Exemple #1
0
    def test_bert_trainer(self, dict_outputs):
        """Validate that the Keras object can be created."""
        # Build a transformer network to use within the BERT trainer.
        vocab_size = 100
        sequence_length = 512
        test_network = networks.BertEncoder(vocab_size=vocab_size,
                                            num_layers=2,
                                            dict_outputs=dict_outputs)

        # Create a BERT trainer with the created network.
        bert_trainer_model = bert_span_labeler.BertSpanLabeler(test_network)

        # Create a set of 2-dimensional inputs (the first dimension is implicit).
        word_ids = tf.keras.Input(shape=(sequence_length, ), dtype=tf.int32)
        mask = tf.keras.Input(shape=(sequence_length, ), dtype=tf.int32)
        type_ids = tf.keras.Input(shape=(sequence_length, ), dtype=tf.int32)

        # Invoke the trainer model on the inputs. This causes the layer to be built.
        cls_outs = bert_trainer_model([word_ids, mask, type_ids])

        # Validate that there are 2 outputs are of the expected shape.
        self.assertEqual(2, len(cls_outs))
        expected_shape = [None, sequence_length]
        for out in cls_outs:
            self.assertAllEqual(expected_shape, out.shape.as_list())
Exemple #2
0
  def test_bert_trainer_tensor_call(self):
    """Validate that the Keras object can be invoked."""
    # Build a transformer network to use within the BERT trainer. (Here, we use
    # a short sequence_length for convenience.)
    test_network = networks.BertEncoder(vocab_size=100, num_layers=2)

    # Create a BERT trainer with the created network.
    bert_trainer_model = bert_span_labeler.BertSpanLabeler(test_network)

    # Create a set of 2-dimensional data tensors to feed into the model.
    word_ids = tf.constant([[1, 1], [2, 2]], dtype=tf.int32)
    mask = tf.constant([[1, 1], [1, 0]], dtype=tf.int32)
    type_ids = tf.constant([[1, 1], [2, 2]], dtype=tf.int32)

    # Invoke the trainer model on the tensors. In Eager mode, this does the
    # actual calculation. (We can't validate the outputs, since the network is
    # too complex: this simply ensures we're not hitting runtime errors.)
    _ = bert_trainer_model([word_ids, mask, type_ids])
Exemple #3
0
  def test_bert_trainer_named_compilation(self):
    """Validate compilation using explicit output names."""
    # Build a transformer network to use within the BERT trainer.
    vocab_size = 100
    test_network = networks.BertEncoder(vocab_size=vocab_size, num_layers=2)

    # Create a BERT trainer with the created network.
    bert_trainer_model = bert_span_labeler.BertSpanLabeler(test_network)

    # Attempt to compile the model using a string-keyed dict of output names to
    # loss functions. This will validate that the outputs are named as we
    # expect.
    bert_trainer_model.compile(
        optimizer='sgd',
        loss={
            'start_positions': 'mse',
            'end_positions': 'mse'
        })
Exemple #4
0
    def test_serialize_deserialize(self):
        """Validate that the BERT trainer can be serialized and deserialized."""
        # Build a transformer network to use within the BERT trainer.
        test_network = networks.BertEncoder(vocab_size=100, num_layers=2)

        # Create a BERT trainer with the created network. (Note that all the args
        # are different, so we can catch any serialization mismatches.)
        bert_trainer_model = bert_span_labeler.BertSpanLabeler(test_network)

        # Create another BERT trainer via serialization and deserialization.
        config = bert_trainer_model.get_config()
        new_bert_trainer_model = bert_span_labeler.BertSpanLabeler.from_config(
            config)

        # Validate that the config can be forced to JSON.
        _ = new_bert_trainer_model.to_json()

        # If the serialization was successful, the new config should match the old.
        self.assertAllEqual(bert_trainer_model.get_config(),
                            new_bert_trainer_model.get_config())
Exemple #5
0
class BertSpanLabelerTest(keras_parameterized.TestCase):

  def test_bert_trainer(self):
    """Validate that the Keras object can be created."""
    # Build a transformer network to use within the BERT trainer.
    vocab_size = 100
    sequence_length = 512
    test_network = networks.TransformerEncoder(
<<<<<<< HEAD
        vocab_size=vocab_size, num_layers=2, sequence_length=sequence_length)
=======
        vocab_size=vocab_size, num_layers=2)
>>>>>>> a811a3b7e640722318ad868c99feddf3f3063e36

    # Create a BERT trainer with the created network.
    bert_trainer_model = bert_span_labeler.BertSpanLabeler(test_network)

    # Create a set of 2-dimensional inputs (the first dimension is implicit).
    word_ids = tf.keras.Input(shape=(sequence_length,), dtype=tf.int32)
    mask = tf.keras.Input(shape=(sequence_length,), dtype=tf.int32)
    type_ids = tf.keras.Input(shape=(sequence_length,), dtype=tf.int32)

    # Invoke the trainer model on the inputs. This causes the layer to be built.
    cls_outs = bert_trainer_model([word_ids, mask, type_ids])

    # Validate that there are 2 outputs are of the expected shape.
    self.assertEqual(2, len(cls_outs))
    expected_shape = [None, sequence_length]
    for out in cls_outs:
      self.assertAllEqual(expected_shape, out.shape.as_list())