Exemple #1
0
    def test_network_invocation(self, output_range, out_seq_len):
        hidden_size = 32
        sequence_length = 21
        vocab_size = 57
        num_types = 7
        # Create a small TransformerEncoder for testing.
        test_network = transformer_encoder.TransformerEncoder(
            vocab_size=vocab_size,
            hidden_size=hidden_size,
            sequence_length=sequence_length,
            num_attention_heads=2,
            num_layers=3,
            type_vocab_size=num_types,
            output_range=output_range)
        self.assertTrue(
            test_network._position_embedding_layer._use_dynamic_slicing)
        # Create the inputs (note that the first dimension is implicit).
        word_ids = tf.keras.Input(shape=(sequence_length, ), dtype=tf.int32)
        mask = tf.keras.Input(shape=(sequence_length, ), dtype=tf.int32)
        type_ids = tf.keras.Input(shape=(sequence_length, ), dtype=tf.int32)
        data, pooled = test_network([word_ids, mask, type_ids])

        # Create a model based off of this network:
        model = tf.keras.Model([word_ids, mask, type_ids], [data, pooled])

        # Invoke the model. We can't validate the output data here (the model is too
        # complex) but this will catch structural runtime errors.
        batch_size = 3
        word_id_data = np.random.randint(vocab_size,
                                         size=(batch_size, sequence_length))
        mask_data = np.random.randint(2, size=(batch_size, sequence_length))
        type_id_data = np.random.randint(num_types,
                                         size=(batch_size, sequence_length))
        _ = model.predict([word_id_data, mask_data, type_id_data])

        # Creates a TransformerEncoder with max_sequence_length != sequence_length
        max_sequence_length = 128
        test_network = transformer_encoder.TransformerEncoder(
            vocab_size=vocab_size,
            hidden_size=hidden_size,
            sequence_length=sequence_length,
            max_sequence_length=max_sequence_length,
            num_attention_heads=2,
            num_layers=3,
            type_vocab_size=num_types)
        self.assertTrue(
            test_network._position_embedding_layer._use_dynamic_slicing)
        model = tf.keras.Model([word_ids, mask, type_ids], [data, pooled])
        outputs = model.predict([word_id_data, mask_data, type_id_data])
        self.assertEqual(outputs[0].shape[1], out_seq_len)
    def test_network_creation_with_float16_dtype(self):
        hidden_size = 32
        sequence_length = 21
        tf.keras.mixed_precision.experimental.set_policy("mixed_float16")
        # Create a small TransformerEncoder for testing.
        test_network = transformer_encoder.TransformerEncoder(
            vocab_size=100,
            hidden_size=hidden_size,
            sequence_length=sequence_length,
            num_attention_heads=2,
            num_layers=3)
        # Create the inputs (note that the first dimension is implicit).
        word_ids = tf.keras.Input(shape=(sequence_length, ), dtype=tf.int32)
        mask = tf.keras.Input(shape=(sequence_length, ), dtype=tf.int32)
        type_ids = tf.keras.Input(shape=(sequence_length, ), dtype=tf.int32)
        data, pooled = test_network([word_ids, mask, type_ids])

        expected_data_shape = [None, sequence_length, hidden_size]
        expected_pooled_shape = [None, hidden_size]
        self.assertAllEqual(expected_data_shape, data.shape.as_list())
        self.assertAllEqual(expected_pooled_shape, pooled.shape.as_list())

        # If float_dtype is set to float16, the data output is float32 (from a layer
        # norm) and pool output should be float16.
        self.assertAllEqual(tf.float32, data.dtype)
        self.assertAllEqual(tf.float16, pooled.dtype)
    def test_all_encoder_outputs_network_creation(self):
        hidden_size = 32
        sequence_length = 21
        # Create a small TransformerEncoder for testing.
        test_network = transformer_encoder.TransformerEncoder(
            vocab_size=100,
            hidden_size=hidden_size,
            sequence_length=sequence_length,
            num_attention_heads=2,
            num_layers=3,
            return_all_encoder_outputs=True)
        # Create the inputs (note that the first dimension is implicit).
        word_ids = tf.keras.Input(shape=(sequence_length, ), dtype=tf.int32)
        mask = tf.keras.Input(shape=(sequence_length, ), dtype=tf.int32)
        type_ids = tf.keras.Input(shape=(sequence_length, ), dtype=tf.int32)
        all_encoder_outputs, pooled = test_network([word_ids, mask, type_ids])

        expected_data_shape = [None, sequence_length, hidden_size]
        expected_pooled_shape = [None, hidden_size]
        self.assertLen(all_encoder_outputs, 3)
        for data in all_encoder_outputs:
            self.assertAllEqual(expected_data_shape, data.shape.as_list())
        self.assertAllEqual(expected_pooled_shape, pooled.shape.as_list())

        # The default output dtype is float32.
        self.assertAllEqual(tf.float32, all_encoder_outputs[-1].dtype)
        self.assertAllEqual(tf.float32, pooled.dtype)
Exemple #4
0
    def test_serialize_deserialize(self):
        tf.keras.mixed_precision.experimental.set_policy("mixed_float16")
        # Create a network object that sets all of its config options.
        kwargs = dict(vocab_size=100,
                      hidden_size=32,
                      num_layers=3,
                      num_attention_heads=2,
                      sequence_length=21,
                      max_sequence_length=21,
                      type_vocab_size=12,
                      intermediate_size=1223,
                      activation="relu",
                      dropout_rate=0.05,
                      attention_dropout_rate=0.22,
                      initializer="glorot_uniform",
                      return_all_encoder_outputs=False,
                      output_range=-1)
        network = transformer_encoder.TransformerEncoder(**kwargs)

        expected_config = dict(kwargs)
        expected_config["activation"] = tf.keras.activations.serialize(
            tf.keras.activations.get(expected_config["activation"]))
        expected_config["initializer"] = tf.keras.initializers.serialize(
            tf.keras.initializers.get(expected_config["initializer"]))
        self.assertEqual(network.get_config(), expected_config)

        # Create another network object from the first object's config.
        new_network = transformer_encoder.TransformerEncoder.from_config(
            network.get_config())

        # Validate that the config can be forced to JSON.
        _ = new_network.to_json()

        # If the serialization was successful, the new config should match the old.
        self.assertAllEqual(network.get_config(), new_network.get_config())
Exemple #5
0
  def test_network_creation(self):
    hidden_size = 32
    sequence_length = 21
    # Create a small TransformerEncoder for testing.
    test_network = transformer_encoder.TransformerEncoder(
        vocab_size=100,
        hidden_size=hidden_size,
<<<<<<< HEAD
        sequence_length=sequence_length,
=======
>>>>>>> a811a3b7e640722318ad868c99feddf3f3063e36
        num_attention_heads=2,
        num_layers=3)
    # Create the inputs (note that the first dimension is implicit).
    word_ids = tf.keras.Input(shape=(sequence_length,), dtype=tf.int32)
    mask = tf.keras.Input(shape=(sequence_length,), dtype=tf.int32)
    type_ids = tf.keras.Input(shape=(sequence_length,), dtype=tf.int32)
    data, pooled = test_network([word_ids, mask, type_ids])

    self.assertIsInstance(test_network.transformer_layers, list)
    self.assertLen(test_network.transformer_layers, 3)
    self.assertIsInstance(test_network.pooler_layer, tf.keras.layers.Dense)

    expected_data_shape = [None, sequence_length, hidden_size]
    expected_pooled_shape = [None, hidden_size]
    self.assertAllEqual(expected_data_shape, data.shape.as_list())
    self.assertAllEqual(expected_pooled_shape, pooled.shape.as_list())

    # The default output dtype is float32.
    self.assertAllEqual(tf.float32, data.dtype)
    self.assertAllEqual(tf.float32, pooled.dtype)
    def create_network(self,
                       vocab_size,
                       sequence_length,
                       hidden_size,
                       num_predictions,
                       output='predictions',
                       xformer_stack=None):
        # First, create a transformer stack that we can use to get the LM's
        # vocabulary weight.
        if xformer_stack is None:
            xformer_stack = transformer_encoder.TransformerEncoder(
                vocab_size=vocab_size,
                num_layers=1,
                sequence_length=sequence_length,
                hidden_size=hidden_size,
                num_attention_heads=4,
            )
        word_ids = tf.keras.Input(shape=(sequence_length, ), dtype=tf.int32)
        mask = tf.keras.Input(shape=(sequence_length, ), dtype=tf.int32)
        type_ids = tf.keras.Input(shape=(sequence_length, ), dtype=tf.int32)
        lm_outputs, _ = xformer_stack([word_ids, mask, type_ids])

        # Create a maskedLM from the transformer stack.
        test_network = masked_lm.MaskedLM(num_predictions=num_predictions,
                                          input_width=lm_outputs.shape[-1],
                                          source_network=xformer_stack,
                                          output=output)
        return test_network
Exemple #7
0
    def test_layer_invocation_with_external_logits(self):
        vocab_size = 100
        sequence_length = 32
        hidden_size = 64
        num_predictions = 21
        xformer_stack = transformer_encoder.TransformerEncoder(
            vocab_size=vocab_size,
            num_layers=1,
            sequence_length=sequence_length,
            hidden_size=hidden_size,
            num_attention_heads=4,
        )
        test_layer = self.create_layer(vocab_size=vocab_size,
                                       sequence_length=sequence_length,
                                       hidden_size=hidden_size,
                                       xformer_stack=xformer_stack,
                                       output='predictions')
        logit_layer = self.create_layer(vocab_size=vocab_size,
                                        sequence_length=sequence_length,
                                        hidden_size=hidden_size,
                                        xformer_stack=xformer_stack,
                                        output='logits')

        # Create a model from the masked LM layer.
        lm_input_tensor = tf.keras.Input(shape=(sequence_length, hidden_size))
        masked_positions = tf.keras.Input(shape=(num_predictions, ),
                                          dtype=tf.int32)
        output = test_layer(lm_input_tensor, masked_positions)
        logit_output = logit_layer(lm_input_tensor, masked_positions)
        logit_output = tf.keras.layers.Activation(
            tf.nn.log_softmax)(logit_output)
        logit_layer.set_weights(test_layer.get_weights())
        model = tf.keras.Model([lm_input_tensor, masked_positions], output)
        logits_model = tf.keras.Model(([lm_input_tensor, masked_positions]),
                                      logit_output)

        # Invoke the masked LM on some fake data to make sure there are no runtime
        # errors in the code.
        batch_size = 3
        lm_input_data = 10 * np.random.random_sample(
            (batch_size, sequence_length, hidden_size))
        masked_position_data = np.random.randint(sequence_length,
                                                 size=(batch_size,
                                                       num_predictions))
        # ref_outputs = model.predict([lm_input_data, masked_position_data])
        # outputs = logits_model.predict([lm_input_data, masked_position_data])
        ref_outputs = model([lm_input_data, masked_position_data])
        outputs = logits_model([lm_input_data, masked_position_data])

        # Ensure that the tensor shapes are correct.
        expected_output_shape = (batch_size, num_predictions, vocab_size)
        self.assertEqual(expected_output_shape, ref_outputs.shape)
        self.assertEqual(expected_output_shape, outputs.shape)
        self.assertAllClose(ref_outputs, outputs)
    def create_layer(self,
                     vocab_size,
                     hidden_size,
                     output='predictions',
                     xformer_stack=None):
        # First, create a transformer stack that we can use to get the LM's
        # vocabulary weight.
        if xformer_stack is None:
            xformer_stack = transformer_encoder.TransformerEncoder(
                vocab_size=vocab_size,
                num_layers=1,
                hidden_size=hidden_size,
                num_attention_heads=4,
            )

        # Create a maskedLM from the transformer stack.
        test_layer = masked_lm.MaskedLM(
            embedding_table=xformer_stack.get_embedding_table(), output=output)
        return test_layer
Exemple #9
0
class MaskedLMTest(keras_parameterized.TestCase):

  def create_layer(self,
                   vocab_size,
<<<<<<< HEAD
                   sequence_length,
=======
>>>>>>> a811a3b7e640722318ad868c99feddf3f3063e36
                   hidden_size,
                   output='predictions',
                   xformer_stack=None):
    # First, create a transformer stack that we can use to get the LM's
    # vocabulary weight.
    if xformer_stack is None:
      xformer_stack = transformer_encoder.TransformerEncoder(
          vocab_size=vocab_size,
          num_layers=1,
<<<<<<< HEAD
          sequence_length=sequence_length,
=======
>>>>>>> a811a3b7e640722318ad868c99feddf3f3063e36
          hidden_size=hidden_size,
          num_attention_heads=4,
      )

    # Create a maskedLM from the transformer stack.
    test_layer = masked_lm.MaskedLM(
        embedding_table=xformer_stack.get_embedding_table(),
        output=output)
    return test_layer