=24 * 10, freq="H")
energysystem = EnergySystem(timeindex=datetimeindex)
filename = os.path.join(os.getcwd(), "input_data.csv")
data = pd.read_csv(filename, sep=",")

# ######################### create energysystem components ################

# resource buses
bcoal = Bus(label="coal", balanced=False)
bgas = Bus(label="gas", balanced=False)
boil = Bus(label="oil", balanced=False)
blig = Bus(label="lignite", balanced=False)

# electricity and heat
bel = Bus(label="bel")
bth = Bus(label="bth")

energysystem.add(bcoal, bgas, boil, blig, bel, bth)

# an excess and a shortage variable can help to avoid infeasible problems
energysystem.add(Sink(label="excess_el", inputs={bel: Flow()}))
# shortage_el = Source(label='shortage_el',
#                      outputs={bel: Flow(variable_costs=200)})
Exemple #4
0
def test_dispatch_fix_example(solver='cbc', periods=10):
    """Invest in a flow with a `fix` sequence containing values > 1."""
    Node.registry = None

    filename = os.path.join(os.path.dirname(__file__), 'input_data.csv')
    data = pd.read_csv(filename, sep=",")

    # ######################### create energysystem components ################

    # electricity and heat
    bel = Bus(label='b_el')

    # an excess and a shortage variable can help to avoid infeasible problems
    excess_el = Sink(label='excess_el', inputs={bel: Flow()})

    # shortage_el = Source(label='shortage_el',
    #                      outputs={bel: Flow(variable_costs=200)})

    # sources
    ep_pv = economics.annuity(capex=1500, n=20, wacc=0.05)

    pv = Source(label='pv',
                outputs={
                    bel:
                    Flow(fix=data['pv'], investment=Investment(ep_costs=ep_pv))
                })

    # demands (electricity/heat)
    demand_el = Sink(
        label='demand_elec',
        inputs={bel: Flow(nominal_value=85, fix=data['demand_el'])})

    datetimeindex = pd.date_range('1/1/2012', periods=periods, freq='H')

    energysystem = EnergySystem(timeindex=datetimeindex)

    energysystem.add(bel, excess_el, pv, demand_el)

    # ################################ optimization ###########################

    # create optimization model based on energy_system
    optimization_model = Model(energysystem=energysystem)

    # solve problem
    optimization_model.solve(solver=solver)

    # ################################ results ################################

    # generic result object
    results = processing.results(om=optimization_model)

    # subset of results that includes all flows into and from electrical bus
    # sequences are stored within a pandas.DataFrames and scalars e.g.
    # investment values within a pandas.Series object.
    # in this case the entry data['scalars'] does not exist since no investment
    # variables are used
    data = views.node(results, 'b_el')

    # generate results to be evaluated in tests
    comp_results = data['sequences'].sum(axis=0).to_dict()
    comp_results['pv_capacity'] = results[(pv, bel)]['scalars'].invest

    assert comp_results[(('pv', 'b_el'), 'flow')] > 0
Exemple #5
0
def test_add_constraints_example(solver='cbc', nologg=False):
    if not nologg:
        logging.basicConfig(level=logging.INFO)
    # ##### creating an oemof solph optimization model, nothing special here ##
    # create an energy system object for the oemof solph nodes
    es = EnergySystem(timeindex=pd.date_range('1/1/2012', periods=4, freq='H'))
    Node.registry = es
    # add some nodes
    boil = Bus(label="oil", balanced=False)
    blig = Bus(label="lignite", balanced=False)
    b_el = Bus(label="b_el")

    Sink(label="Sink",
         inputs={
             b_el:
             Flow(nominal_value=40,
                  actual_value=[0.5, 0.4, 0.3, 1],
                  fixed=True)
         })
    pp_oil = Transformer(
        label='pp_oil',
        inputs={boil: Flow()},
        outputs={b_el: Flow(nominal_value=50, variable_costs=25)},
        conversion_factors={b_el: 0.39})
    Transformer(label='pp_lig',
                inputs={blig: Flow()},
                outputs={b_el: Flow(nominal_value=50, variable_costs=10)},
                conversion_factors={b_el: 0.41})

    # create the model
    om = Model(energysystem=es)

    # add specific emission values to flow objects if source is a commodity bus
    for s, t in om.flows.keys():
        if s is boil:
            om.flows[s, t].emission_factor = 0.27  # t/MWh
        if s is blig:
            om.flows[s, t].emission_factor = 0.39  # t/MWh
    emission_limit = 60e3

    # add the outflow share
    om.flows[(boil, pp_oil)].outflow_share = [1, 0.5, 0, 0.3]

    # Now we are going to add a 'sub-model' and add a user specific constraint
    # first we add ad pyomo Block() instance that we can use to add our
    # constraints. Then, we add this Block to our previous defined
    # Model instance and add the constraints.
    myblock = po.Block()

    # create a pyomo set with the flows (i.e. list of tuples),
    # there will of course be only one flow inside this set, the one we used to
    # add outflow_share
    myblock.MYFLOWS = po.Set(initialize=[
        k for (k, v) in om.flows.items() if hasattr(v, 'outflow_share')
    ])

    # pyomo does not need a po.Set, we can use a simple list as well
    myblock.COMMODITYFLOWS = [
        k for (k, v) in om.flows.items() if hasattr(v, 'emission_factor')
    ]

    # add the sub-model to the oemof Model instance
    om.add_component('MyBlock', myblock)

    def _inflow_share_rule(m, s, e, t):
        """pyomo rule definition: Here we can use all objects from the block or
        the om object, in this case we don't need anything from the block
        except the newly defined set MYFLOWS.
        """
        expr = (om.flow[s, e, t] >= om.flows[s, e].outflow_share[t] *
                sum(om.flow[i, o, t] for (i, o) in om.FLOWS if o == e))
        return expr

    myblock.inflow_share = po.Constraint(myblock.MYFLOWS,
                                         om.TIMESTEPS,
                                         rule=_inflow_share_rule)
    # add emission constraint
    myblock.emission_constr = po.Constraint(
        expr=(sum(om.flow[i, o, t] for (i, o) in myblock.COMMODITYFLOWS
                  for t in om.TIMESTEPS) <= emission_limit))

    # solve and write results to dictionary
    # you may print the model with om.pprint()
    ok_(om.solve(solver=solver))
    logging.info("Successfully finished.")
Exemple #6
0
        'var': 30
    },
    'pp_bio': {
        'epc': economics.annuity(capex=1000, n=10, wacc=0.05),
        'var': 50
    },
    'storage': {
        'epc': economics.annuity(capex=1500, n=10, wacc=0.05),
        'var': 0
    }
}
#################################################################
# Create oemof object
#################################################################

bel = Bus(label='micro_grid')

Sink(label='excess', inputs={bel: Flow(variable_costs=10e3)})

Source(label='pp_wind',
       outputs={
           bel:
           Flow(nominal_value=None,
                fixed=True,
                actual_value=timeseries['wind'],
                investment=Investment(ep_costs=costs['pp_wind']['epc']))
       })

Source(label='pp_pv',
       outputs={
           bel:
    # add edge labels for all edges
    if edge_labels is True and plt:
        labels = nx.get_edge_attributes(grph, 'weight')
        nx.draw_networkx_edge_labels(grph, pos=pos, edge_labels=labels)

    # show output
    if plot is True:
        plt.show()


datetimeindex = pd.date_range('1/1/2017', periods=2, freq='H')

es = EnergySystem(timeindex=datetimeindex)

b_0 = Bus(label='b_0')

b_1 = Bus(label='b_1')

es.add(b_0, b_1)

es.add(custom.Link(label="line_0",
                   inputs={
                       b_0: Flow(), b_1: Flow()},
                   outputs={
                       b_1: Flow(investment=Investment()),
                       b_0: Flow(investment=Investment())},
                   conversion_factors={
                       (b_0, b_1): 0.95, (b_1, b_0): 0.9}))

Exemple #8
0
                                  screen_level=logging.INFO,
                                  file_level=logging.DEBUG)

# Creating the energy system

date_time_index = pd.date_range('1/1/2018', periods=24 * 365, freq='H')

es = EnergySystem(timeindex=date_time_index)

filename = 'data_timeseries.csv'
data = pd.read_csv(filename, sep=",")
logging.info('Energy system created and initialized')

# Creating the necessary buses

elbus = Bus(label='electricity')

logging.info('Necessary buses for the system created')

# Now creating the necessary components for the system

epc_pv = economics.annuity(capex=1000, n=20, wacc=0.05)
epc_storage = economics.annuity(capex=100, n=5, wacc=0.05)

pv = Source(label='pv',
            outputs={
                elbus:
                Flow(actual_value=data['pv'],
                     nominal_value=None,
                     fixed=True,
                     investment=Investment(ep_costs=epc_pv, maximum=30))

print_parameters()

# Set up an energy system model
solver = 'cbc'
periods = 100
datetimeindex = pd.date_range('1/1/2019', periods=periods, freq='H')
demand_timeseries = np.zeros(periods)
demand_timeseries[-5:] = 1
heat_feedin_timeseries = np.zeros(periods)
heat_feedin_timeseries[:10] = 1

energysystem = EnergySystem(timeindex=datetimeindex)

bus_heat = Bus(label='bus_heat')

heat_source = Source(label='heat_source',
                     outputs={
                         bus_heat:
                         Flow(nominal_value=1,
                              actual_value=heat_feedin_timeseries,
                              fixed=True)
                     })

shortage = Source(label='shortage',
                  outputs={bus_heat: Flow(variable_costs=1e6)})

excess = Sink(label='excess', inputs={bus_heat: Flow()})

heat_demand = Sink(label='heat_demand',
def test_dispatch_example(solver='cbc', periods=24 * 5):
    """Create an energy system and optimize the dispatch at least costs."""

    filename = os.path.join(os.path.dirname(__file__), 'input_data.csv')
    data = pd.read_csv(filename, sep=",")

    # ######################### create energysystem components ################

    # resource buses
    bcoal = Bus(label='coal', balanced=False)
    bgas = Bus(label='gas', balanced=False)
    boil = Bus(label='oil', balanced=False)
    blig = Bus(label='lignite', balanced=False)

    # electricity and heat
    bel = Bus(label='b_el')
    bth = Bus(label='b_th')

    # an excess and a shortage variable can help to avoid infeasible problems
    excess_el = Sink(label='excess_el', inputs={bel: Flow()})
    # shortage_el = Source(label='shortage_el',
    #                      outputs={bel: Flow(variable_costs=200)})

    # sources
    wind = Source(label='wind',
                  outputs={
                      bel:
                      Flow(actual_value=data['wind'],
                           nominal_value=66.3,
                           fixed=True)
                  })

    pv = Source(label='pv',
                outputs={
                    bel:
                    Flow(actual_value=data['pv'],
                         nominal_value=65.3,
                         fixed=True)
                })

    # demands (electricity/heat)
    demand_el = Sink(label='demand_elec',
                     inputs={
                         bel:
                         Flow(nominal_value=85,
                              actual_value=data['demand_el'],
                              fixed=True)
                     })

    demand_th = Sink(label='demand_therm',
                     inputs={
                         bth:
                         Flow(nominal_value=40,
                              actual_value=data['demand_th'],
                              fixed=True)
                     })

    # power plants
    pp_coal = Transformer(
        label='pp_coal',
        inputs={bcoal: Flow()},
        outputs={bel: Flow(nominal_value=20.2, variable_costs=25)},
        conversion_factors={bel: 0.39})

    pp_lig = Transformer(
        label='pp_lig',
        inputs={blig: Flow()},
        outputs={bel: Flow(nominal_value=11.8, variable_costs=19)},
        conversion_factors={bel: 0.41})

    pp_gas = Transformer(
        label='pp_gas',
        inputs={bgas: Flow()},
        outputs={bel: Flow(nominal_value=41, variable_costs=40)},
        conversion_factors={bel: 0.50})

    pp_oil = Transformer(
        label='pp_oil',
        inputs={boil: Flow()},
        outputs={bel: Flow(nominal_value=5, variable_costs=50)},
        conversion_factors={bel: 0.28})

    # combined heat and power plant (chp)
    pp_chp = Transformer(label='pp_chp',
                         inputs={bgas: Flow()},
                         outputs={
                             bel: Flow(nominal_value=30, variable_costs=42),
                             bth: Flow(nominal_value=40)
                         },
                         conversion_factors={
                             bel: 0.3,
                             bth: 0.4
                         })

    # heatpump with a coefficient of performance (COP) of 3
    b_heat_source = Bus(label='b_heat_source')

    heat_source = Source(label='heat_source', outputs={b_heat_source: Flow()})

    cop = 3
    heat_pump = Transformer(label='heat_pump',
                            inputs={
                                bel: Flow(),
                                b_heat_source: Flow()
                            },
                            outputs={bth: Flow(nominal_value=10)},
                            conversion_factors={
                                bel: 1 / 3,
                                b_heat_source: (cop - 1) / cop
                            })

    datetimeindex = pd.date_range('1/1/2012', periods=periods, freq='H')
    energysystem = EnergySystem(timeindex=datetimeindex)
    energysystem.add(bcoal, bgas, boil, bel, bth, blig, excess_el, wind, pv,
                     demand_el, demand_th, pp_coal, pp_lig, pp_oil, pp_gas,
                     pp_chp, b_heat_source, heat_source, heat_pump)

    # ################################ optimization ###########################

    # create optimization model based on energy_system
    optimization_model = Model(energysystem=energysystem)

    # solve problem
    optimization_model.solve(solver=solver)

    # write back results from optimization object to energysystem
    optimization_model.results()

    # ################################ results ################################

    # generic result object
    results = processing.results(om=optimization_model)

    # subset of results that includes all flows into and from electrical bus
    # sequences are stored within a pandas.DataFrames and scalars e.g.
    # investment values within a pandas.Series object.
    # in this case the entry data['scalars'] does not exist since no investment
    # variables are used
    data = views.node(results, 'b_el')

    # generate results to be evaluated in tests
    results = data['sequences'].sum(axis=0).to_dict()

    test_results = {
        (('wind', 'b_el'), 'flow'): 1773,
        (('pv', 'b_el'), 'flow'): 605,
        (('b_el', 'demand_elec'), 'flow'): 7440,
        (('b_el', 'excess_el'), 'flow'): 139,
        (('pp_chp', 'b_el'), 'flow'): 666,
        (('pp_lig', 'b_el'), 'flow'): 1210,
        (('pp_gas', 'b_el'), 'flow'): 1519,
        (('pp_coal', 'b_el'), 'flow'): 1925,
        (('pp_oil', 'b_el'), 'flow'): 0,
        (('b_el', 'heat_pump'), 'flow'): 118,
    }

    for key in test_results.keys():
        eq_(int(round(results[key])), int(round(test_results[key])))
Exemple #11
0
def test_gen_caes():
    # read sequence data
    full_filename = os.path.join(os.path.dirname(__file__), 'generic_caes.csv')
    data = pd.read_csv(full_filename)

    # select periods
    periods = len(data)-1

    # create an energy system
    idx = pd.date_range('1/1/2017', periods=periods, freq='H')
    es = EnergySystem(timeindex=idx)
    Node.registry = es

    # resources
    bgas = Bus(label='bgas')

    Source(label='rgas', outputs={
        bgas: Flow(variable_costs=20)})

    # power
    bel_source = Bus(label='bel_source')
    Source(label='source_el', outputs={
        bel_source: Flow(variable_costs=data['price_el_source'])})

    bel_sink = Bus(label='bel_sink')
    Sink(label='sink_el', inputs={
        bel_sink: Flow(variable_costs=data['price_el_sink'])})

    # dictionary with parameters for a specific CAES plant
    # based on thermal modelling and linearization techniques
    concept = {
        'cav_e_in_b': 0,
        'cav_e_in_m': 0.6457267578,
        'cav_e_out_b': 0,
        'cav_e_out_m': 0.3739636077,
        'cav_eta_temp': 1.0,
        'cav_level_max': 211.11,
        'cmp_p_max_b': 86.0918959849,
        'cmp_p_max_m': 0.0679999932,
        'cmp_p_min': 1,
        'cmp_q_out_b': -19.3996965679,
        'cmp_q_out_m': 1.1066036114,
        'cmp_q_tes_share': 0,
        'exp_p_max_b': 46.1294016678,
        'exp_p_max_m': 0.2528340303,
        'exp_p_min': 1,
        'exp_q_in_b': -2.2073411014,
        'exp_q_in_m': 1.129249765,
        'exp_q_tes_share': 0,
        'tes_eta_temp': 1.0,
        'tes_level_max': 0.0
    }

    # generic compressed air energy storage (caes) plant
    custom.GenericCAES(
        label='caes',
        electrical_input={bel_source: Flow()},
        fuel_input={bgas: Flow()},
        electrical_output={bel_sink: Flow()},
        params=concept, fixed_costs=0)

    # create an optimization problem and solve it
    om = Model(es)

    # solve model
    om.solve(solver='cbc')

    # create result object
    results = processing.results(om)

    data = views.node(
        results, 'caes', keep_none_type=True
    )['sequences'].sum(axis=0).to_dict()

    test_dict = {
        (('caes', None), 'cav_level'): 25658.82964382,
        (('caes', None), 'exp_p'): 5020.801997000007,
        (('caes', None), 'exp_q_fuel_in'): 5170.880360999999,
        (('caes', None), 'tes_e_out'): 0.0,
        (('caes', None), 'exp_st'): 226.0,
        (('bgas', 'caes'), 'flow'): 5170.880360999999,
        (('caes', None), 'cav_e_out'): 1877.5972265299995,
        (('caes', None), 'exp_p_max'): 17512.352336,
        (('caes', None), 'cmp_q_waste'): 2499.9125993000007,
        (('caes', None), 'cmp_p'): 2907.7271520000004,
        (('caes', None), 'exp_q_add_in'): 0.0,
        (('caes', None), 'cmp_st'): 37.0,
        (('caes', None), 'cmp_q_out_sum'): 2499.9125993000007,
        (('caes', None), 'tes_level'): 0.0,
        (('caes', None), 'tes_e_in'): 0.0,
        (('caes', None), 'exp_q_in_sum'): 5170.880360999999,
        (('caes', None), 'cmp_p_max'): 22320.76334300001,
        (('caes', 'bel_sink'), 'flow'): 5020.801997000007,
        (('bel_source', 'caes'), 'flow'): 2907.7271520000004,
        (('caes', None), 'cav_e_in'): 1877.597226}

    for key in test_dict.keys():
        eq_(int(round(data[key])), int(round(test_dict[key])))
import oemof.outputlib as outputlib
import oemof.solph as solph
import numpy as np
import matplotlib.pyplot as plt

solver = 'cbc'

# set timeindex and create data
periods = 20
datetimeindex = pd.date_range('1/1/2019', periods=periods, freq='H')
step = 5
demand = np.arange(0, step * periods, step)

# set up EnergySystem
energysystem = EnergySystem(timeindex=datetimeindex)
b_gas = Bus(label='gas', balanced=False)
b_el = Bus(label='electricity')
energysystem.add(b_gas, b_el)
energysystem.add(
    Sink(label='demand',
         inputs={b_el: Flow(nominal_value=1, actual_value=demand,
                            fixed=True)}))

conv_func = lambda x: 0.01 * x**2
in_breakpoints = np.arange(0, 110, 25)

pwltf = solph.custom.PiecewiseLinearTransformer(
    label='pwltf',
    inputs={b_gas: solph.Flow(nominal_value=100, variable_costs=1)},
    outputs={b_el: solph.Flow()},
    in_breakpoints=in_breakpoints,
Exemple #13
0
def create_optimization_model(mode,
                              feedin,
                              initial_batt_cap,
                              cost,
                              cap_pv,
                              cap_batt,
                              iterstatus=None,
                              PV_source=True,
                              storage_source=True,
                              logger=False):

    if logger == 1:
        logger.define_logging()

    ##################################### Initialize the energy system##################################################

    # times = pd.DatetimeIndex(start='04/01/2017', periods=10, freq='H')
    times = feedin.index

    energysystem = EnergySystem(timeindex=times)

    # switch on automatic registration of entities of EnergySystem-object=energysystem

    Node.registry = energysystem

    # add components

    b_el = Bus(label='electricity')
    b_dc = Bus(label='electricity_dc')
    b_oil = Bus(label='diesel_source')

    demand_feedin = feedin['demand_el']

    Sink(label='demand',
         inputs={
             b_el: Flow(actual_value=demand_feedin,
                        nominal_value=1,
                        fixed=True)
         })

    Sink(label='excess', inputs={b_el: Flow()})

    Source(label='diesel', outputs={b_oil: Flow()})

    generator1 = custom.DieselGenerator(
        label='pp_oil_1',
        fuel_input={b_oil: Flow(variable_costs=cost['pp_oil_1']['var'])},
        electrical_output={
            b_el:
            Flow(nominal_value=186,
                 min=0.3,
                 max=1,
                 nonconvex=NonConvex(om_costs=cost['pp_oil_1']['o&m']),
                 fixed_costs=cost['pp_oil_1']['fix'])
        },
        fuel_curve={
            '1': 42,
            '0.75': 33,
            '0.5': 22,
            '0.25': 16
        })

    generator2 = custom.DieselGenerator(
        label='pp_oil_2',
        fuel_input={b_oil: Flow(variable_costs=cost['pp_oil_2']['var'])},
        electrical_output={
            b_el:
            Flow(nominal_value=186,
                 min=0.3,
                 max=1,
                 nonconvex=NonConvex(om_costs=cost['pp_oil_2']['o&m']),
                 fixed_costs=cost['pp_oil_2']['fix'],
                 variable_costs=0)
        },
        fuel_curve={
            '1': 42,
            '0.75': 33,
            '0.5': 22,
            '0.25': 16
        })

    generator3 = custom.DieselGenerator(
        label='pp_oil_3',
        fuel_input={b_oil: Flow(variable_costs=cost['pp_oil_3']['var'])},
        electrical_output={
            b_el:
            Flow(nominal_value=320,
                 min=0.3,
                 max=1,
                 nonconvex=NonConvex(om_costs=cost['pp_oil_3']['o&m']),
                 fixed_costs=cost['pp_oil_3']['fix'],
                 variable_costs=0)
        },
        fuel_curve={
            '1': 73,
            '0.75': 57,
            '0.5': 38,
            '0.25': 27
        })

    # List all generators in a list called gen_set
    gen_set = [generator1, generator2, generator3]

    if PV_source == 1:
        PV = Source(label='PV',
                    outputs={
                        b_dc:
                        Flow(nominal_value=cap_pv,
                             fixed_costs=cost['pv']['fix'] + cost['pv']['epc'],
                             actual_value=feedin['PV'],
                             fixed=True)
                    })
    else:
        PV = None

    if storage_source == 1:
        storage = components.GenericStorage(
            label='storage',
            inputs={b_dc: Flow()},
            outputs={
                b_dc:
                Flow(variable_costs=cost['storage']['var'],
                     fixed_costs=cost['storage']['fix'])
            },
            nominal_capacity=cap_batt,
            fixed_costs=cost['storage']['epc'],
            capacity_loss=0.00,
            initial_capacity=initial_batt_cap,
            nominal_input_capacity_ratio=0.546,
            nominal_output_capacity_ratio=0.546,
            inflow_conversion_factor=0.92,
            outflow_conversion_factor=0.92,
            capacity_min=0.5,
            capacity_max=1,
            initial_iteration=iterstatus)
    else:
        storage = None

    if storage_source == 1 or PV_source == 1:
        inverter1 = add_inverter(b_dc, b_el, 'Inv_pv')

    ################################# optimization ############################
    # create Optimization model based on energy_system
    logging.info("Create optimization problem")

    m = Model(energysystem)

    ################################# constraints ############################

    sr_requirement = 0.2
    sr_limit = demand_feedin * sr_requirement

    rm_requirement = 0.4
    rm_limit = demand_feedin * rm_requirement

    constraints.spinning_reserve_constraint(m,
                                            sr_limit,
                                            groups=gen_set,
                                            storage=storage)

    # constraints.n1_constraint(m, demand_feedin, groups=gen_set)

    constraints.gen_order_constraint(m, groups=gen_set)

    constraints.rotating_mass_constraint(m,
                                         rm_limit,
                                         groups=gen_set,
                                         storage=storage)

    return [m, gen_set]
Exemple #14
0
def create_energysystem_model(mode, feedin, initial_batt_cap, cost, iterstatus=None, PV_source=True,
                              storage_source=True):
    """
       The function stes up the energy system model and resturns the operational model m, which equals the
       MILP formulation
       :param cost:     mode    optimization mode ['simulation','investment' ] as    str
                        feed    timeseries holding pv and demand_el values          pd.DataFrame
                        initial_batt_cap initial SOC of the battery  takes          float values from 0-1
                        cost    cost dict derived from get_cost_dict()              dict
                        iterstatus None (only important for RH)                     boolean
                        PV_source include PV source 'True', exclude 'False'         boolean
                        storage_source include BSS source 'True', exclude 'False'   boolean


       :return: m       operational model   oemof.solph.model
                gen_set list of oemof.solph.custom.EngineGenerator objects integrated in the model
       """

    ##################################### Initialize the energy system##################################################
    # initialize time steps
    # times = pd.DatetimeIndex(start='04/01/2017', periods=10, freq='H')
    times = feedin.index

    # initialize energy system object
    energysystem = EnergySystem( timeindex=times )

    # switch on automatic registration of entities of EnergySystem-object=energysystem

    Node.registry = energysystem

    # add components

    b_el = Bus( label='electricity' )
    b_dc = Bus( label='electricity_dc' )
    b_oil = Bus( label='diesel_source' )

    demand_feedin = feedin['demand_el']


    Sink( label='demand',
          inputs={b_el: Flow( actual_value=demand_feedin,
                              nominal_value=1,
                              fixed=True )} )

    Sink( label='excess',
          inputs={b_el: Flow()} )

    # add source in case of capacity shortages, to still find a feasible solution to the problem
    # Source(label='shortage_el',
    #        outputs={b_el: Flow(variable_costs=1000)})

    Source( label='diesel',
            outputs={b_oil: Flow()} )

    generator1 = custom.EngineGenerator( label='pp_oil_1',
                                         fuel_input={b_oil: Flow( variable_costs=cost['pp_oil_1']['var'] )},
                                         electrical_output={b_el: Flow( nominal_value=186,
                                                                        min=0.3,
                                                                        max=1,
                                                                        nonconvex=NonConvex(
                                                                            om_costs=cost['pp_oil_1']['o&m'] ),
                                                                        fixed_costs=cost['pp_oil_1']['fix']
                                                                        )},
                                         fuel_curve={'1': 42, '0.75': 33, '0.5': 22, '0.25': 16} )

    generator2 = custom.EngineGenerator( label='pp_oil_2',
                                         fuel_input={b_oil: Flow( variable_costs=cost['pp_oil_2']['var'] )},
                                         electrical_output={b_el: Flow( nominal_value=186,
                                                                        min=0.3,
                                                                        max=1,
                                                                        nonconvex=NonConvex(
                                                                            om_costs=cost['pp_oil_2']['o&m'] ),
                                                                        fixed_costs=cost['pp_oil_2']['fix'],
                                                                        variable_costs=0 )},
                                         fuel_curve={'1': 42, '0.75': 33, '0.5': 22, '0.25': 16} )

    generator3 = custom.EngineGenerator( label='pp_oil_3',
                                         fuel_input={b_oil: Flow( variable_costs=cost['pp_oil_3']['var'] )},
                                         electrical_output={b_el: Flow( nominal_value=320,
                                                                        min=0.3,
                                                                        max=1,
                                                                        nonconvex=NonConvex(
                                                                            om_costs=cost['pp_oil_3']['o&m'] ),
                                                                        fixed_costs=cost['pp_oil_3']['fix'],
                                                                        variable_costs=0 )},
                                         fuel_curve={'1': 73, '0.75': 57, '0.5': 38, '0.25': 27} )

    # List all generators in a list called gen_set
    gen_set = [generator1, generator2, generator3]

    sim_params = get_sim_params( cost )

    if mode == 'simulation':
        nominal_cap_pv = sim_params['pv']['nominal_capacity']
        inv_pv = None
        nominal_cap_batt = sim_params['storage']['nominal_capacity']
        inv_batt = None
    elif mode == 'investment':
        nominal_cap_pv = None
        inv_pv = sim_params['pv']['investment']
        nominal_cap_batt = None
        inv_batt = sim_params['storage']['investment']
    else:
        raise (UserWarning, 'Energysystem cant be build. Check if mode is spelled correctely. '
                            'It can be either [simulation] or [investment]')

    if PV_source == 1:
        PV = Source( label='PV',
                     outputs={b_dc: Flow( nominal_value=nominal_cap_pv,
                                          fixed_costs=cost['pv']['fix'],
                                          actual_value=feedin['PV'],
                                          fixed=True,
                                          investment=inv_pv )} )
    else:
        PV = None

    if storage_source == 1:
        storage = components.GenericStorage( label='storage',
                                             inputs={b_dc: Flow()},
                                             outputs={b_dc: Flow( variable_costs=cost['storage']['var'] )},
                                             fixed_costs=cost['storage']['fix'],
                                             nominal_capacity=nominal_cap_batt,
                                             capacity_loss=0.00,
                                             initial_capacity=initial_batt_cap,
                                             nominal_input_capacity_ratio=0.546,
                                             nominal_output_capacity_ratio=0.546,
                                             inflow_conversion_factor=0.92,
                                             outflow_conversion_factor=0.92,
                                             capacity_min=0.5,
                                             capacity_max=1,
                                             investment=inv_batt,
                                             initial_iteration=iterstatus )
    else:
        storage = None

    if storage_source == 1 or PV_source == 1:
        inverter1 = add_inverter( b_dc, b_el, 'Inv_pv' )

    ################################# optimization ############################
    # create Optimization model based on energy_system
    logging.info( "Create optimization problem" )

    m = Model( energysystem )

    ################################# constraints ############################
    # add constraints to the model

    #spinning reserve constraint
    sr_requirement = 0.2
    sr_limit = demand_feedin * sr_requirement

    #rotating mass constraint
    rm_requirement = 0.4
    rm_limit = demand_feedin * rm_requirement

    constraints.spinning_reserve_constraint( m, sr_limit, groups=gen_set, storage=storage )

    #(N-1) is turned of for Lifuka case study
    # constraints.n1_constraint(m, demand_feedin, groups=gen_set)

    #generator order constraint
    constraints.gen_order_constraint( m, groups=gen_set )

    constraints.rotating_mass_constraint( m, rm_limit, groups=gen_set, storage=storage )

    return [m, gen_set]
Exemple #15
0
from oemof.solph import EnergySystem, Model, Bus, Sink, Source, Transformer, Flow


periods = 20

timeindex = pd.date_range(start='2020-01-01', periods=periods, freq='H')

x = np.arange(0, periods, 1)
demand_ts = 0.5 * np.cos(x) + 1

pv_ts = 0.5 * np.sin(x) + 0.5

es = EnergySystem(timeindex=timeindex)

bus_el = Bus(label='electricity_bus')

bus_gas = Bus(label='gas_bus')

source_gas = Source(label='gas_source',
                    outputs={bus_gas: Flow(variable_costs=100)})

gas_pp = Transformer(label='powerplant',
                     inputs={bus_gas: Flow()},
                     outputs={bus_el: Flow(nominal_value=10)})

pv = Source(label='pv',
            outputs={bus_el: Flow(nominal_value=5,
                                  fixed=True,
                                  actual_value=pv_ts)})
Exemple #16
0
def test_connect_invest():
    date_time_index = pd.date_range('1/1/2012', periods=24 * 7, freq='H')

    energysystem = EnergySystem(timeindex=date_time_index)
    network.Node.registry = energysystem

    # Read data file
    full_filename = os.path.join(os.path.dirname(__file__),
                                 'connect_invest.csv')
    data = pd.read_csv(full_filename, sep=",")

    logging.info('Create oemof objects')

    # create electricity bus
    bel1 = Bus(label="electricity1")
    bel2 = Bus(label="electricity2")

    # create excess component for the electricity bus to allow overproduction
    Sink(label='excess_bel', inputs={bel2: Flow()})
    Source(label='shortage', outputs={bel2: Flow(variable_costs=50000)})

    # create fixed source object representing wind power plants
    Source(label='wind',
           outputs={bel1: Flow(fix=data['wind'], nominal_value=1000000)})

    # create simple sink object representing the electrical demand
    Sink(label='demand',
         inputs={bel1: Flow(fix=data['demand_el'], nominal_value=1)})

    storage = components.GenericStorage(
        label='storage',
        inputs={bel1: Flow(variable_costs=10e10)},
        outputs={bel1: Flow(variable_costs=10e10)},
        loss_rate=0.00,
        initial_storage_level=0,
        invest_relation_input_capacity=1 / 6,
        invest_relation_output_capacity=1 / 6,
        inflow_conversion_factor=1,
        outflow_conversion_factor=0.8,
        investment=Investment(ep_costs=0.2),
    )

    line12 = Transformer(
        label="line12",
        inputs={bel1: Flow()},
        outputs={bel2: Flow(investment=Investment(ep_costs=20))})

    line21 = Transformer(
        label="line21",
        inputs={bel2: Flow()},
        outputs={bel1: Flow(investment=Investment(ep_costs=20))})

    om = Model(energysystem)

    constraints.equate_variables(om, om.InvestmentFlow.invest[line12, bel2],
                                 om.InvestmentFlow.invest[line21, bel1], 2)
    constraints.equate_variables(
        om, om.InvestmentFlow.invest[line12, bel2],
        om.GenericInvestmentStorageBlock.invest[storage])

    # if tee_switch is true solver messages will be displayed
    logging.info('Solve the optimization problem')
    om.solve(solver='cbc')

    # check if the new result object is working for custom components
    results = processing.results(om)

    my_results = dict()
    my_results['line12'] = float(views.node(results, 'line12')['scalars'])
    my_results['line21'] = float(views.node(results, 'line21')['scalars'])
    stor_res = views.node(results, 'storage')['scalars']
    my_results['storage_in'] = stor_res[(('electricity1', 'storage'),
                                         'invest')]
    my_results['storage'] = stor_res[(('storage', 'None'), 'invest')]
    my_results['storage_out'] = stor_res[(('storage', 'electricity1'),
                                          'invest')]

    connect_invest_dict = {
        'line12': 814705,
        'line21': 1629410,
        'storage': 814705,
        'storage_in': 135784,
        'storage_out': 135784
    }

    for key in connect_invest_dict.keys():
        eq_(int(round(my_results[key])), int(round(connect_invest_dict[key])))
Exemple #17
0
# Input Data Reading
timeseries = pd.read_excel(datapath, sheet_name="timeseries", index_col=[0], parse_dates=True)
timeseries.index.freq = "1H"
costs = pd.read_excel(datapath, sheet_name="costs", index_col=[0])
capacity = pd.read_excel(datapath, sheet_name="capacity", index_col=[0])

print("Data and results paths have been created. Input data have been read.")

# Energy System Creation
es = EnergySystem(timeindex=timeseries.index)
setattr(es, "typemap", fc.TYPEMAP)

print("The energy system has been created.")

# Bus Creation
elec_bus_NDE = Bus(label="elec_Bus_NDE")
elec_bus_SDE = Bus(label="elec_Bus_SDE")
heat_bus_NDE = Bus(label="heat_Bus_NDE")
heat_bus_SDE = Bus(label="heat_Bus_SDE")
fuel_bus_NDE = Bus(label="fuel_Bus_NDE")
fuel_bus_SDE = Bus(label="fuel_Bus_SDE")

# Bus Addition to the Energy Sytem
es.add(elec_bus_NDE, elec_bus_SDE, heat_bus_NDE, heat_bus_SDE, fuel_bus_NDE, fuel_bus_SDE)

# Bus Linking
es.add(fc.Link(
    label='link',
    carrier='electricity',
    from_bus=elec_bus_NDE,
    to_bus=elec_bus_SDE,
Exemple #18
0
def test_dispatch_one_time_step(solver='cbc'):
    """Create an energy system and optimize the dispatch at least costs."""

    # ######################### create energysystem components ################
    Node.registry = None

    # resource buses
    bgas = Bus(label='gas', balanced=False)

    # electricity and heat
    bel = Bus(label='b_el')
    bth = Bus(label='b_th')

    # an excess and a shortage variable can help to avoid infeasible problems
    excess_el = Sink(label='excess_el', inputs={bel: Flow()})

    # sources
    wind = Source(
        label='wind',
        outputs={bel: Flow(actual_value=0.5, nominal_value=66.3, fixed=True)})

    # demands (electricity/heat)
    demand_el = Sink(
        label='demand_elec',
        inputs={bel: Flow(nominal_value=85, actual_value=0.3, fixed=True)})

    demand_th = Sink(
        label='demand_therm',
        inputs={bth: Flow(nominal_value=40, actual_value=0.2, fixed=True)})

    # combined heat and power plant (chp)
    pp_chp = Transformer(label='pp_chp',
                         inputs={bgas: Flow()},
                         outputs={
                             bel: Flow(nominal_value=30, variable_costs=42),
                             bth: Flow(nominal_value=40)
                         },
                         conversion_factors={
                             bel: 0.3,
                             bth: 0.4
                         })

    # heatpump with a coefficient of performance (COP) of 3
    b_heat_source = Bus(label='b_heat_source')

    heat_source = Source(label='heat_source', outputs={b_heat_source: Flow()})

    cop = 3
    heat_pump = Transformer(label='heat_pump',
                            inputs={
                                bel: Flow(),
                                b_heat_source: Flow()
                            },
                            outputs={bth: Flow(nominal_value=10)},
                            conversion_factors={
                                bel: 1 / 3,
                                b_heat_source: (cop - 1) / cop
                            })

    energysystem = EnergySystem(timeindex=[1])
    energysystem.add(bgas, bel, bth, excess_el, wind, demand_el, demand_th,
                     pp_chp, b_heat_source, heat_source, heat_pump)

    # ################################ optimization ###########################

    # create optimization model based on energy_system
    optimization_model = Model(energysystem=energysystem, timeincrement=1)

    # solve problem
    optimization_model.solve(solver=solver)

    # write back results from optimization object to energysystem
    optimization_model.results()

    # ################################ results ################################
    data = views.node(processing.results(om=optimization_model), 'b_el')

    # generate results to be evaluated in tests
    results = data['sequences'].sum(axis=0).to_dict()

    test_results = {
        (('wind', 'b_el'), 'flow'): 33,
        (('b_el', 'demand_elec'), 'flow'): 26,
        (('b_el', 'excess_el'), 'flow'): 5,
        (('b_el', 'heat_pump'), 'flow'): 3,
    }

    for key in test_results.keys():
        eq_(int(round(results[key])), int(round(test_results[key])))