Exemple #1
0
    def _parse_eval_data(self, data):
        """Generates images and labels that are usable for model evaluation.

    Args:
      data: the decoded tensor dictionary from TfExampleDecoder.

    Returns:
      images: the image tensor.
      labels: a dict of Tensors that contains labels.
    """
        image = tf.cast(data['image'], dtype=tf.float32)
        boxes = data['groundtruth_boxes']
        classes = data['groundtruth_classes']

        image_shape = tf.shape(input=image)[0:2]
        # Converts boxes from normalized coordinates to pixel coordinates.
        boxes = box_ops.denormalize_boxes(boxes, image_shape)

        # Resizes and crops image.
        image, image_info = preprocess_ops.resize_and_crop_image(
            image, [self._output_height, self._output_width],
            padded_size=[self._output_height, self._output_width],
            aug_scale_min=1.0,
            aug_scale_max=1.0)
        unpad_image_shape = tf.cast(tf.shape(image), tf.float32)

        # Resizes and crops boxes.
        image_scale = image_info[2, :]
        offset = image_info[3, :]
        boxes = preprocess_ops.resize_and_crop_boxes(boxes, image_scale,
                                                     image_info[1, :], offset)

        # Filters out ground truth boxes that are all zeros.
        indices = box_ops.get_non_empty_box_indices(boxes)
        boxes = tf.gather(boxes, indices)
        classes = tf.gather(classes, indices)

        labels = self._build_label(unpad_image_shape=unpad_image_shape,
                                   boxes=boxes,
                                   classes=classes,
                                   image_info=image_info,
                                   data=data)

        if self._bgr_ordering:
            red, green, blue = tf.unstack(image, num=3, axis=2)
            image = tf.stack([blue, green, red], axis=2)

        image = preprocess_ops.normalize_image(image=image,
                                               offset=self._channel_means,
                                               scale=self._channel_stds)

        image = tf.cast(image, self._dtype)

        return image, labels
Exemple #2
0
    def _build_inputs(self, image):
        """Builds classification model inputs for serving."""

        # Normalizes image with mean and std pixel values.
        image = preprocess_ops.normalize_image(image,
                                               offset=MEAN_RGB,
                                               scale=STDDEV_RGB)

        image, image_info = preprocess_ops.resize_and_crop_image(
            image,
            self._input_image_size,
            padded_size=self._input_image_size,
            aug_scale_min=1.0,
            aug_scale_max=1.0)
        return image, image_info
Exemple #3
0
    def _build_inputs(self, image):
        """Builds detection model inputs for serving."""
        model_params = self.params.task.model
        # Normalizes image with mean and std pixel values.
        image = preprocess_ops.normalize_image(image,
                                               offset=MEAN_RGB,
                                               scale=STDDEV_RGB)

        image, image_info = preprocess_ops.resize_and_crop_image(
            image,
            self._input_image_size,
            padded_size=preprocess_ops.compute_padded_size(
                self._input_image_size, 2**model_params.max_level),
            aug_scale_min=1.0,
            aug_scale_max=1.0)
        anchor_boxes = self._build_anchor_boxes()

        return image, anchor_boxes, image_info
    def test_resize_and_crop_image_rectangluar_case(
            self, input_height, input_width, desired_height, desired_width,
            stride, scale_y, scale_x, output_height, output_width):
        image = tf.convert_to_tensor(
            np.random.rand(input_height, input_width, 3))

        desired_size = (desired_height, desired_width)
        resized_image, image_info = preprocess_ops.resize_and_crop_image(
            image,
            desired_size=desired_size,
            padded_size=preprocess_ops.compute_padded_size(
                desired_size, stride))
        resized_image_shape = tf.shape(resized_image)

        self.assertAllEqual([output_height, output_width, 3],
                            resized_image_shape.numpy())
        self.assertNDArrayNear(
            [[input_height, input_width], [desired_height, desired_width],
             [scale_y, scale_x], [0.0, 0.0]], image_info.numpy(), 1e-5)
    def _parse_eval_data(self, data):
        """Parses data for training and evaluation."""
        image, label = self._prepare_image_and_label(data)
        # The label is first offset by +1 and then padded with 0.
        label += 1
        label = tf.expand_dims(label, axis=3)

        # Resizes and crops image.
        image, image_info = preprocess_ops.resize_and_crop_image(
            image, self._output_size, self._output_size)

        if self._resize_eval_groundtruth:
            # Resizes eval masks to match input image sizes. In that case, mean IoU
            # is computed on output_size not the original size of the images.
            image_scale = image_info[2, :]
            offset = image_info[3, :]
            label = preprocess_ops.resize_and_crop_masks(
                label, image_scale, self._output_size, offset)
        else:
            label = tf.image.pad_to_bounding_box(
                label, 0, 0, self._groundtruth_padded_size[0],
                self._groundtruth_padded_size[1])

        label -= 1
        label = tf.where(tf.equal(label, -1),
                         self._ignore_label * tf.ones_like(label), label)
        label = tf.squeeze(label, axis=0)

        valid_mask = tf.not_equal(label, self._ignore_label)
        labels = {
            'masks': label,
            'valid_masks': valid_mask,
            'image_info': image_info
        }

        # Cast image as self._dtype
        image = tf.cast(image, dtype=self._dtype)

        return image, labels
    def _parse_data(self, data, is_training):
        image = data['image']

        if self._augmenter is not None and is_training:
            image = self._augmenter.distort(image)

        image = preprocess_ops.normalize_image(image)

        category_mask = tf.cast(
            data['groundtruth_panoptic_category_mask'][:, :, 0],
            dtype=tf.float32)
        instance_mask = tf.cast(
            data['groundtruth_panoptic_instance_mask'][:, :, 0],
            dtype=tf.float32)

        # Flips image randomly during training.
        if self._aug_rand_hflip and is_training:
            masks = tf.stack([category_mask, instance_mask], axis=0)
            image, _, masks = preprocess_ops.random_horizontal_flip(
                image=image, masks=masks)
            category_mask = masks[0]
            instance_mask = masks[1]

        # Resizes and crops image.
        image, image_info = preprocess_ops.resize_and_crop_image(
            image,
            self._output_size,
            self._output_size,
            aug_scale_min=self._aug_scale_min if is_training else 1.0,
            aug_scale_max=self._aug_scale_max if is_training else 1.0)

        category_mask = self._resize_and_crop_mask(category_mask,
                                                   image_info,
                                                   is_training=is_training)
        instance_mask = self._resize_and_crop_mask(instance_mask,
                                                   image_info,
                                                   is_training=is_training)

        (instance_centers_heatmap, instance_centers_offset,
         semantic_weights) = self._encode_centers_and_offets(
             instance_mask=instance_mask[:, :, 0])

        # Cast image and labels as self._dtype
        image = tf.cast(image, dtype=self._dtype)
        category_mask = tf.cast(category_mask, dtype=self._dtype)
        instance_mask = tf.cast(instance_mask, dtype=self._dtype)
        instance_centers_heatmap = tf.cast(instance_centers_heatmap,
                                           dtype=self._dtype)
        instance_centers_offset = tf.cast(instance_centers_offset,
                                          dtype=self._dtype)

        valid_mask = tf.not_equal(category_mask, self._ignore_label)
        things_mask = tf.not_equal(instance_mask, self._ignore_label)

        labels = {
            'category_mask': category_mask,
            'instance_mask': instance_mask,
            'instance_centers_heatmap': instance_centers_heatmap,
            'instance_centers_offset': instance_centers_offset,
            'semantic_weights': semantic_weights,
            'valid_mask': valid_mask,
            'things_mask': things_mask,
            'image_info': image_info
        }
        return image, labels
Exemple #7
0
    def _parse_train_data(self, data):
        """Generates images and labels that are usable for model training.

    We use random flip, random scaling (between 0.6 to 1.3), cropping,
    and color jittering as data augmentation

    Args:
        data: the decoded tensor dictionary from TfExampleDecoder.

    Returns:
        images: the image tensor.
        labels: a dict of Tensors that contains labels.
    """

        image = tf.cast(data['image'], dtype=tf.float32)
        boxes = data['groundtruth_boxes']
        classes = data['groundtruth_classes']

        image_shape = tf.shape(input=image)[0:2]

        if self._aug_rand_hflip:
            image, boxes, _ = preprocess_ops.random_horizontal_flip(
                image, boxes)

        # Image augmentation
        if not self._odapi_augmentation:
            # Color and lighting jittering
            if self._aug_rand_hue:
                image = tf.image.random_hue(image=image, max_delta=.02)
            if self._aug_rand_contrast:
                image = tf.image.random_contrast(image=image,
                                                 lower=0.8,
                                                 upper=1.25)
            if self._aug_rand_saturation:
                image = tf.image.random_saturation(image=image,
                                                   lower=0.8,
                                                   upper=1.25)
            if self._aug_rand_brightness:
                image = tf.image.random_brightness(image=image, max_delta=.2)
            image = tf.clip_by_value(image,
                                     clip_value_min=0.0,
                                     clip_value_max=255.0)
            # Converts boxes from normalized coordinates to pixel coordinates.
            boxes = box_ops.denormalize_boxes(boxes, image_shape)

            # Resizes and crops image.
            image, image_info = preprocess_ops.resize_and_crop_image(
                image, [self._output_height, self._output_width],
                padded_size=[self._output_height, self._output_width],
                aug_scale_min=self._aug_scale_min,
                aug_scale_max=self._aug_scale_max)
            unpad_image_shape = tf.cast(tf.shape(image), tf.float32)

            # Resizes and crops boxes.
            image_scale = image_info[2, :]
            offset = image_info[3, :]
            boxes = preprocess_ops.resize_and_crop_boxes(
                boxes, image_scale, image_info[1, :], offset)

        else:
            # Color and lighting jittering
            if self._aug_rand_hue:
                image = cn_prep_ops.random_adjust_hue(image=image,
                                                      max_delta=.02)
            if self._aug_rand_contrast:
                image = cn_prep_ops.random_adjust_contrast(image=image,
                                                           min_delta=0.8,
                                                           max_delta=1.25)
            if self._aug_rand_saturation:
                image = cn_prep_ops.random_adjust_saturation(image=image,
                                                             min_delta=0.8,
                                                             max_delta=1.25)
            if self._aug_rand_brightness:
                image = cn_prep_ops.random_adjust_brightness(image=image,
                                                             max_delta=.2)

            sc_image, sc_boxes, classes = cn_prep_ops.random_square_crop_by_scale(
                image=image,
                boxes=boxes,
                labels=classes,
                scale_min=self._aug_scale_min,
                scale_max=self._aug_scale_max)

            image, unpad_image_shape = cn_prep_ops.resize_to_range(
                image=sc_image,
                min_dimension=self._output_width,
                max_dimension=self._output_width,
                pad_to_max_dimension=True)
            preprocessed_shape = tf.cast(tf.shape(image), tf.float32)
            unpad_image_shape = tf.cast(unpad_image_shape, tf.float32)

            im_box = tf.stack([
                0.0, 0.0, preprocessed_shape[0] / unpad_image_shape[0],
                preprocessed_shape[1] / unpad_image_shape[1]
            ])
            realigned_bboxes = box_list_ops.change_coordinate_frame(
                boxlist=box_list.BoxList(sc_boxes), window=im_box)

            valid_boxes = box_list_ops.assert_or_prune_invalid_boxes(
                realigned_bboxes.get())

            boxes = box_list_ops.to_absolute_coordinates(
                boxlist=box_list.BoxList(valid_boxes),
                height=self._output_height,
                width=self._output_width).get()

            image_info = tf.stack([
                tf.cast(image_shape, dtype=tf.float32),
                tf.constant([self._output_height, self._output_width],
                            dtype=tf.float32),
                tf.cast(tf.shape(sc_image)[0:2] / image_shape,
                        dtype=tf.float32),
                tf.constant([0., 0.])
            ])

        # Filters out ground truth boxes that are all zeros.
        indices = box_ops.get_non_empty_box_indices(boxes)
        boxes = tf.gather(boxes, indices)
        classes = tf.gather(classes, indices)

        labels = self._build_label(unpad_image_shape=unpad_image_shape,
                                   boxes=boxes,
                                   classes=classes,
                                   image_info=image_info,
                                   data=data)

        if self._bgr_ordering:
            red, green, blue = tf.unstack(image, num=3, axis=2)
            image = tf.stack([blue, green, red], axis=2)

        image = preprocess_ops.normalize_image(image=image,
                                               offset=self._channel_means,
                                               scale=self._channel_stds)

        image = tf.cast(image, self._dtype)

        return image, labels
Exemple #8
0
  def _parse_eval_data(self, data):
    """Parses data for evaluation.

    Args:
      data: the decoded tensor dictionary from TfExampleDecoder.

    Returns:
      A dictionary of {'images': image, 'labels': labels} where
        image: image tensor that is preproessed to have normalized value and
          dimension [output_size[0], output_size[1], 3]
        labels: a dictionary of tensors used for training. The following
          describes {key: value} pairs in the dictionary.
          source_ids: Source image id. Default value -1 if the source id is
            empty in the groundtruth annotation.
          image_info: a 2D `Tensor` that encodes the information of the image
            and the applied preprocessing. It is in the format of
            [[original_height, original_width], [scaled_height, scaled_width],
          anchor_boxes: ordered dictionary with keys
            [min_level, min_level+1, ..., max_level]. The values are tensor with
            shape [height_l, width_l, 4] representing anchor boxes at each
            level.
    """
    # Gets original image and its size.
    image = data['image']
    image_shape = tf.shape(image)[0:2]

    # Normalizes image with mean and std pixel values.
    image = preprocess_ops.normalize_image(image)

    # Resizes and crops image.
    image, image_info = preprocess_ops.resize_and_crop_image(
        image,
        self._output_size,
        padded_size=preprocess_ops.compute_padded_size(
            self._output_size, 2 ** self._max_level),
        aug_scale_min=1.0,
        aug_scale_max=1.0)
    image_height, image_width, _ = image.get_shape().as_list()

    # Casts input image to self._dtype
    image = tf.cast(image, dtype=self._dtype)

    # Converts boxes from normalized coordinates to pixel coordinates.
    boxes = box_ops.denormalize_boxes(data['groundtruth_boxes'], image_shape)

    # Compute Anchor boxes.
    input_anchor = anchor.build_anchor_generator(
        min_level=self._min_level,
        max_level=self._max_level,
        num_scales=self._num_scales,
        aspect_ratios=self._aspect_ratios,
        anchor_size=self._anchor_size)
    anchor_boxes = input_anchor(image_size=(image_height, image_width))

    labels = {
        'image_info': image_info,
        'anchor_boxes': anchor_boxes,
    }

    groundtruths = {
        'source_id': data['source_id'],
        'height': data['height'],
        'width': data['width'],
        'num_detections': tf.shape(data['groundtruth_classes'])[0],
        'boxes': boxes,
        'classes': data['groundtruth_classes'],
        'areas': data['groundtruth_area'],
        'is_crowds': tf.cast(data['groundtruth_is_crowd'], tf.int32),
    }
    groundtruths['source_id'] = utils.process_source_id(
        groundtruths['source_id'])
    groundtruths = utils.pad_groundtruths_to_fixed_size(
        groundtruths, self._max_num_instances)
    labels['groundtruths'] = groundtruths
    return image, labels
Exemple #9
0
  def _parse_train_data(self, data):
    """Parses data for training.

    Args:
      data: the decoded tensor dictionary from TfExampleDecoder.

    Returns:
      image: image tensor that is preproessed to have normalized value and
        dimension [output_size[0], output_size[1], 3]
      labels: a dictionary of tensors used for training. The following describes
        {key: value} pairs in the dictionary.
        image_info: a 2D `Tensor` that encodes the information of the image and
          the applied preprocessing. It is in the format of
          [[original_height, original_width], [scaled_height, scaled_width],
        anchor_boxes: ordered dictionary with keys
          [min_level, min_level+1, ..., max_level]. The values are tensor with
          shape [height_l, width_l, 4] representing anchor boxes at each level.
        rpn_score_targets: ordered dictionary with keys
          [min_level, min_level+1, ..., max_level]. The values are tensor with
          shape [height_l, width_l, anchors_per_location]. The height_l and
          width_l represent the dimension of class logits at l-th level.
        rpn_box_targets: ordered dictionary with keys
          [min_level, min_level+1, ..., max_level]. The values are tensor with
          shape [height_l, width_l, anchors_per_location * 4]. The height_l and
          width_l represent the dimension of bounding box regression output at
          l-th level.
        gt_boxes: Groundtruth bounding box annotations. The box is represented
           in [y1, x1, y2, x2] format. The coordinates are w.r.t the scaled
           image that is fed to the network. The tennsor is padded with -1 to
           the fixed dimension [self._max_num_instances, 4].
        gt_classes: Groundtruth classes annotations. The tennsor is padded
          with -1 to the fixed dimension [self._max_num_instances].
        gt_masks: groundtrugh masks cropped by the bounding box and
          resized to a fixed size determined by mask_crop_size.
    """
    classes = data['groundtruth_classes']
    boxes = data['groundtruth_boxes']
    if self._include_mask:
      masks = data['groundtruth_instance_masks']

    is_crowds = data['groundtruth_is_crowd']
    # Skips annotations with `is_crowd` = True.
    if self._skip_crowd_during_training:
      num_groundtruths = tf.shape(classes)[0]
      with tf.control_dependencies([num_groundtruths, is_crowds]):
        indices = tf.cond(
            tf.greater(tf.size(is_crowds), 0),
            lambda: tf.where(tf.logical_not(is_crowds))[:, 0],
            lambda: tf.cast(tf.range(num_groundtruths), tf.int64))
      classes = tf.gather(classes, indices)
      boxes = tf.gather(boxes, indices)
      if self._include_mask:
        masks = tf.gather(masks, indices)

    # Gets original image and its size.
    image = data['image']
    if self._augmenter is not None:
      image = self._augmenter.distort(image)

    image_shape = tf.shape(image)[0:2]

    # Normalizes image with mean and std pixel values.
    image = preprocess_ops.normalize_image(image)

    # Flips image randomly during training.
    if self._aug_rand_hflip:
      if self._include_mask:
        image, boxes, masks = preprocess_ops.random_horizontal_flip(
            image, boxes, masks)
      else:
        image, boxes, _ = preprocess_ops.random_horizontal_flip(
            image, boxes)

    # Converts boxes from normalized coordinates to pixel coordinates.
    # Now the coordinates of boxes are w.r.t. the original image.
    boxes = box_ops.denormalize_boxes(boxes, image_shape)

    # Resizes and crops image.
    image, image_info = preprocess_ops.resize_and_crop_image(
        image,
        self._output_size,
        padded_size=preprocess_ops.compute_padded_size(
            self._output_size, 2 ** self._max_level),
        aug_scale_min=self._aug_scale_min,
        aug_scale_max=self._aug_scale_max)
    image_height, image_width, _ = image.get_shape().as_list()

    # Resizes and crops boxes.
    # Now the coordinates of boxes are w.r.t the scaled image.
    image_scale = image_info[2, :]
    offset = image_info[3, :]
    boxes = preprocess_ops.resize_and_crop_boxes(
        boxes, image_scale, image_info[1, :], offset)

    # Filters out ground truth boxes that are all zeros.
    indices = box_ops.get_non_empty_box_indices(boxes)
    boxes = tf.gather(boxes, indices)
    classes = tf.gather(classes, indices)
    if self._include_mask:
      masks = tf.gather(masks, indices)
      # Transfer boxes to the original image space and do normalization.
      cropped_boxes = boxes + tf.tile(tf.expand_dims(offset, axis=0), [1, 2])
      cropped_boxes /= tf.tile(tf.expand_dims(image_scale, axis=0), [1, 2])
      cropped_boxes = box_ops.normalize_boxes(cropped_boxes, image_shape)
      num_masks = tf.shape(masks)[0]
      masks = tf.image.crop_and_resize(
          tf.expand_dims(masks, axis=-1),
          cropped_boxes,
          box_indices=tf.range(num_masks, dtype=tf.int32),
          crop_size=[self._mask_crop_size, self._mask_crop_size],
          method='bilinear')
      masks = tf.squeeze(masks, axis=-1)

    # Assigns anchor targets.
    # Note that after the target assignment, box targets are absolute pixel
    # offsets w.r.t. the scaled image.
    input_anchor = anchor.build_anchor_generator(
        min_level=self._min_level,
        max_level=self._max_level,
        num_scales=self._num_scales,
        aspect_ratios=self._aspect_ratios,
        anchor_size=self._anchor_size)
    anchor_boxes = input_anchor(image_size=(image_height, image_width))
    anchor_labeler = anchor.RpnAnchorLabeler(
        self._rpn_match_threshold,
        self._rpn_unmatched_threshold,
        self._rpn_batch_size_per_im,
        self._rpn_fg_fraction)
    rpn_score_targets, rpn_box_targets = anchor_labeler.label_anchors(
        anchor_boxes, boxes,
        tf.cast(tf.expand_dims(classes, axis=-1), dtype=tf.float32))

    # Casts input image to self._dtype
    image = tf.cast(image, dtype=self._dtype)

    # Packs labels for model_fn outputs.
    labels = {
        'anchor_boxes':
            anchor_boxes,
        'image_info':
            image_info,
        'rpn_score_targets':
            rpn_score_targets,
        'rpn_box_targets':
            rpn_box_targets,
        'gt_boxes':
            preprocess_ops.clip_or_pad_to_fixed_size(boxes,
                                                     self._max_num_instances,
                                                     -1),
        'gt_classes':
            preprocess_ops.clip_or_pad_to_fixed_size(classes,
                                                     self._max_num_instances,
                                                     -1),
    }
    if self._include_mask:
      labels['gt_masks'] = preprocess_ops.clip_or_pad_to_fixed_size(
          masks, self._max_num_instances, -1)

    return image, labels
    def _parse_eval_data(self, data):
        """Parses data for training and evaluation."""
        groundtruths = {}
        classes = data['groundtruth_classes']
        boxes = data['groundtruth_boxes']
        # If not empty, `attributes` is a dict of (name, ground_truth) pairs.
        # `ground_gruth` of attributes is assumed in shape [N, attribute_size].
        # TODO(xianzhi): support parsing attributes weights.
        attributes = data.get('groundtruth_attributes', {})

        # Gets original image and its size.
        image = data['image']
        image_shape = tf.shape(input=image)[0:2]

        # Normalizes image with mean and std pixel values.
        image = preprocess_ops.normalize_image(image)

        # Converts boxes from normalized coordinates to pixel coordinates.
        boxes = box_ops.denormalize_boxes(boxes, image_shape)

        # Resizes and crops image.
        image, image_info = preprocess_ops.resize_and_crop_image(
            image,
            self._output_size,
            padded_size=preprocess_ops.compute_padded_size(
                self._output_size, 2**self._max_level),
            aug_scale_min=1.0,
            aug_scale_max=1.0)
        image_height, image_width, _ = image.get_shape().as_list()

        # Resizes and crops boxes.
        image_scale = image_info[2, :]
        offset = image_info[3, :]
        boxes = preprocess_ops.resize_and_crop_boxes(boxes, image_scale,
                                                     image_info[1, :], offset)
        # Filters out ground truth boxes that are all zeros.
        indices = box_ops.get_non_empty_box_indices(boxes)
        boxes = tf.gather(boxes, indices)
        classes = tf.gather(classes, indices)
        for k, v in attributes.items():
            attributes[k] = tf.gather(v, indices)

        # Assigns anchors.
        input_anchor = anchor.build_anchor_generator(
            min_level=self._min_level,
            max_level=self._max_level,
            num_scales=self._num_scales,
            aspect_ratios=self._aspect_ratios,
            anchor_size=self._anchor_size)
        anchor_boxes = input_anchor(image_size=(image_height, image_width))
        anchor_labeler = anchor.AnchorLabeler(self._match_threshold,
                                              self._unmatched_threshold)
        (cls_targets, box_targets, att_targets, cls_weights,
         box_weights) = anchor_labeler.label_anchors(
             anchor_boxes, boxes, tf.expand_dims(classes, axis=1), attributes)

        # Casts input image to desired data type.
        image = tf.cast(image, dtype=self._dtype)

        # Sets up groundtruth data for evaluation.
        groundtruths = {
            'source_id':
            data['source_id'],
            'height':
            data['height'],
            'width':
            data['width'],
            'num_detections':
            tf.shape(data['groundtruth_classes']),
            'image_info':
            image_info,
            'boxes':
            box_ops.denormalize_boxes(data['groundtruth_boxes'], image_shape),
            'classes':
            data['groundtruth_classes'],
            'areas':
            data['groundtruth_area'],
            'is_crowds':
            tf.cast(data['groundtruth_is_crowd'], tf.int32),
        }
        if 'groundtruth_attributes' in data:
            groundtruths['attributes'] = data['groundtruth_attributes']
        groundtruths['source_id'] = utils.process_source_id(
            groundtruths['source_id'])
        groundtruths = utils.pad_groundtruths_to_fixed_size(
            groundtruths, self._max_num_instances)

        # Packs labels for model_fn outputs.
        labels = {
            'cls_targets': cls_targets,
            'box_targets': box_targets,
            'anchor_boxes': anchor_boxes,
            'cls_weights': cls_weights,
            'box_weights': box_weights,
            'image_info': image_info,
            'groundtruths': groundtruths,
        }
        if att_targets:
            labels['attribute_targets'] = att_targets
        return image, labels
    def _parse_train_data(self, data):
        """Parses data for training and evaluation."""
        classes = data['groundtruth_classes']
        boxes = data['groundtruth_boxes']
        # If not empty, `attributes` is a dict of (name, ground_truth) pairs.
        # `ground_gruth` of attributes is assumed in shape [N, attribute_size].
        # TODO(xianzhi): support parsing attributes weights.
        attributes = data.get('groundtruth_attributes', {})
        is_crowds = data['groundtruth_is_crowd']

        # Skips annotations with `is_crowd` = True.
        if self._skip_crowd_during_training:
            num_groundtrtuhs = tf.shape(input=classes)[0]
            with tf.control_dependencies([num_groundtrtuhs, is_crowds]):
                indices = tf.cond(
                    pred=tf.greater(tf.size(input=is_crowds), 0),
                    true_fn=lambda: tf.where(tf.logical_not(is_crowds))[:, 0],
                    false_fn=lambda: tf.cast(tf.range(num_groundtrtuhs), tf.
                                             int64))
            classes = tf.gather(classes, indices)
            boxes = tf.gather(boxes, indices)
            for k, v in attributes.items():
                attributes[k] = tf.gather(v, indices)

        # Gets original image.
        image = data['image']

        # Apply autoaug or randaug.
        if self._augmenter is not None:
            image, boxes = self._augmenter.distort_with_boxes(image, boxes)
        image_shape = tf.shape(input=image)[0:2]

        # Normalizes image with mean and std pixel values.
        image = preprocess_ops.normalize_image(image)

        # Flips image randomly during training.
        if self._aug_rand_hflip:
            image, boxes, _ = preprocess_ops.random_horizontal_flip(
                image, boxes)

        # Converts boxes from normalized coordinates to pixel coordinates.
        boxes = box_ops.denormalize_boxes(boxes, image_shape)

        # Resizes and crops image.
        image, image_info = preprocess_ops.resize_and_crop_image(
            image,
            self._output_size,
            padded_size=preprocess_ops.compute_padded_size(
                self._output_size, 2**self._max_level),
            aug_scale_min=self._aug_scale_min,
            aug_scale_max=self._aug_scale_max)
        image_height, image_width, _ = image.get_shape().as_list()

        # Resizes and crops boxes.
        image_scale = image_info[2, :]
        offset = image_info[3, :]
        boxes = preprocess_ops.resize_and_crop_boxes(boxes, image_scale,
                                                     image_info[1, :], offset)
        # Filters out ground truth boxes that are all zeros.
        indices = box_ops.get_non_empty_box_indices(boxes)
        boxes = tf.gather(boxes, indices)
        classes = tf.gather(classes, indices)
        for k, v in attributes.items():
            attributes[k] = tf.gather(v, indices)

        # Assigns anchors.
        input_anchor = anchor.build_anchor_generator(
            min_level=self._min_level,
            max_level=self._max_level,
            num_scales=self._num_scales,
            aspect_ratios=self._aspect_ratios,
            anchor_size=self._anchor_size)
        anchor_boxes = input_anchor(image_size=(image_height, image_width))
        anchor_labeler = anchor.AnchorLabeler(self._match_threshold,
                                              self._unmatched_threshold)
        (cls_targets, box_targets, att_targets, cls_weights,
         box_weights) = anchor_labeler.label_anchors(
             anchor_boxes, boxes, tf.expand_dims(classes, axis=1), attributes)

        # Casts input image to desired data type.
        image = tf.cast(image, dtype=self._dtype)

        # Packs labels for model_fn outputs.
        labels = {
            'cls_targets': cls_targets,
            'box_targets': box_targets,
            'anchor_boxes': anchor_boxes,
            'cls_weights': cls_weights,
            'box_weights': box_weights,
            'image_info': image_info,
        }
        if att_targets:
            labels['attribute_targets'] = att_targets
        return image, labels
    def _parse_train_data(self, data):
        """Parses data for training and evaluation."""
        image, label = self._prepare_image_and_label(data)

        if self._crop_size:

            label = tf.reshape(label,
                               [data['image/height'], data['image/width'], 1])
            # If output_size is specified, resize image, and label to desired
            # output_size.
            if self._output_size:
                image = tf.image.resize(image,
                                        self._output_size,
                                        method='bilinear')
                label = tf.image.resize(label,
                                        self._output_size,
                                        method='nearest')

            image_mask = tf.concat([image, label], axis=2)
            image_mask_crop = tf.image.random_crop(image_mask,
                                                   self._crop_size + [4])
            image = image_mask_crop[:, :, :-1]
            label = tf.reshape(image_mask_crop[:, :, -1],
                               [1] + self._crop_size)

        # Flips image randomly during training.
        if self._aug_rand_hflip:
            image, _, label = preprocess_ops.random_horizontal_flip(
                image, masks=label)

        train_image_size = self._crop_size if self._crop_size else self._output_size
        # Resizes and crops image.
        image, image_info = preprocess_ops.resize_and_crop_image(
            image,
            train_image_size,
            train_image_size,
            aug_scale_min=self._aug_scale_min,
            aug_scale_max=self._aug_scale_max)

        # Resizes and crops boxes.
        image_scale = image_info[2, :]
        offset = image_info[3, :]

        # Pad label and make sure the padded region assigned to the ignore label.
        # The label is first offset by +1 and then padded with 0.
        label += 1
        label = tf.expand_dims(label, axis=3)
        label = preprocess_ops.resize_and_crop_masks(label, image_scale,
                                                     train_image_size, offset)
        label -= 1
        label = tf.where(tf.equal(label, -1),
                         self._ignore_label * tf.ones_like(label), label)
        label = tf.squeeze(label, axis=0)
        valid_mask = tf.not_equal(label, self._ignore_label)
        labels = {
            'masks': label,
            'valid_masks': valid_mask,
            'image_info': image_info,
        }

        # Cast image as self._dtype
        image = tf.cast(image, dtype=self._dtype)

        return image, labels