Exemple #1
0
def export_tfhub(model_path, hub_destination):
  """Restores a tf.keras.Model and saves for TF-Hub."""
  model = resnet_model.resnet50(num_classes=imagenet_preprocessing.NUM_CLASSES)
  model.load_weights(model_path)

  # Extracts a sub-model to use pooling feature vector as model output.
  image_input = model.get_layer(index=0).get_output_at(0)
  feature_vector_output = model.get_layer(name='reduce_mean').get_output_at(0)
  hub_model = tf.keras.Model(image_input, feature_vector_output)

  # Exports a SavedModel.
  hub_model.save(hub_destination, include_optimizer=False)
def dump_resnet50_v1():
    root = "/tmp/tfmodels"
    model = resm.resnet50(1000)
    # model.compile(optimizer=tf.keras.optimizers.Adam(),
    #     loss=tf.keras.losses.sparse_categorical_crossentropy,
    #     metrics=['accuracy'])
    os.makedirs(root, exist_ok=True)
    model.save(os.path.join(root, "keras.h5"))

    # tf.contrib.saved_model.save_keras_model(model, root,
            # serving_only=False)
    K.set_learning_phase(0)
    model = load_model(os.path.join(root, "keras.h5"))
    print("DDDDDDD", model.outputs)
    frozen_graph = freeze_session(K.get_session(),
            output_names=[out.op.name for out in model.outputs])
    # with K.get_session() as sess:
    #     frozen_graph = convert_variables_to_constants(sess, sess.graph_def,
    #                              [x.op.name for x in model.outputs])
    tf.train.write_graph(frozen_graph, root, "resnet50_v1.pb", as_text=False)
def run(flags_obj):
    """Run ResNet ImageNet training and eval loop using custom training loops.

  Args:
    flags_obj: An object containing parsed flag values.

  Raises:
    ValueError: If fp16 is passed as it is not currently supported.

  Returns:
    Dictionary of training and eval stats.
  """
    keras_utils.set_session_config(enable_eager=flags_obj.enable_eager,
                                   enable_xla=flags_obj.enable_xla)

    # TODO(anj-s): Set data_format without using Keras.
    data_format = flags_obj.data_format
    if data_format is None:
        data_format = ('channels_first'
                       if tf.test.is_built_with_cuda() else 'channels_last')
    tf.keras.backend.set_image_data_format(data_format)

    strategy = distribution_utils.get_distribution_strategy(
        distribution_strategy=flags_obj.distribution_strategy,
        num_gpus=flags_obj.num_gpus,
        num_workers=distribution_utils.configure_cluster(),
        all_reduce_alg=flags_obj.all_reduce_alg,
        num_packs=flags_obj.num_packs)

    train_ds, test_ds = get_input_dataset(flags_obj, strategy)
    train_steps, train_epochs, eval_steps = get_num_train_iterations(flags_obj)

    time_callback = keras_utils.TimeHistory(flags_obj.batch_size,
                                            flags_obj.log_steps)

    strategy_scope = distribution_utils.get_strategy_scope(strategy)
    with strategy_scope:
        model = resnet_model.resnet50(
            num_classes=imagenet_preprocessing.NUM_CLASSES,
            batch_size=flags_obj.batch_size,
            use_l2_regularizer=not flags_obj.single_l2_loss_op)

        optimizer = tf.keras.optimizers.SGD(
            learning_rate=common.BASE_LEARNING_RATE,
            momentum=0.9,
            nesterov=True)

        if flags_obj.fp16_implementation == "graph_rewrite":
            if not flags_obj.use_tf_function:
                raise ValueError(
                    "--fp16_implementation=graph_rewrite requires "
                    "--use_tf_function to be true")
            loss_scale = flags_core.get_loss_scale(flags_obj,
                                                   default_for_fp16=128)
            optimizer = tf.train.experimental.enable_mixed_precision_graph_rewrite(
                optimizer, loss_scale)

        training_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(
            'training_accuracy', dtype=tf.float32)
        test_loss = tf.keras.metrics.Mean('test_loss', dtype=tf.float32)
        test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(
            'test_accuracy', dtype=tf.float32)

        trainable_variables = model.trainable_variables

        def train_step(train_ds_inputs):
            """Training StepFn."""
            def step_fn(inputs):
                """Per-Replica StepFn."""
                images, labels = inputs
                with tf.GradientTape() as tape:
                    logits = model(images, training=True)

                    prediction_loss = tf.keras.losses.sparse_categorical_crossentropy(
                        labels, logits)
                    loss = tf.reduce_sum(prediction_loss) * (
                        1.0 / flags_obj.batch_size)
                    num_replicas = tf.distribute.get_strategy(
                    ).num_replicas_in_sync

                    if flags_obj.single_l2_loss_op:
                        filtered_variables = [
                            tf.reshape(v, (-1, )) for v in trainable_variables
                            if 'bn' not in v.name
                        ]
                        l2_loss = resnet_model.L2_WEIGHT_DECAY * 2 * tf.nn.l2_loss(
                            tf.concat(filtered_variables, axis=0))
                        loss += (l2_loss / num_replicas)
                    else:
                        loss += (tf.reduce_sum(model.losses) / num_replicas)

                    # Scale the loss
                    if flags_obj.dtype == "fp16":
                        loss = optimizer.get_scaled_loss(loss)

                grads = tape.gradient(loss, trainable_variables)

                # Unscale the grads
                if flags_obj.dtype == "fp16":
                    grads = optimizer.get_unscaled_gradients(grads)

                optimizer.apply_gradients(zip(grads, trainable_variables))

                training_accuracy.update_state(labels, logits)
                return loss

            if strategy:
                per_replica_losses = strategy.experimental_run_v2(
                    step_fn, args=(train_ds_inputs, ))
                return strategy.reduce(tf.distribute.ReduceOp.SUM,
                                       per_replica_losses,
                                       axis=None)
            else:
                return step_fn(train_ds_inputs)

        def test_step(test_ds_inputs):
            """Evaluation StepFn."""
            def step_fn(inputs):
                images, labels = inputs
                logits = model(images, training=False)
                loss = tf.keras.losses.sparse_categorical_crossentropy(
                    labels, logits)
                loss = tf.reduce_sum(loss) * (1.0 / flags_obj.batch_size)
                test_loss.update_state(loss)
                test_accuracy.update_state(labels, logits)

            if strategy:
                strategy.experimental_run_v2(step_fn, args=(test_ds_inputs, ))
            else:
                step_fn(test_ds_inputs)

        if flags_obj.use_tf_function:
            train_step = tf.function(train_step)
            test_step = tf.function(test_step)

        time_callback.on_train_begin()
        for epoch in range(train_epochs):

            train_iter = iter(train_ds)
            total_loss = 0.0
            training_accuracy.reset_states()

            for step in range(train_steps):
                optimizer.lr = common.learning_rate_schedule(
                    epoch, step, train_steps, flags_obj.batch_size)

                time_callback.on_batch_begin(step + epoch * train_steps)
                total_loss += train_step(next(train_iter))
                time_callback.on_batch_end(step + epoch * train_steps)

            train_loss = total_loss / train_steps
            logging.info('Training loss: %s, accuracy: %s%% at epoch: %d',
                         train_loss.numpy(),
                         training_accuracy.result().numpy(), epoch)

            if (not flags_obj.skip_eval
                    and (epoch + 1) % flags_obj.epochs_between_evals == 0):
                test_loss.reset_states()
                test_accuracy.reset_states()

                test_iter = iter(test_ds)
                for _ in range(eval_steps):
                    test_step(next(test_iter))

                logging.info('Test loss: %s, accuracy: %s%% at epoch: %d',
                             test_loss.result().numpy(),
                             test_accuracy.result().numpy(), epoch)

        time_callback.on_train_end()

        eval_result = None
        train_result = None
        if not flags_obj.skip_eval:
            eval_result = [
                test_loss.result().numpy(),
                test_accuracy.result().numpy()
            ]
            train_result = [
                train_loss.numpy(),
                training_accuracy.result().numpy()
            ]

        stats = build_stats(train_result, eval_result, time_callback)
        return stats
Exemple #4
0
def run(flags_obj):
    """Run ResNet ImageNet training and eval loop using native Keras APIs.

    Args:
      flags_obj: An object containing parsed flag values.

    Raises:
      ValueError: If fp16 is passed as it is not currently supported.

    Returns:
      Dictionary of training and eval stats.
    """
    keras_utils.set_session_config(enable_eager=flags_obj.enable_eager,
                                   enable_xla=flags_obj.enable_xla)

    # Execute flag override logic for better model performance
    if flags_obj.tf_gpu_thread_mode:
        common.set_gpu_thread_mode_and_count(flags_obj)
    if flags_obj.data_delay_prefetch:
        common.data_delay_prefetch()
    common.set_cudnn_batchnorm_mode()

    dtype = flags_core.get_tf_dtype(flags_obj)
    if dtype == 'float16':
        policy = tf.keras.mixed_precision.experimental.Policy(
            'infer_float32_vars')
        tf.keras.mixed_precision.experimental.set_policy(policy)

    data_format = flags_obj.data_format
    if data_format is None:
        data_format = ('channels_first'
                       if tf.test.is_built_with_cuda() else 'channels_last')
    tf.keras.backend.set_image_data_format(data_format)

    # Configures cluster spec for distribution strategy.
    num_workers = distribution_utils.configure_cluster(flags_obj.worker_hosts,
                                                       flags_obj.task_index)

    strategy = distribution_utils.get_distribution_strategy(
        distribution_strategy=flags_obj.distribution_strategy,
        num_gpus=flags_obj.num_gpus,
        num_workers=num_workers,
        all_reduce_alg=flags_obj.all_reduce_alg,
        num_packs=flags_obj.num_packs)

    if strategy:
        # flags_obj.enable_get_next_as_optional controls whether enabling
        # get_next_as_optional behavior in DistributedIterator. If true, last
        # partial batch can be supported.
        strategy.extended.experimental_enable_get_next_as_optional = (
            flags_obj.enable_get_next_as_optional)

    strategy_scope = distribution_utils.get_strategy_scope(strategy)

    # pylint: disable=protected-access
    if flags_obj.use_synthetic_data:
        distribution_utils.set_up_synthetic_data()
        input_fn = common.get_synth_input_fn(
            height=imagenet_preprocessing.DEFAULT_IMAGE_SIZE,
            width=imagenet_preprocessing.DEFAULT_IMAGE_SIZE,
            num_channels=imagenet_preprocessing.NUM_CHANNELS,
            num_classes=imagenet_preprocessing.NUM_CLASSES,
            dtype=dtype,
            drop_remainder=True)
    else:
        distribution_utils.undo_set_up_synthetic_data()
        input_fn = imagenet_preprocessing.input_fn

    # When `enable_xla` is True, we always drop the remainder of the batches
    # in the dataset, as XLA-GPU doesn't support dynamic shapes.
    drop_remainder = flags_obj.enable_xla

    train_input_dataset = input_fn(
        is_training=True,
        data_dir=flags_obj.data_dir,
        batch_size=flags_obj.batch_size,
        num_epochs=flags_obj.train_epochs,
        parse_record_fn=imagenet_preprocessing.parse_record,
        datasets_num_private_threads=flags_obj.datasets_num_private_threads,
        dtype=dtype,
        drop_remainder=drop_remainder,
        tf_data_experimental_slack=flags_obj.tf_data_experimental_slack,
    )

    eval_input_dataset = None
    if not flags_obj.skip_eval:
        eval_input_dataset = input_fn(
            is_training=False,
            data_dir=flags_obj.data_dir,
            batch_size=flags_obj.batch_size,
            num_epochs=flags_obj.train_epochs,
            parse_record_fn=imagenet_preprocessing.parse_record,
            dtype=dtype,
            drop_remainder=drop_remainder)

    lr_schedule = 0.1
    if flags_obj.use_tensor_lr:
        lr_schedule = common.PiecewiseConstantDecayWithWarmup(
            batch_size=flags_obj.batch_size,
            epoch_size=imagenet_preprocessing.NUM_IMAGES['train'],
            warmup_epochs=LR_SCHEDULE[0][1],
            boundaries=list(p[1] for p in LR_SCHEDULE[1:]),
            multipliers=list(p[0] for p in LR_SCHEDULE),
            compute_lr_on_cpu=True)

    with strategy_scope:
        optimizer = common.get_optimizer(lr_schedule)
        if dtype == 'float16':
            # TODO(reedwm): Remove manually wrapping optimizer once mixed precision
            # can be enabled with a single line of code.
            optimizer = tf.keras.mixed_precision.experimental.LossScaleOptimizer(
                optimizer,
                loss_scale=flags_core.get_loss_scale(flags_obj,
                                                     default_for_fp16=128))

        if flags_obj.use_trivial_model:
            model = trivial_model.trivial_model(
                imagenet_preprocessing.NUM_CLASSES, dtype)
        else:
            model = resnet_model.resnet50(
                num_classes=imagenet_preprocessing.NUM_CLASSES, dtype=dtype)

        # TODO(b/138957587): Remove when force_v2_in_keras_compile is on longer
        # a valid arg for this model. Also remove as a valid flag.
        if flags_obj.force_v2_in_keras_compile is not None:
            model.compile(
                loss='sparse_categorical_crossentropy',
                optimizer=optimizer,
                metrics=(['sparse_categorical_accuracy']
                         if flags_obj.report_accuracy_metrics else None),
                run_eagerly=flags_obj.run_eagerly,
                experimental_run_tf_function=flags_obj.
                force_v2_in_keras_compile)
        else:
            model.compile(
                loss='sparse_categorical_crossentropy',
                optimizer=optimizer,
                metrics=(['sparse_categorical_accuracy']
                         if flags_obj.report_accuracy_metrics else None),
                run_eagerly=flags_obj.run_eagerly)

    callbacks = common.get_callbacks(
        learning_rate_schedule, imagenet_preprocessing.NUM_IMAGES['train'])

    train_steps = (imagenet_preprocessing.NUM_IMAGES['train'] //
                   flags_obj.batch_size)
    train_epochs = flags_obj.train_epochs

    if flags_obj.train_steps:
        train_steps = min(flags_obj.train_steps, train_steps)
        train_epochs = 1

    num_eval_steps = (imagenet_preprocessing.NUM_IMAGES['validation'] //
                      flags_obj.batch_size)

    validation_data = eval_input_dataset
    if flags_obj.skip_eval:
        # Only build the training graph. This reduces memory usage introduced by
        # control flow ops in layers that have different implementations for
        # training and inference (e.g., batch norm).
        if flags_obj.set_learning_phase_to_train:
            # TODO(haoyuzhang): Understand slowdown of setting learning phase when
            # not using distribution strategy.
            tf.keras.backend.set_learning_phase(1)
        num_eval_steps = None
        validation_data = None

    if not strategy and flags_obj.explicit_gpu_placement:
        # TODO(b/135607227): Add device scope automatically in Keras training loop
        # when not using distribition strategy.
        no_dist_strat_device = tf.device('/device:GPU:0')
        no_dist_strat_device.__enter__()

    history = model.fit(train_input_dataset,
                        epochs=train_epochs,
                        steps_per_epoch=train_steps // 15,
                        callbacks=callbacks,
                        validation_steps=num_eval_steps,
                        validation_data=validation_data,
                        validation_freq=flags_obj.epochs_between_evals,
                        verbose=1)

    eval_output = None
    if not flags_obj.skip_eval:
        eval_output = model.evaluate(eval_input_dataset,
                                     steps=num_eval_steps,
                                     verbose=1)

    if not strategy and flags_obj.explicit_gpu_placement:
        no_dist_strat_device.__exit__()

    stats = common.build_stats(history, eval_output, callbacks)
    return stats
Exemple #5
0
def run(flags_obj):
    """Run ResNet ImageNet training and eval loop using custom training loops.

  Args:
    flags_obj: An object containing parsed flag values.

  Raises:
    ValueError: If fp16 is passed as it is not currently supported.

  Returns:
    Dictionary of training and eval stats.
  """
    keras_utils.set_session_config(enable_eager=flags_obj.enable_eager,
                                   enable_xla=flags_obj.enable_xla)

    dtype = flags_core.get_tf_dtype(flags_obj)
    if dtype == tf.bfloat16:
        policy = tf.compat.v2.keras.mixed_precision.experimental.Policy(
            'mixed_bfloat16')
        tf.compat.v2.keras.mixed_precision.experimental.set_policy(policy)

    # TODO(anj-s): Set data_format without using Keras.
    data_format = flags_obj.data_format
    if data_format is None:
        data_format = ('channels_first'
                       if tf.test.is_built_with_cuda() else 'channels_last')
    tf.keras.backend.set_image_data_format(data_format)

    strategy = distribution_utils.get_distribution_strategy(
        distribution_strategy=flags_obj.distribution_strategy,
        num_gpus=flags_obj.num_gpus,
        num_workers=distribution_utils.configure_cluster(),
        all_reduce_alg=flags_obj.all_reduce_alg,
        num_packs=flags_obj.num_packs,
        tpu_address=flags_obj.tpu)

    train_ds, test_ds = get_input_dataset(flags_obj, strategy)
    per_epoch_steps, train_epochs, eval_steps = get_num_train_iterations(
        flags_obj)
    steps_per_loop = min(flags_obj.steps_per_loop, per_epoch_steps)
    logging.info(
        "Training %d epochs, each epoch has %d steps, "
        "total steps: %d; Eval %d steps", train_epochs, per_epoch_steps,
        train_epochs * per_epoch_steps, eval_steps)

    time_callback = keras_utils.TimeHistory(flags_obj.batch_size,
                                            flags_obj.log_steps)

    with distribution_utils.get_strategy_scope(strategy):
        model = resnet_model.resnet50(
            num_classes=imagenet_preprocessing.NUM_CLASSES,
            batch_size=flags_obj.batch_size,
            use_l2_regularizer=not flags_obj.single_l2_loss_op)

        lr_schedule = common.PiecewiseConstantDecayWithWarmup(
            batch_size=flags_obj.batch_size,
            epoch_size=imagenet_preprocessing.NUM_IMAGES['train'],
            warmup_epochs=common.LR_SCHEDULE[0][1],
            boundaries=list(p[1] for p in common.LR_SCHEDULE[1:]),
            multipliers=list(p[0] for p in common.LR_SCHEDULE),
            compute_lr_on_cpu=True)
        optimizer = common.get_optimizer(lr_schedule)

        if flags_obj.fp16_implementation == 'graph_rewrite':
            if not flags_obj.use_tf_function:
                raise ValueError(
                    '--fp16_implementation=graph_rewrite requires '
                    '--use_tf_function to be true')
            loss_scale = flags_core.get_loss_scale(flags_obj,
                                                   default_for_fp16=128)
            optimizer = tf.train.experimental.enable_mixed_precision_graph_rewrite(
                optimizer, loss_scale)

        train_loss = tf.keras.metrics.Mean('train_loss', dtype=tf.float32)
        training_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(
            'training_accuracy', dtype=tf.float32)
        test_loss = tf.keras.metrics.Mean('test_loss', dtype=tf.float32)
        test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(
            'test_accuracy', dtype=tf.float32)

        trainable_variables = model.trainable_variables

        def step_fn(inputs):
            """Per-Replica StepFn."""
            images, labels = inputs
            with tf.GradientTape() as tape:
                logits = model(images, training=True)

                prediction_loss = tf.keras.losses.sparse_categorical_crossentropy(
                    labels, logits)
                loss = tf.reduce_sum(prediction_loss) * (1.0 /
                                                         flags_obj.batch_size)
                num_replicas = tf.distribute.get_strategy(
                ).num_replicas_in_sync

                if flags_obj.single_l2_loss_op:
                    filtered_variables = [
                        tf.reshape(v, (-1, )) for v in trainable_variables
                        if 'bn' not in v.name
                    ]
                    l2_loss = resnet_model.L2_WEIGHT_DECAY * 2 * tf.nn.l2_loss(
                        tf.concat(filtered_variables, axis=0))
                    loss += (l2_loss / num_replicas)
                else:
                    loss += (tf.reduce_sum(model.losses) / num_replicas)

                # Scale the loss
                if flags_obj.dtype == "fp16":
                    loss = optimizer.get_scaled_loss(loss)

            grads = tape.gradient(loss, trainable_variables)

            # Unscale the grads
            if flags_obj.dtype == "fp16":
                grads = optimizer.get_unscaled_gradients(grads)

            optimizer.apply_gradients(zip(grads, trainable_variables))
            train_loss.update_state(loss)
            training_accuracy.update_state(labels, logits)

        @tf.function
        def train_steps(iterator, steps):
            """Performs distributed training steps in a loop."""
            for _ in tf.range(steps):
                strategy.experimental_run_v2(step_fn, args=(next(iterator), ))

        def train_single_step(iterator):
            if strategy:
                strategy.experimental_run_v2(step_fn, args=(next(iterator), ))
            else:
                return step_fn(next(iterator))

        def test_step(iterator):
            """Evaluation StepFn."""
            def step_fn(inputs):
                images, labels = inputs
                logits = model(images, training=False)
                loss = tf.keras.losses.sparse_categorical_crossentropy(
                    labels, logits)
                loss = tf.reduce_sum(loss) * (1.0 / flags_obj.batch_size)
                test_loss.update_state(loss)
                test_accuracy.update_state(labels, logits)

            if strategy:
                strategy.experimental_run_v2(step_fn, args=(next(iterator), ))
            else:
                step_fn(next(iterator))

        if flags_obj.use_tf_function:
            train_single_step = tf.function(train_single_step)
            test_step = tf.function(test_step)

        train_iter = iter(train_ds)
        time_callback.on_train_begin()
        for epoch in range(train_epochs):
            train_loss.reset_states()
            training_accuracy.reset_states()

            steps_in_current_epoch = 0
            while steps_in_current_epoch < per_epoch_steps:
                time_callback.on_batch_begin(steps_in_current_epoch +
                                             epoch * per_epoch_steps)
                steps = _steps_to_run(steps_in_current_epoch, per_epoch_steps,
                                      steps_per_loop)
                if steps == 1:
                    train_single_step(train_iter)
                else:
                    # Converts steps to a Tensor to avoid tf.function retracing.
                    train_steps(train_iter,
                                tf.convert_to_tensor(steps, dtype=tf.int32))
                time_callback.on_batch_end(steps_in_current_epoch +
                                           epoch * per_epoch_steps)
                steps_in_current_epoch += steps

            logging.info('Training loss: %s, accuracy: %s at epoch %d',
                         train_loss.result().numpy(),
                         training_accuracy.result().numpy(), epoch + 1)

            if (not flags_obj.skip_eval
                    and (epoch + 1) % flags_obj.epochs_between_evals == 0):
                test_loss.reset_states()
                test_accuracy.reset_states()

                test_iter = iter(test_ds)
                for _ in range(eval_steps):
                    test_step(test_iter)

                logging.info('Test loss: %s, accuracy: %s%% at epoch: %d',
                             test_loss.result().numpy(),
                             test_accuracy.result().numpy(), epoch + 1)

        time_callback.on_train_end()

        eval_result = None
        train_result = None
        if not flags_obj.skip_eval:
            eval_result = [
                test_loss.result().numpy(),
                test_accuracy.result().numpy()
            ]
            train_result = [
                train_loss.result().numpy(),
                training_accuracy.result().numpy()
            ]

        stats = build_stats(train_result, eval_result, time_callback)
        return stats
Exemple #6
0
    def __init__(self, flags_obj, time_callback, epoch_steps):
        standard_runnable.StandardTrainable.__init__(
            self, flags_obj.use_tf_while_loop, flags_obj.use_tf_function)
        standard_runnable.StandardEvaluable.__init__(self,
                                                     flags_obj.use_tf_function)

        self.strategy = tf.distribute.get_strategy()
        self.flags_obj = flags_obj
        self.dtype = flags_core.get_tf_dtype(flags_obj)
        self.time_callback = time_callback

        # Input pipeline related
        batch_size = flags_obj.batch_size
        if batch_size % self.strategy.num_replicas_in_sync != 0:
            raise ValueError(
                'Batch size must be divisible by number of replicas : {}'.
                format(self.strategy.num_replicas_in_sync))

        # As auto rebatching is not supported in
        # `experimental_distribute_datasets_from_function()` API, which is
        # required when cloning dataset to multiple workers in eager mode,
        # we use per-replica batch size.
        self.batch_size = int(batch_size / self.strategy.num_replicas_in_sync)

        if self.flags_obj.use_synthetic_data:
            self.input_fn = common.get_synth_input_fn(
                height=imagenet_preprocessing.DEFAULT_IMAGE_SIZE,
                width=imagenet_preprocessing.DEFAULT_IMAGE_SIZE,
                num_channels=imagenet_preprocessing.NUM_CHANNELS,
                num_classes=imagenet_preprocessing.NUM_CLASSES,
                dtype=self.dtype,
                drop_remainder=True)
        else:
            self.input_fn = imagenet_preprocessing.input_fn

        resnet_model.change_keras_layer(flags_obj.use_tf_keras_layers)
        self.model = resnet_model.resnet50(
            num_classes=imagenet_preprocessing.NUM_CLASSES,
            batch_size=flags_obj.batch_size,
            use_l2_regularizer=not flags_obj.single_l2_loss_op)

        lr_schedule = common.PiecewiseConstantDecayWithWarmup(
            batch_size=flags_obj.batch_size,
            epoch_size=imagenet_preprocessing.NUM_IMAGES['train'],
            warmup_epochs=common.LR_SCHEDULE[0][1],
            boundaries=list(p[1] for p in common.LR_SCHEDULE[1:]),
            multipliers=list(p[0] for p in common.LR_SCHEDULE),
            compute_lr_on_cpu=True)
        self.optimizer = common.get_optimizer(lr_schedule)
        # Make sure iterations variable is created inside scope.
        self.global_step = self.optimizer.iterations

        if self.dtype == tf.float16:
            loss_scale = flags_core.get_loss_scale(flags_obj,
                                                   default_for_fp16=128)
            self.optimizer = (
                tf.keras.mixed_precision.experimental.LossScaleOptimizer(
                    self.optimizer, loss_scale))
        elif flags_obj.fp16_implementation == 'graph_rewrite':
            # `dtype` is still float32 in this case. We built the graph in float32
            # and let the graph rewrite change parts of it float16.
            if not flags_obj.use_tf_function:
                raise ValueError(
                    '--fp16_implementation=graph_rewrite requires '
                    '--use_tf_function to be true')
            loss_scale = flags_core.get_loss_scale(flags_obj,
                                                   default_for_fp16=128)
            self.optimizer = (
                tf.train.experimental.enable_mixed_precision_graph_rewrite(
                    self.optimizer, loss_scale))

        self.train_loss = tf.keras.metrics.Mean('train_loss', dtype=tf.float32)
        self.train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(
            'train_accuracy', dtype=tf.float32)
        self.test_loss = tf.keras.metrics.Mean('test_loss', dtype=tf.float32)
        self.test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(
            'test_accuracy', dtype=tf.float32)

        self.checkpoint = tf.train.Checkpoint(model=self.model,
                                              optimizer=self.optimizer)

        # Handling epochs.
        self.epoch_steps = epoch_steps
        self.epoch_helper = utils.EpochHelper(epoch_steps, self.global_step)
def run(flags_obj):
  """Run ResNet ImageNet training and eval loop using native Keras APIs.

  Args:
    flags_obj: An object containing parsed flag values.

  Raises:
    ValueError: If fp16 is passed as it is not currently supported.

  Returns:
    Dictionary of training and eval stats.
  """
  keras_utils.set_session_config(
      enable_eager=flags_obj.enable_eager,
      enable_xla=flags_obj.enable_xla)

  # Execute flag override logic for better model performance
  if flags_obj.tf_gpu_thread_mode:
    common.set_gpu_thread_mode_and_count(flags_obj)
  common.set_cudnn_batchnorm_mode()

  dtype = flags_core.get_tf_dtype(flags_obj)
  if dtype == tf.float16:
    loss_scale = flags_core.get_loss_scale(flags_obj, default_for_fp16=128)
    policy = tf.compat.v2.keras.mixed_precision.experimental.Policy(
        'mixed_float16', loss_scale=loss_scale)
    tf.compat.v2.keras.mixed_precision.experimental.set_policy(policy)
    if not keras_utils.is_v2_0():
      raise ValueError('--dtype=fp16 is not supported in TensorFlow 1.')
  elif dtype == tf.bfloat16:
    policy = tf.compat.v2.keras.mixed_precision.experimental.Policy(
        'mixed_bfloat16')
    tf.compat.v2.keras.mixed_precision.experimental.set_policy(policy)

  data_format = flags_obj.data_format
  if data_format is None:
    data_format = ('channels_first'
                   if tf.test.is_built_with_cuda() else 'channels_last')
  tf.keras.backend.set_image_data_format(data_format)

  # Configures cluster spec for distribution strategy.
  num_workers = distribution_utils.configure_cluster(flags_obj.worker_hosts,
                                                     flags_obj.task_index)

  strategy = distribution_utils.get_distribution_strategy(
      distribution_strategy=flags_obj.distribution_strategy,
      num_gpus=flags_obj.num_gpus,
      num_workers=num_workers,
      all_reduce_alg=flags_obj.all_reduce_alg,
      num_packs=flags_obj.num_packs,
      tpu_address=flags_obj.tpu)

  if strategy:
    # flags_obj.enable_get_next_as_optional controls whether enabling
    # get_next_as_optional behavior in DistributedIterator. If true, last
    # partial batch can be supported.
    strategy.extended.experimental_enable_get_next_as_optional = (
        flags_obj.enable_get_next_as_optional
    )

  strategy_scope = distribution_utils.get_strategy_scope(strategy)

  # pylint: disable=protected-access
  if flags_obj.use_synthetic_data:
    distribution_utils.set_up_synthetic_data()
    input_fn = common.get_synth_input_fn(
        height=imagenet_preprocessing.DEFAULT_IMAGE_SIZE,
        width=imagenet_preprocessing.DEFAULT_IMAGE_SIZE,
        num_channels=imagenet_preprocessing.NUM_CHANNELS,
        num_classes=imagenet_preprocessing.NUM_CLASSES,
        dtype=dtype,
        drop_remainder=True)
  else:
    distribution_utils.undo_set_up_synthetic_data()
    input_fn = imagenet_preprocessing.input_fn

  # When `enable_xla` is True, we always drop the remainder of the batches
  # in the dataset, as XLA-GPU doesn't support dynamic shapes.
  drop_remainder = flags_obj.enable_xla

  train_input_dataset = input_fn(
      is_training=True,
      data_dir=flags_obj.data_dir,
      batch_size=flags_obj.batch_size,
      num_epochs=flags_obj.train_epochs,
      parse_record_fn=imagenet_preprocessing.parse_record,
      datasets_num_private_threads=flags_obj.datasets_num_private_threads,
      dtype=dtype,
      drop_remainder=drop_remainder,
      tf_data_experimental_slack=flags_obj.tf_data_experimental_slack,
      training_dataset_cache=flags_obj.training_dataset_cache,
  )

  eval_input_dataset = None
  if not flags_obj.skip_eval:
    eval_input_dataset = input_fn(
        is_training=False,
        data_dir=flags_obj.data_dir,
        batch_size=flags_obj.batch_size,
        num_epochs=flags_obj.train_epochs,
        parse_record_fn=imagenet_preprocessing.parse_record,
        dtype=dtype,
        drop_remainder=drop_remainder)

  lr_schedule = 0.1
  if flags_obj.use_tensor_lr:
    lr_schedule = common.PiecewiseConstantDecayWithWarmup(
        batch_size=flags_obj.batch_size,
        epoch_size=imagenet_preprocessing.NUM_IMAGES['train'],
        warmup_epochs=common.LR_SCHEDULE[0][1],
        boundaries=list(p[1] for p in common.LR_SCHEDULE[1:]),
        multipliers=list(p[0] for p in common.LR_SCHEDULE),
        compute_lr_on_cpu=True)

  with strategy_scope:
    optimizer = common.get_optimizer(lr_schedule)
    if flags_obj.fp16_implementation == 'graph_rewrite':
      # Note: when flags_obj.fp16_implementation == "graph_rewrite", dtype as
      # determined by flags_core.get_tf_dtype(flags_obj) would be 'float32'
      # which will ensure tf.compat.v2.keras.mixed_precision and
      # tf.train.experimental.enable_mixed_precision_graph_rewrite do not double
      # up.
      optimizer = tf.train.experimental.enable_mixed_precision_graph_rewrite(
          optimizer)

    # TODO(hongkuny): Remove trivial model usage and move it to benchmark.
    if flags_obj.use_trivial_model:
      model = trivial_model.trivial_model(
          imagenet_preprocessing.NUM_CLASSES)
    else:
      model = resnet_model.resnet50(
          num_classes=imagenet_preprocessing.NUM_CLASSES)

    # TODO(b/138957587): Remove when force_v2_in_keras_compile is on longer
    # a valid arg for this model. Also remove as a valid flag.
    if flags_obj.force_v2_in_keras_compile is not None:
      model.compile(
          loss='sparse_categorical_crossentropy',
          optimizer=optimizer,
          metrics=(['sparse_categorical_accuracy']
                   if flags_obj.report_accuracy_metrics else None),
          run_eagerly=flags_obj.run_eagerly,
          experimental_run_tf_function=flags_obj.force_v2_in_keras_compile)
    else:
      model.compile(
          loss='sparse_categorical_crossentropy',
          optimizer=optimizer,
          metrics=(['sparse_categorical_accuracy']
                   if flags_obj.report_accuracy_metrics else None),
          run_eagerly=flags_obj.run_eagerly)

  steps_per_epoch = (
      imagenet_preprocessing.NUM_IMAGES['train'] // flags_obj.batch_size)
  train_epochs = flags_obj.train_epochs

  callbacks = common.get_callbacks(steps_per_epoch,
                                   common.learning_rate_schedule)
  if flags_obj.enable_checkpoint_and_export:
    ckpt_full_path = os.path.join(flags_obj.model_dir, 'model.ckpt-{epoch:04d}')
    callbacks.append(tf.keras.callbacks.ModelCheckpoint(ckpt_full_path,
                                                        save_weights_only=True))

  # if mutliple epochs, ignore the train_steps flag.
  if train_epochs <= 1 and flags_obj.train_steps:
    steps_per_epoch = min(flags_obj.train_steps, steps_per_epoch)
    train_epochs = 1

  num_eval_steps = (
      imagenet_preprocessing.NUM_IMAGES['validation'] // flags_obj.batch_size)

  validation_data = eval_input_dataset
  if flags_obj.skip_eval:
    # Only build the training graph. This reduces memory usage introduced by
    # control flow ops in layers that have different implementations for
    # training and inference (e.g., batch norm).
    if flags_obj.set_learning_phase_to_train:
      # TODO(haoyuzhang): Understand slowdown of setting learning phase when
      # not using distribution strategy.
      tf.keras.backend.set_learning_phase(1)
    num_eval_steps = None
    validation_data = None

  if not strategy and flags_obj.explicit_gpu_placement:
    # TODO(b/135607227): Add device scope automatically in Keras training loop
    # when not using distribition strategy.
    no_dist_strat_device = tf.device('/device:GPU:0')
    no_dist_strat_device.__enter__()

  history = model.fit(train_input_dataset,
                      epochs=train_epochs,
                      steps_per_epoch=steps_per_epoch,
                      callbacks=callbacks,
                      validation_steps=num_eval_steps,
                      validation_data=validation_data,
                      validation_freq=flags_obj.epochs_between_evals,
                      verbose=2)
  if flags_obj.enable_checkpoint_and_export:
    if dtype == tf.bfloat16:
      logging.warning("Keras model.save does not support bfloat16 dtype.")
    else:
      # Keras model.save assumes a float32 input designature.
      export_path = os.path.join(flags_obj.model_dir, 'saved_model')
      model.save(export_path, include_optimizer=False)

  eval_output = None
  if not flags_obj.skip_eval:
    eval_output = model.evaluate(eval_input_dataset,
                                 steps=num_eval_steps,
                                 verbose=2)

  if not strategy and flags_obj.explicit_gpu_placement:
    no_dist_strat_device.__exit__()

  stats = common.build_stats(history, eval_output, callbacks)
  return stats
def run(flags_obj):
    """Run ResNet ImageNet training and eval loop using native Keras APIs.

  Args:
    flags_obj: An object containing parsed flag values.

  Raises:
    ValueError: If fp16 is passed as it is not currently supported.
    NotImplementedError: If some features are not currently supported.

  Returns:
    Dictionary of training and eval stats.
  """
    keras_utils.set_session_config(enable_eager=flags_obj.enable_eager,
                                   enable_xla=flags_obj.enable_xla)

    # Execute flag override logic for better model performance
    if flags_obj.tf_gpu_thread_mode:
        keras_utils.set_gpu_thread_mode_and_count(
            per_gpu_thread_count=flags_obj.per_gpu_thread_count,
            gpu_thread_mode=flags_obj.tf_gpu_thread_mode,
            num_gpus=flags_obj.num_gpus,
            datasets_num_private_threads=flags_obj.datasets_num_private_threads
        )
    common.set_cudnn_batchnorm_mode()

    dtype = flags_core.get_tf_dtype(flags_obj)
    performance.set_mixed_precision_policy(
        flags_core.get_tf_dtype(flags_obj),
        flags_core.get_loss_scale(flags_obj, default_for_fp16=128))

    data_format = flags_obj.data_format
    if data_format is None:
        data_format = ('channels_first'
                       if tf.test.is_built_with_cuda() else 'channels_last')
    tf.keras.backend.set_image_data_format(data_format)

    # Configures cluster spec for distribution strategy.
    _ = distribution_utils.configure_cluster(flags_obj.worker_hosts,
                                             flags_obj.task_index)

    strategy = distribution_utils.get_distribution_strategy(
        distribution_strategy=flags_obj.distribution_strategy,
        num_gpus=flags_obj.num_gpus,
        all_reduce_alg=flags_obj.all_reduce_alg,
        num_packs=flags_obj.num_packs,
        tpu_address=flags_obj.tpu)

    if strategy:
        # flags_obj.enable_get_next_as_optional controls whether enabling
        # get_next_as_optional behavior in DistributedIterator. If true, last
        # partial batch can be supported.
        strategy.extended.experimental_enable_get_next_as_optional = (
            flags_obj.enable_get_next_as_optional)

    strategy_scope = distribution_utils.get_strategy_scope(strategy)

    # pylint: disable=protected-access
    if flags_obj.use_synthetic_data:
        distribution_utils.set_up_synthetic_data()
        input_fn = common.get_synth_input_fn(
            height=imagenet_preprocessing.DEFAULT_IMAGE_SIZE,
            width=imagenet_preprocessing.DEFAULT_IMAGE_SIZE,
            num_channels=imagenet_preprocessing.NUM_CHANNELS,
            num_classes=imagenet_preprocessing.NUM_CLASSES,
            dtype=dtype,
            drop_remainder=True)
    else:
        distribution_utils.undo_set_up_synthetic_data()
        input_fn = imagenet_preprocessing.input_fn

    # When `enable_xla` is True, we always drop the remainder of the batches
    # in the dataset, as XLA-GPU doesn't support dynamic shapes.
    drop_remainder = flags_obj.enable_xla

    # Current resnet_model.resnet50 input format is always channel-last.
    # We use keras_application mobilenet model which input format is depends on
    # the keras beckend image data format.
    # This use_keras_image_data_format flags indicates whether image preprocessor
    # output format should be same as the keras backend image data format or just
    # channel-last format.
    use_keras_image_data_format = (flags_obj.model == 'mobilenet')
    train_input_dataset = input_fn(
        is_training=True,
        data_dir=flags_obj.data_dir,
        batch_size=flags_obj.batch_size,
        parse_record_fn=imagenet_preprocessing.get_parse_record_fn(
            use_keras_image_data_format=use_keras_image_data_format),
        datasets_num_private_threads=flags_obj.datasets_num_private_threads,
        dtype=dtype,
        drop_remainder=drop_remainder,
        tf_data_experimental_slack=flags_obj.tf_data_experimental_slack,
        training_dataset_cache=flags_obj.training_dataset_cache,
    )

    eval_input_dataset = None
    if not flags_obj.skip_eval:
        eval_input_dataset = input_fn(
            is_training=False,
            data_dir=flags_obj.data_dir,
            batch_size=flags_obj.batch_size,
            parse_record_fn=imagenet_preprocessing.get_parse_record_fn(
                use_keras_image_data_format=use_keras_image_data_format),
            dtype=dtype,
            drop_remainder=drop_remainder)

    lr_schedule = common.PiecewiseConstantDecayWithWarmup(
        batch_size=flags_obj.batch_size,
        epoch_size=imagenet_preprocessing.NUM_IMAGES['train'],
        warmup_epochs=common.LR_SCHEDULE[0][1],
        boundaries=list(p[1] for p in common.LR_SCHEDULE[1:]),
        multipliers=list(p[0] for p in common.LR_SCHEDULE),
        compute_lr_on_cpu=True)
    steps_per_epoch = (imagenet_preprocessing.NUM_IMAGES['train'] //
                       flags_obj.batch_size)

    with strategy_scope:
        if flags_obj.optimizer == 'resnet50_default':
            optimizer = common.get_optimizer(lr_schedule)
        elif flags_obj.optimizer == 'mobilenet_default':
            initial_learning_rate = \
                flags_obj.initial_learning_rate_per_sample * flags_obj.batch_size
            optimizer = tf.keras.optimizers.SGD(
                learning_rate=tf.keras.optimizers.schedules.ExponentialDecay(
                    initial_learning_rate,
                    decay_steps=steps_per_epoch *
                    flags_obj.num_epochs_per_decay,
                    decay_rate=flags_obj.lr_decay_factor,
                    staircase=True),
                momentum=0.9)
        if flags_obj.fp16_implementation == 'graph_rewrite':
            # Note: when flags_obj.fp16_implementation == "graph_rewrite", dtype as
            # determined by flags_core.get_tf_dtype(flags_obj) would be 'float32'
            # which will ensure tf.compat.v2.keras.mixed_precision and
            # tf.train.experimental.enable_mixed_precision_graph_rewrite do not double
            # up.
            optimizer = tf.train.experimental.enable_mixed_precision_graph_rewrite(
                optimizer)

        # TODO(hongkuny): Remove trivial model usage and move it to benchmark.
        if flags_obj.use_trivial_model:
            model = trivial_model.trivial_model(
                imagenet_preprocessing.NUM_CLASSES)
        elif flags_obj.model == 'resnet50_v1.5':
            resnet_model.change_keras_layer(flags_obj.use_tf_keras_layers)
            model = resnet_model.resnet50(
                num_classes=imagenet_preprocessing.NUM_CLASSES)
        elif flags_obj.model == 'mobilenet':
            # TODO(kimjaehong): Remove layers attribute when minimum TF version
            # support 2.0 layers by default.
            model = tf.keras.applications.mobilenet.MobileNet(
                weights=None,
                classes=imagenet_preprocessing.NUM_CLASSES,
                layers=tf.keras.layers)
        if flags_obj.pretrained_filepath:
            model.load_weights(flags_obj.pretrained_filepath)

        if flags_obj.pruning_method == 'polynomial_decay':
            if dtype != tf.float32:
                raise NotImplementedError(
                    'Pruning is currently only supported on dtype=tf.float32.')
            pruning_params = {
                'pruning_schedule':
                tfmot.sparsity.keras.PolynomialDecay(
                    initial_sparsity=flags_obj.pruning_initial_sparsity,
                    final_sparsity=flags_obj.pruning_final_sparsity,
                    begin_step=flags_obj.pruning_begin_step,
                    end_step=flags_obj.pruning_end_step,
                    frequency=flags_obj.pruning_frequency),
            }
            model = tfmot.sparsity.keras.prune_low_magnitude(
                model, **pruning_params)
        elif flags_obj.pruning_method:
            raise NotImplementedError(
                'Only polynomial_decay is currently supported.')

        model.compile(loss='sparse_categorical_crossentropy',
                      optimizer=optimizer,
                      metrics=(['sparse_categorical_accuracy']
                               if flags_obj.report_accuracy_metrics else None),
                      run_eagerly=flags_obj.run_eagerly)

    train_epochs = flags_obj.train_epochs

    callbacks = common.get_callbacks(
        steps_per_epoch=steps_per_epoch,
        pruning_method=flags_obj.pruning_method,
        enable_checkpoint_and_export=flags_obj.enable_checkpoint_and_export,
        model_dir=flags_obj.model_dir)

    # if mutliple epochs, ignore the train_steps flag.
    if train_epochs <= 1 and flags_obj.train_steps:
        steps_per_epoch = min(flags_obj.train_steps, steps_per_epoch)
        train_epochs = 1

    num_eval_steps = (imagenet_preprocessing.NUM_IMAGES['validation'] //
                      flags_obj.batch_size)

    validation_data = eval_input_dataset
    if flags_obj.skip_eval:
        # Only build the training graph. This reduces memory usage introduced by
        # control flow ops in layers that have different implementations for
        # training and inference (e.g., batch norm).
        if flags_obj.set_learning_phase_to_train:
            # TODO(haoyuzhang): Understand slowdown of setting learning phase when
            # not using distribution strategy.
            tf.keras.backend.set_learning_phase(1)
        num_eval_steps = None
        validation_data = None

    if not strategy and flags_obj.explicit_gpu_placement:
        # TODO(b/135607227): Add device scope automatically in Keras training loop
        # when not using distribition strategy.
        no_dist_strat_device = tf.device('/device:GPU:0')
        no_dist_strat_device.__enter__()

    history = model.fit(train_input_dataset,
                        epochs=train_epochs,
                        steps_per_epoch=steps_per_epoch,
                        callbacks=callbacks,
                        validation_steps=num_eval_steps,
                        validation_data=validation_data,
                        validation_freq=flags_obj.epochs_between_evals,
                        verbose=2)

    eval_output = None
    if not flags_obj.skip_eval:
        eval_output = model.evaluate(eval_input_dataset,
                                     steps=num_eval_steps,
                                     verbose=2)

    if flags_obj.pruning_method:
        model = tfmot.sparsity.keras.strip_pruning(model)
    if flags_obj.enable_checkpoint_and_export:
        if dtype == tf.bfloat16:
            logging.warning(
                'Keras model.save does not support bfloat16 dtype.')
        else:
            # Keras model.save assumes a float32 input designature.
            export_path = os.path.join(flags_obj.model_dir, 'saved_model')
            model.save(export_path, include_optimizer=False)

    if not strategy and flags_obj.explicit_gpu_placement:
        no_dist_strat_device.__exit__()

    stats = common.build_stats(history, eval_output, callbacks)
    return stats
Exemple #9
0
def run(flags_obj):
    """Run ResNet ImageNet training and eval loop using native Keras APIs.

    Args:
        flags_obj: An object containing parsed flag values.

    Raises:
        ValueError: If fp16 is passed as it is not currently supported.

    Returns:
        Dictionary of training and eval stats.
    """
    keras_utils.set_session_config(enable_eager=flags_obj.enable_eager,
                                   enable_xla=flags_obj.enable_xla)

    # Execute flag override logic for better model performance
    if flags_obj.tf_gpu_thread_mode:
        keras_utils.set_gpu_thread_mode_and_count(
            per_gpu_thread_count=flags_obj.per_gpu_thread_count,
            gpu_thread_mode=flags_obj.tf_gpu_thread_mode,
            num_gpus=flags_obj.num_gpus,
            datasets_num_private_threads=flags_obj.datasets_num_private_threads
        )
    common.set_cudnn_batchnorm_mode()

    dtype = flags_core.get_tf_dtype(flags_obj)
    if dtype == tf.float16:
        loss_scale = flags_core.get_loss_scale(flags_obj, default_for_fp16=128)
        policy = tf.compat.v2.keras.mixed_precision.experimental.Policy(
            'mixed_float16', loss_scale=loss_scale)
        tf.compat.v2.keras.mixed_precision.experimental.set_policy(policy)
        if not keras_utils.is_v2_0():
            raise ValueError('--dtype=fp16 is not supported in TensorFlow 1.')
    elif dtype == tf.bfloat16:
        policy = tf.compat.v2.keras.mixed_precision.experimental.Policy(
            'mixed_bfloat16')
        tf.compat.v2.keras.mixed_precision.experimental.set_policy(policy)

    data_format = flags_obj.data_format
    if data_format is None:
        data_format = ('channels_first'
                       if tf.test.is_built_with_cuda() else 'channels_last')
    tf.keras.backend.set_image_data_format(data_format)

    preprocessing_seed = 12345

    # pylint: disable=protected-access
    if flags_obj.use_synthetic_data:
        distribution_utils.set_up_synthetic_data()
        input_fn = common.get_synth_input_fn(
            height=imagenet_preprocessing.DEFAULT_IMAGE_SIZE,
            width=imagenet_preprocessing.DEFAULT_IMAGE_SIZE,
            num_channels=imagenet_preprocessing.NUM_CHANNELS,
            num_classes=imagenet_preprocessing.NUM_CLASSES,
            dtype=dtype,
            drop_remainder=True)
    else:
        distribution_utils.undo_set_up_synthetic_data()
        input_fn = imagenet_preprocessing.input_fn

    # When `enable_xla` is True, we always drop the remainder of the batches
    # in the dataset, as XLA-GPU doesn't support dynamic shapes.
    drop_remainder = flags_obj.enable_xla

    train_input_dataset = input_fn(
        is_training=True,
        data_dir=flags_obj.data_dir,
        batch_size=flags_obj.batch_size,
        num_epochs=flags_obj.train_epochs,
        parse_record_fn=imagenet_preprocessing.parse_record,
        datasets_num_private_threads=flags_obj.datasets_num_private_threads,
        dtype=dtype,
        drop_remainder=drop_remainder,
        random_seed=preprocessing_seed,  #addition
        num_workers=current_cluster_size(),  #addition
        worker_ID=current_rank(),  #addition
        tf_data_experimental_slack=flags_obj.tf_data_experimental_slack,
        training_dataset_cache=flags_obj.training_dataset_cache,
    )

    eval_input_dataset = None
    if not flags_obj.skip_eval:
        eval_input_dataset = input_fn(
            is_training=False,
            data_dir=flags_obj.data_dir,
            batch_size=flags_obj.batch_size,
            num_epochs=flags_obj.train_epochs,
            parse_record_fn=imagenet_preprocessing.parse_record,
            dtype=dtype,
            drop_remainder=drop_remainder)

    lr_schedule = 0.1
    if flags_obj.use_tensor_lr:
        lr_schedule = common.PiecewiseConstantDecayWithWarmup(
            batch_size=flags_obj.batch_size,
            epoch_size=imagenet_preprocessing.NUM_IMAGES['train'],
            warmup_epochs=common.LR_SCHEDULE[0][1],
            boundaries=list(p[1] for p in common.LR_SCHEDULE[1:]),
            multipliers=list(p[0] for p in common.LR_SCHEDULE),
            compute_lr_on_cpu=True)

    # Build KungFu optimizer
    opt = common.get_optimizer(lr_schedule)
    # logging.info(opt.__dict__)
    optimizer = SynchronousSGDOptimizer(opt, reshape=False, use_locking=True)
    optimizer._hyper = opt._hyper
    # logging.info(optimizer.__dict__)

    if flags_obj.fp16_implementation == 'graph_rewrite':
        # Note: when flags_obj.fp16_implementation == "graph_rewrite", dtype as
        # determined by flags_core.get_tf_dtype(flags_obj) would be 'float32'
        # which will ensure tf.compat.v2.keras.mixed_precision and
        # tf.train.experimental.enable_mixed_precision_graph_rewrite do not double
        # up.
        optimizer = tf.train.experimental.enable_mixed_precision_graph_rewrite(
            optimizer)

    # TODO(hongkuny): Remove trivial model usage and move it to benchmark.
    if flags_obj.use_trivial_model:
        model = trivial_model.trivial_model(imagenet_preprocessing.NUM_CLASSES)
    else:
        model = resnet_model.resnet50(
            num_classes=imagenet_preprocessing.NUM_CLASSES)

    # TODO(b/138957587): Remove when force_v2_in_keras_compile is on longer
    # a valid arg for this model. Also remove as a valid flag.

    metrics = (['sparse_categorical_accuracy'])
    metrics.append('sparse_top_k_categorical_accuracy')

    if flags_obj.force_v2_in_keras_compile is not None:
        model.compile(
            loss='sparse_categorical_crossentropy',
            optimizer=optimizer,
            metrics=metrics,
            run_eagerly=flags_obj.run_eagerly,
            experimental_run_tf_function=flags_obj.force_v2_in_keras_compile)
    else:
        model.compile(loss='sparse_categorical_crossentropy',
                      optimizer=optimizer,
                      metrics=metrics,
                      run_eagerly=flags_obj.run_eagerly)

    # adjust number of steps
    cluster_size = current_cluster_size()
    steps_per_epoch = (imagenet_preprocessing.NUM_IMAGES['train'] //
                       flags_obj.batch_size)
    steps_per_epoch = steps_per_epoch // cluster_size

    train_epochs = flags_obj.train_epochs
    callbacks = common.get_callbacks(steps_per_epoch, current_rank(),
                                     cluster_size,
                                     common.learning_rate_schedule)

    # Broadcast variables for KungFu
    callbacks.append(BroadcastGlobalVariablesCallback())

    # Checkpoint callback only on worker 0
    if flags_obj.enable_checkpoint_and_export and current_rank() == 0:
        ckpt_full_path = os.path.join(flags_obj.model_dir,
                                      'model.ckpt-{epoch:04d}')
        callbacks.append(
            tf.keras.callbacks.ModelCheckpoint(ckpt_full_path,
                                               save_weights_only=True))

    if flags_obj.train_steps:
        steps_per_epoch = min(flags_obj.train_steps, steps_per_epoch)

    num_eval_steps = (imagenet_preprocessing.NUM_IMAGES['validation'] //
                      flags_obj.batch_size)

    validation_data = eval_input_dataset
    if flags_obj.skip_eval:
        # Only build the training graph. This reduces memory usage introduced by
        # control flow ops in layers that have different implementations for
        # training and inference (e.g., batch norm).
        if flags_obj.set_learning_phase_to_train:
            # TODO(haoyuzhang): Understand slowdown of setting learning phase when
            # not using distribution strategy.
            tf.keras.backend.set_learning_phase(1)
            num_eval_steps = None
            validation_data = None

    history = model.fit(train_input_dataset,
                        epochs=train_epochs,
                        steps_per_epoch=steps_per_epoch,
                        callbacks=callbacks,
                        validation_steps=num_eval_steps,
                        validation_data=validation_data,
                        validation_freq=flags_obj.epochs_between_evals,
                        verbose=2)

    # Checkpoint only on 0th worker
    if flags_obj.enable_checkpoint_and_export and current_rank() == 0:
        if dtype == tf.bfloat16:
            logging.warning(
                "Keras model.save does not support bfloat16 dtype.")
        else:
            # Keras model.save assumes a float32 input designature.
            export_path = os.path.join(flags_obj.model_dir, 'saved_model')
            model.save(export_path, include_optimizer=False)

    eval_output = None
    if not flags_obj.skip_eval:
        eval_output = model.evaluate(eval_input_dataset,
                                     steps=num_eval_steps,
                                     verbose=2)

    stats = common.build_stats(history, eval_output, callbacks)
    return stats
Exemple #10
0
                     mode=experimental.Mode(args.mode),
                     context_dir=str(pathlib.Path.cwd()))

    lr_schedule = ctx.get_hparam("learning_rate")
    if ctx.get_data_config().get("use_tensor_lr", False):
        lr_schedule = common.PiecewiseConstantDecayWithWarmup(
            batch_size=ctx.get_per_slot_batch_size(),
            epoch_size=imagenet_preprocessing.NUM_IMAGES["train"],
            warmup_epochs=common.LR_SCHEDULE[0][1],
            boundaries=[p[1] for p in common.LR_SCHEDULE[1:]],
            multipliers=[p[0] for p in common.LR_SCHEDULE],
            compute_lr_on_cpu=True,
        )
    optimizer = common.get_optimizer(lr_schedule)

    model = resnet_model.resnet50(
        num_classes=imagenet_preprocessing.NUM_CLASSES)
    model = ctx.wrap_model(model)

    model.compile(
        loss="sparse_categorical_crossentropy",
        optimizer=optimizer,
        metrics=(["sparse_categorical_accuracy"]),
    )

    data_shape = (
        ctx.get_per_slot_batch_size(),
        imagenet_preprocessing.DEFAULT_IMAGE_SIZE,
        imagenet_preprocessing.DEFAULT_IMAGE_SIZE,
        imagenet_preprocessing.NUM_CHANNELS,
    )
    labels_shape = (ctx.get_per_slot_batch_size(), )