tasks.glacier_masks(gdir) tasks.compute_centerlines(gdir) tasks.initialize_flowlines(gdir) tasks.compute_downstream_line(gdir) tasks.catchment_area(gdir) tasks.catchment_width_geom(gdir) tasks.catchment_width_correction(gdir) cfg.PATHS['climate_file'] = get_demo_file('histalp_merged_hef.nc') tasks.process_custom_climate_data(gdir) tasks.mu_candidates(gdir) mbdf = gdir.get_ref_mb_data() res = t_star_from_refmb(gdir, mbdf.ANNUAL_BALANCE) local_mustar(gdir, tstar=res['t_star'][-1], bias=res['bias'][-1], prcp_fac=res['prcp_fac'], reset=True) apparent_mb(gdir, reset=True) # For flux plot tasks.prepare_for_inversion(gdir, add_debug_var=True) # For plots mu_yr_clim = gdir.read_pickle('mu_candidates')[pcp_fac] years, temp_yr, prcp_yr = mb_yearly_climate_on_glacier(gdir, pcp_fac) # which years to look at selind = np.searchsorted(years, mbdf.index) temp_yr = np.mean(temp_yr[selind]) prcp_yr = np.mean(prcp_yr[selind])
tasks.compute_centerlines(gdir) tasks.initialize_flowlines(gdir) tasks.compute_downstream_line(gdir) tasks.catchment_area(gdir) tasks.catchment_width_geom(gdir) tasks.catchment_width_correction(gdir) data_dir = get_demo_file('HISTALP_precipitation_all_abs_1801-2014.nc') cfg.PATHS['cru_dir'] = os.path.dirname(data_dir) cfg.PARAMS['baseline_climate'] = 'HISTALP' cfg.PARAMS['baseline_y0'] = 1850 tasks.process_histalp_data(gdir) tasks.mu_candidates(gdir) mbdf = gdir.get_ref_mb_data() res = t_star_from_refmb(gdir, mbdf.ANNUAL_BALANCE) local_mustar(gdir, tstar=res['t_star'], bias=res['bias'], reset=True) apparent_mb(gdir, reset=True) # For flux plot tasks.prepare_for_inversion(gdir, add_debug_var=True) # For plots mu_yr_clim = gdir.read_pickle('climate_info')['mu_candidates'] years, temp_yr, prcp_yr = mb_yearly_climate_on_glacier(gdir) # which years to look at selind = np.searchsorted(years, mbdf.index) temp_yr = np.mean(temp_yr[selind]) prcp_yr = np.mean(prcp_yr[selind]) # Average oberved mass-balance
def init_hef(reset=False, border=40, invert_with_sliding=True, invert_with_rectangular=True): # test directory testdir = os.path.join(get_test_dir(), 'tmp_border{}'.format(border)) if not invert_with_sliding: testdir += '_withoutslide' if not invert_with_rectangular: testdir += '_withoutrectangular' if not os.path.exists(testdir): os.makedirs(testdir) reset = True # Init cfg.initialize() cfg.set_intersects_db(get_demo_file('rgi_intersect_oetztal.shp')) cfg.PATHS['dem_file'] = get_demo_file('hef_srtm.tif') cfg.PATHS['climate_file'] = get_demo_file('histalp_merged_hef.nc') cfg.PARAMS['border'] = border cfg.PARAMS['use_optimized_inversion_params'] = True hef_file = get_demo_file('Hintereisferner_RGI5.shp') entity = gpd.read_file(hef_file).iloc[0] gdir = oggm.GlacierDirectory(entity, base_dir=testdir, reset=reset) if not gdir.has_file('inversion_params'): reset = True gdir = oggm.GlacierDirectory(entity, base_dir=testdir, reset=reset) if not reset: return gdir gis.define_glacier_region(gdir, entity=entity) execute_entity_task(gis.glacier_masks, [gdir]) execute_entity_task(centerlines.compute_centerlines, [gdir]) centerlines.initialize_flowlines(gdir) centerlines.compute_downstream_line(gdir) centerlines.compute_downstream_bedshape(gdir) centerlines.catchment_area(gdir) centerlines.catchment_intersections(gdir) centerlines.catchment_width_geom(gdir) centerlines.catchment_width_correction(gdir) climate.process_custom_climate_data(gdir) climate.mu_candidates(gdir) mbdf = gdir.get_ref_mb_data()['ANNUAL_BALANCE'] res = climate.t_star_from_refmb(gdir, mbdf) climate.local_mustar(gdir, tstar=res['t_star'][-1], bias=res['bias'][-1], prcp_fac=res['prcp_fac']) climate.apparent_mb(gdir) inversion.prepare_for_inversion( gdir, add_debug_var=True, invert_with_rectangular=invert_with_rectangular) ref_v = 0.573 * 1e9 if invert_with_sliding: def to_optimize(x): # For backwards compat _fd = 1.9e-24 * x[0] glen_a = (cfg.N + 2) * _fd / 2. fs = 5.7e-20 * x[1] v, _ = inversion.mass_conservation_inversion(gdir, fs=fs, glen_a=glen_a) return (v - ref_v)**2 out = optimization.minimize(to_optimize, [1, 1], bounds=((0.01, 10), (0.01, 10)), tol=1e-4)['x'] _fd = 1.9e-24 * out[0] glen_a = (cfg.N + 2) * _fd / 2. fs = 5.7e-20 * out[1] v, _ = inversion.mass_conservation_inversion(gdir, fs=fs, glen_a=glen_a, write=True) else: def to_optimize(x): glen_a = cfg.A * x[0] v, _ = inversion.mass_conservation_inversion(gdir, fs=0., glen_a=glen_a) return (v - ref_v)**2 out = optimization.minimize(to_optimize, [1], bounds=((0.01, 10), ), tol=1e-4)['x'] glen_a = cfg.A * out[0] fs = 0. v, _ = inversion.mass_conservation_inversion(gdir, fs=fs, glen_a=glen_a, write=True) d = dict(fs=fs, glen_a=glen_a) d['factor_glen_a'] = out[0] try: d['factor_fs'] = out[1] except IndexError: d['factor_fs'] = 0. gdir.write_pickle(d, 'inversion_params') # filter inversion.filter_inversion_output(gdir) inversion.distribute_thickness_interp(gdir, varname_suffix='_interp') inversion.distribute_thickness_per_altitude(gdir, varname_suffix='_alt') flowline.init_present_time_glacier(gdir) return gdir