Exemple #1
0
  def build(self, input_shape: Optional[Union[Sequence[int], tf.Tensor]]):
    """Build variables and child layers to prepare for calling."""
    conv2d_quantized = _quantize_wrapped_layer(
        tf.keras.layers.Conv2D,
        configs.DefaultNBitConvQuantizeConfig(
            ['kernel'], ['activation'], False,
            num_bits_weight=self._num_bits_weight,
            num_bits_activation=self._num_bits_activation))
    self._conv0 = conv2d_quantized(
        filters=self._filters,
        kernel_size=self._kernel_size,
        strides=self._strides,
        padding='same',
        use_bias=self._use_bias,
        kernel_initializer=self._kernel_initializer,
        kernel_regularizer=self._kernel_regularizer,
        bias_regularizer=self._bias_regularizer,
        activation=NoOpActivation())
    if self._use_normalization:
      self._norm0 = self._norm(
          axis=self._bn_axis,
          momentum=self._norm_momentum,
          epsilon=self._norm_epsilon)
    self._activation_layer = tfmot.quantization.keras.QuantizeWrapperV2(
        tf_utils.get_activation(self._activation, use_keras_layer=True),
        configs.DefaultNBitActivationQuantizeConfig(
            num_bits_weight=self._num_bits_weight,
            num_bits_activation=self._num_bits_activation))

    super(Conv2DBNBlockNBitQuantized, self).build(input_shape)
Exemple #2
0
  def build(self, input_shape: Optional[Union[Sequence[int], tf.Tensor]]):
    """Build variables and child layers to prepare for calling."""
    conv2d_quantized = _quantize_wrapped_layer(
        tf.keras.layers.Conv2D,
        configs.DefaultNBitConvQuantizeConfig(
            ['kernel'], ['activation'], False,
            num_bits_weight=self._num_bits_weight,
            num_bits_activation=self._num_bits_activation))
    depthwise_conv2d_quantized = _quantize_wrapped_layer(
        tf.keras.layers.DepthwiseConv2D,
        configs.DefaultNBitConvQuantizeConfig(
            ['depthwise_kernel'], ['activation'], False,
            num_bits_weight=self._num_bits_weight,
            num_bits_activation=self._num_bits_activation))
    expand_filters = self._in_filters
    if self._expand_ratio > 1:
      # First 1x1 conv for channel expansion.
      expand_filters = nn_layers.make_divisible(
          self._in_filters * self._expand_ratio, self._divisible_by)

      expand_kernel = 1 if self._use_depthwise else self._kernel_size
      expand_stride = 1 if self._use_depthwise else self._strides

      self._conv0 = conv2d_quantized(
          filters=expand_filters,
          kernel_size=expand_kernel,
          strides=expand_stride,
          padding='same',
          use_bias=False,
          kernel_initializer=self._kernel_initializer,
          kernel_regularizer=self._kernel_regularizer,
          bias_regularizer=self._bias_regularizer,
          activation=NoOpActivation())
      self._norm0 = self._norm_with_quantize(
          axis=self._bn_axis,
          momentum=self._norm_momentum,
          epsilon=self._norm_epsilon)
      self._activation_layer = tfmot.quantization.keras.QuantizeWrapperV2(
          tf_utils.get_activation(self._activation, use_keras_layer=True),
          configs.DefaultNBitActivationQuantizeConfig(
              num_bits_weight=self._num_bits_weight,
              num_bits_activation=self._num_bits_activation))

    if self._use_depthwise:
      # Depthwise conv.
      self._conv1 = depthwise_conv2d_quantized(
          kernel_size=(self._kernel_size, self._kernel_size),
          strides=self._strides,
          padding='same',
          depth_multiplier=1,
          dilation_rate=self._dilation_rate,
          use_bias=False,
          depthwise_initializer=self._kernel_initializer,
          depthwise_regularizer=self._depthsize_regularizer,
          bias_regularizer=self._bias_regularizer,
          activation=NoOpActivation())
      self._norm1 = self._norm_with_quantize(
          axis=self._bn_axis,
          momentum=self._norm_momentum,
          epsilon=self._norm_epsilon)
      self._depthwise_activation_layer = (
          tfmot.quantization.keras.QuantizeWrapperV2(
              tf_utils.get_activation(self._depthwise_activation,
                                      use_keras_layer=True),
              configs.DefaultNBitActivationQuantizeConfig(
                  num_bits_weight=self._num_bits_weight,
                  num_bits_activation=self._num_bits_activation)))

    # Squeeze and excitation.
    if self._se_ratio and self._se_ratio > 0 and self._se_ratio <= 1:
      logging.info('Use Squeeze and excitation.')
      in_filters = self._in_filters
      if self._expand_se_in_filters:
        in_filters = expand_filters
      self._squeeze_excitation = qat_nn_layers.SqueezeExcitationNBitQuantized(
          in_filters=in_filters,
          out_filters=expand_filters,
          se_ratio=self._se_ratio,
          divisible_by=self._divisible_by,
          kernel_initializer=self._kernel_initializer,
          kernel_regularizer=self._kernel_regularizer,
          bias_regularizer=self._bias_regularizer,
          activation=self._se_inner_activation,
          gating_activation=self._se_gating_activation,
          num_bits_weight=self._num_bits_weight,
          num_bits_activation=self._num_bits_activation)
    else:
      self._squeeze_excitation = None

    # Last 1x1 conv.
    self._conv2 = conv2d_quantized(
        filters=self._out_filters,
        kernel_size=1,
        strides=1,
        padding='same',
        use_bias=False,
        kernel_initializer=self._kernel_initializer,
        kernel_regularizer=self._kernel_regularizer,
        bias_regularizer=self._bias_regularizer,
        activation=NoOpActivation())
    self._norm2 = self._norm_with_quantize(
        axis=self._bn_axis,
        momentum=self._norm_momentum,
        epsilon=self._norm_epsilon)

    if self._stochastic_depth_drop_rate:
      self._stochastic_depth = nn_layers.StochasticDepth(
          self._stochastic_depth_drop_rate)
    else:
      self._stochastic_depth = None
    self._add = tf.keras.layers.Add()

    super().build(input_shape)
Exemple #3
0
  def build(self, input_shape: Optional[Union[Sequence[int], tf.Tensor]]):
    """Build variables and child layers to prepare for calling."""
    conv2d_quantized = _quantize_wrapped_layer(
        tf.keras.layers.Conv2D,
        configs.DefaultNBitConvQuantizeConfig(
            ['kernel'], ['activation'], False,
            num_bits_weight=self._num_bits_weight,
            num_bits_activation=self._num_bits_activation))
    if self._use_projection:
      if self._resnetd_shortcut:
        self._shortcut0 = tf.keras.layers.AveragePooling2D(
            pool_size=2, strides=self._strides, padding='same')
        self._shortcut1 = conv2d_quantized(
            filters=self._filters * 4,
            kernel_size=1,
            strides=1,
            use_bias=False,
            kernel_initializer=self._kernel_initializer,
            kernel_regularizer=self._kernel_regularizer,
            bias_regularizer=self._bias_regularizer,
            activation=NoOpActivation())
      else:
        self._shortcut = conv2d_quantized(
            filters=self._filters * 4,
            kernel_size=1,
            strides=self._strides,
            use_bias=False,
            kernel_initializer=self._kernel_initializer,
            kernel_regularizer=self._kernel_regularizer,
            bias_regularizer=self._bias_regularizer,
            activation=NoOpActivation())

      self._norm0 = self._norm_with_quantize(
          axis=self._bn_axis,
          momentum=self._norm_momentum,
          epsilon=self._norm_epsilon,
          trainable=self._bn_trainable)

    self._conv1 = conv2d_quantized(
        filters=self._filters,
        kernel_size=1,
        strides=1,
        use_bias=False,
        kernel_initializer=self._kernel_initializer,
        kernel_regularizer=self._kernel_regularizer,
        bias_regularizer=self._bias_regularizer,
        activation=NoOpActivation())
    self._norm1 = self._norm(
        axis=self._bn_axis,
        momentum=self._norm_momentum,
        epsilon=self._norm_epsilon,
        trainable=self._bn_trainable)
    self._activation1 = tfmot.quantization.keras.QuantizeWrapperV2(
        tf_utils.get_activation(self._activation, use_keras_layer=True),
        configs.DefaultNBitActivationQuantizeConfig(
            num_bits_weight=self._num_bits_weight,
            num_bits_activation=self._num_bits_activation))

    self._conv2 = conv2d_quantized(
        filters=self._filters,
        kernel_size=3,
        strides=self._strides,
        dilation_rate=self._dilation_rate,
        padding='same',
        use_bias=False,
        kernel_initializer=self._kernel_initializer,
        kernel_regularizer=self._kernel_regularizer,
        bias_regularizer=self._bias_regularizer,
        activation=NoOpActivation())
    self._norm2 = self._norm(
        axis=self._bn_axis,
        momentum=self._norm_momentum,
        epsilon=self._norm_epsilon,
        trainable=self._bn_trainable)
    self._activation2 = tfmot.quantization.keras.QuantizeWrapperV2(
        tf_utils.get_activation(self._activation, use_keras_layer=True),
        configs.DefaultNBitActivationQuantizeConfig(
            num_bits_weight=self._num_bits_weight,
            num_bits_activation=self._num_bits_activation))

    self._conv3 = conv2d_quantized(
        filters=self._filters * 4,
        kernel_size=1,
        strides=1,
        use_bias=False,
        kernel_initializer=self._kernel_initializer,
        kernel_regularizer=self._kernel_regularizer,
        bias_regularizer=self._bias_regularizer,
        activation=NoOpActivation())
    self._norm3 = self._norm_with_quantize(
        axis=self._bn_axis,
        momentum=self._norm_momentum,
        epsilon=self._norm_epsilon,
        trainable=self._bn_trainable)
    self._activation3 = tfmot.quantization.keras.QuantizeWrapperV2(
        tf_utils.get_activation(self._activation, use_keras_layer=True),
        configs.DefaultNBitActivationQuantizeConfig(
            num_bits_weight=self._num_bits_weight,
            num_bits_activation=self._num_bits_activation))

    if self._se_ratio and self._se_ratio > 0 and self._se_ratio <= 1:
      self._squeeze_excitation = qat_nn_layers.SqueezeExcitationNBitQuantized(
          in_filters=self._filters * 4,
          out_filters=self._filters * 4,
          se_ratio=self._se_ratio,
          kernel_initializer=self._kernel_initializer,
          kernel_regularizer=self._kernel_regularizer,
          bias_regularizer=self._bias_regularizer,
          num_bits_weight=self._num_bits_weight,
          num_bits_activation=self._num_bits_activation)
    else:
      self._squeeze_excitation = None

    if self._stochastic_depth_drop_rate:
      self._stochastic_depth = nn_layers.StochasticDepth(
          self._stochastic_depth_drop_rate)
    else:
      self._stochastic_depth = None
    self._add = tfmot.quantization.keras.QuantizeWrapperV2(
        tf.keras.layers.Add(),
        configs.DefaultNBitQuantizeConfig(
            [], [], True,
            num_bits_weight=self._num_bits_weight,
            num_bits_activation=self._num_bits_activation))

    super().build(input_shape)
Exemple #4
0
  def __init__(self,
               in_filters,
               out_filters,
               se_ratio,
               divisible_by=1,
               use_3d_input=False,
               kernel_initializer='VarianceScaling',
               kernel_regularizer=None,
               bias_regularizer=None,
               activation='relu',
               gating_activation='sigmoid',
               num_bits_weight=8,
               num_bits_activation=8,
               **kwargs):
    """Initializes a squeeze and excitation layer.

    Args:
      in_filters: An `int` number of filters of the input tensor.
      out_filters: An `int` number of filters of the output tensor.
      se_ratio: A `float` or None. If not None, se ratio for the squeeze and
        excitation layer.
      divisible_by: An `int` that ensures all inner dimensions are divisible by
        this number.
      use_3d_input: A `bool` of whether input is 2D or 3D image.
      kernel_initializer: A `str` of kernel_initializer for convolutional
        layers.
      kernel_regularizer: A `tf.keras.regularizers.Regularizer` object for
        Conv2D. Default to None.
      bias_regularizer: A `tf.keras.regularizers.Regularizer` object for Conv2d.
        Default to None.
      activation: A `str` name of the activation function.
      gating_activation: A `str` name of the activation function for final
        gating function.
      num_bits_weight: An `int` number of bits for the weight. Default to 8.
      num_bits_activation: An `int` number of bits for the weight. Default to 8.
      **kwargs: Additional keyword arguments to be passed.
    """
    super().__init__(**kwargs)

    self._in_filters = in_filters
    self._out_filters = out_filters
    self._se_ratio = se_ratio
    self._divisible_by = divisible_by
    self._use_3d_input = use_3d_input
    self._activation = activation
    self._gating_activation = gating_activation
    self._kernel_initializer = kernel_initializer
    self._kernel_regularizer = kernel_regularizer
    self._bias_regularizer = bias_regularizer
    self._num_bits_weight = num_bits_weight
    self._num_bits_activation = num_bits_activation
    if tf.keras.backend.image_data_format() == 'channels_last':
      if not use_3d_input:
        self._spatial_axis = [1, 2]
      else:
        self._spatial_axis = [1, 2, 3]
    else:
      if not use_3d_input:
        self._spatial_axis = [2, 3]
      else:
        self._spatial_axis = [2, 3, 4]
    self._activation_layer = tfmot.quantization.keras.QuantizeWrapperV2(
        tf_utils.get_activation(activation, use_keras_layer=True),
        configs.DefaultNBitActivationQuantizeConfig(
            num_bits_weight=self._num_bits_weight,
            num_bits_activation=self._num_bits_activation))
    self._gating_activation_layer = tfmot.quantization.keras.QuantizeWrapperV2(
        tf_utils.get_activation(gating_activation, use_keras_layer=True),
        configs.DefaultNBitActivationQuantizeConfig(
            num_bits_weight=self._num_bits_weight,
            num_bits_activation=self._num_bits_activation))