def test_leclercq_data(self): hef_file = utils.get_demo_file('Hintereisferner_RGI5.shp') entity = gpd.read_file(hef_file).iloc[0] gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir) df = gdir.get_ref_length_data() assert df.name == 'Hintereis' assert len(df) == 105
def test_local_t_star(self): # set parameters for climate file and mass balance calibration cfg.PARAMS['baseline_climate'] = 'CUSTOM' cfg.PARAMS['baseline_y0'] = 1850 cfg.PATHS['climate_file'] = get_demo_file('histalp_merged_hef.nc') cfg.PARAMS['run_mb_calibration'] = False # read the Hintereisferner hef_file = get_demo_file('Hintereisferner_RGI5.shp') entity = gpd.read_file(hef_file).iloc[0] # initialize the GlacierDirectory gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir) # define the local grid and the glacier mask gis.define_glacier_region(gdir, entity=entity) gis.glacier_masks(gdir) # run centerline prepro tasks centerlines.compute_centerlines(gdir) centerlines.initialize_flowlines(gdir) centerlines.catchment_area(gdir) centerlines.catchment_intersections(gdir) centerlines.catchment_width_geom(gdir) centerlines.catchment_width_correction(gdir) # process the given climate file climate.process_custom_climate_data(gdir) # compute the reference t* for the glacier # given the reference of mass balance measurements res = vascaling.t_star_from_refmb(gdir) t_star, bias = res['t_star'], res['bias'] # compute local t* and the corresponding mu* vascaling.local_t_star(gdir, tstar=t_star, bias=bias) # read calibration results vas_mustar_refmb = gdir.read_json('vascaling_mustar') # get reference t* list ref_df = cfg.PARAMS['vas_ref_tstars_rgi5_histalp'] # compute local t* and the corresponding mu* vascaling.local_t_star(gdir, ref_df=ref_df) # read calibration results vas_mustar_refdf = gdir.read_json('vascaling_mustar') # compute local t* and the corresponding mu* vascaling.local_t_star(gdir) # read calibration results vas_mustar = gdir.read_json('vascaling_mustar') # compare with each other assert vas_mustar_refdf == vas_mustar # TODO: this test is failing currently # np.testing.assert_allclose(vas_mustar_refmb['bias'], # vas_mustar_refdf['bias'], atol=1) vas_mustar_refdf.pop('bias') vas_mustar_refmb.pop('bias') # end of workaround assert vas_mustar_refdf == vas_mustar_refmb
def _set_up_VAS_model(self): """Avoiding a chunk of code duplicate. Set's up a running volume/area scaling model, including all needed prepo tasks. """ # read the Hintereisferner DEM hef_file = get_demo_file('Hintereisferner_RGI5.shp') entity = gpd.read_file(hef_file).iloc[0] # initialize the GlacierDirectory gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir) # define the local grid and glacier mask gis.define_glacier_region(gdir, entity=entity) gis.glacier_masks(gdir) # process the given climate file climate.process_custom_climate_data(gdir) # run center line preprocessing tasks centerlines.compute_centerlines(gdir) centerlines.initialize_flowlines(gdir) centerlines.catchment_area(gdir) centerlines.catchment_intersections(gdir) centerlines.catchment_width_geom(gdir) centerlines.catchment_width_correction(gdir) # read reference glacier mass balance data mbdf = gdir.get_ref_mb_data() # compute the reference t* for the glacier # given the reference of mass balance measurements res = climate.t_star_from_refmb(gdir, mbdf=mbdf['ANNUAL_BALANCE']) t_star, bias = res['t_star'], res['bias'] # -------------------- # MASS BALANCE TASKS # -------------------- # compute local t* and the corresponding mu* vascaling.local_t_star(gdir, tstar=t_star, bias=bias) # instance the mass balance models mbmod = vascaling.VAScalingMassBalance(gdir) # ---------------- # DYNAMICAL PART # ---------------- # get reference area a0 = gdir.rgi_area_m2 # get reference year y0 = gdir.get_climate_info()['baseline_hydro_yr_0'] # get min and max glacier surface elevation h0, h1 = vascaling.get_min_max_elevation(gdir) model = vascaling.VAScalingModel(year_0=y0, area_m2_0=a0, min_hgt=h0, max_hgt=h1, mb_model=mbmod) return gdir, model
def test_set_width(self): entity = gpd.read_file(self.rgi_file).iloc[0] gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir) gis.define_glacier_region(gdir) gis.glacier_masks(gdir) centerlines.compute_centerlines(gdir) centerlines.initialize_flowlines(gdir) centerlines.compute_downstream_line(gdir) centerlines.compute_downstream_bedshape(gdir) centerlines.catchment_area(gdir) centerlines.catchment_intersections(gdir) centerlines.catchment_width_geom(gdir) centerlines.catchment_width_correction(gdir) # Test that area and area-altitude elev is fine with utils.ncDataset(gdir.get_filepath('gridded_data')) as nc: mask = nc.variables['glacier_mask'][:] topo = nc.variables['topo_smoothed'][:] rhgt = topo[np.where(mask)][:] fls = gdir.read_pickle('inversion_flowlines') hgt, widths = gdir.get_inversion_flowline_hw() bs = 100 bins = np.arange(utils.nicenumber(np.min(hgt), bs, lower=True), utils.nicenumber(np.max(hgt), bs) + 1, bs) h1, b = np.histogram(hgt, weights=widths, density=True, bins=bins) h2, b = np.histogram(rhgt, density=True, bins=bins) h1 = h1 / np.sum(h1) h2 = h2 / np.sum(h2) assert utils.rmsd(h1, h2) < 0.02 # less than 2% error new_area = np.sum(widths * fls[-1].dx * gdir.grid.dx) np.testing.assert_allclose(new_area, gdir.rgi_area_m2) centerlines.terminus_width_correction(gdir, new_width=714) fls = gdir.read_pickle('inversion_flowlines') hgt, widths = gdir.get_inversion_flowline_hw() # Check that the width is ok np.testing.assert_allclose(fls[-1].widths[-1] * gdir.grid.dx, 714) # Check for area distrib bins = np.arange(utils.nicenumber(np.min(hgt), bs, lower=True), utils.nicenumber(np.max(hgt), bs) + 1, bs) h1, b = np.histogram(hgt, weights=widths, density=True, bins=bins) h2, b = np.histogram(rhgt, density=True, bins=bins) h1 = h1 / np.sum(h1) h2 = h2 / np.sum(h2) assert utils.rmsd(h1, h2) < 0.02 # less than 2% error new_area = np.sum(widths * fls[-1].dx * gdir.grid.dx) np.testing.assert_allclose(new_area, gdir.rgi_area_m2)
def gdir_from_tar(entity, from_tar): try: rgi_id = entity.RGIId except AttributeError: rgi_id = entity from_tar = os.path.join(from_tar, '{}'.format(rgi_id[:8]), '{}.tar'.format(rgi_id[:11])) assert os.path.exists(from_tar), 'tarfile does not exist' from_tar = os.path.join(from_tar.replace('.tar', ''), rgi_id + '.tar.gz') return oggm.GlacierDirectory(entity, from_tar=from_tar)
def init_glacier_regions(rgidf=None, reset=False, force=False): """Very first task to do (always). Set reset=True in order to delete the content of the directories. """ if reset and not force: reset = utils.query_yes_no('Delete all glacier directories?') # if reset delete also the log directory if reset: fpath = os.path.join(cfg.PATHS['working_dir'], 'log') if os.path.exists(fpath): rmtree(fpath) gdirs = [] new_gdirs = [] if rgidf is None: if reset: raise ValueError('Cannot use reset without a rgi file') # The dirs should be there already gl_dir = os.path.join(cfg.PATHS['working_dir'], 'per_glacier') for root, _, files in os.walk(gl_dir): if files and ('dem.tif' in files): gdirs.append(oggm.GlacierDirectory(os.path.basename(root))) else: for _, entity in rgidf.iterrows(): gdir = oggm.GlacierDirectory(entity, reset=reset) if not os.path.exists(gdir.get_filepath('dem')): new_gdirs.append((gdir, dict(entity=entity))) gdirs.append(gdir) # If not initialized, run the task in parallel execute_entity_task(tasks.define_glacier_region, new_gdirs) return gdirs
def test_run_until_equilibrium(self): """""" # let's not use the mass balance bias since we want to reproduce # results from mass balance calibration cfg.PARAMS['use_bias_for_run'] = False # read the Hintereisferner DEM hef_file = get_demo_file('Hintereisferner_RGI5.shp') entity = gpd.read_file(hef_file).iloc[0] # initialize the GlacierDirectory gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir) # define the local grid and glacier mask gis.define_glacier_region(gdir, entity=entity) gis.glacier_masks(gdir) # process the given climate file climate.process_custom_climate_data(gdir) # compute mass balance parameters ref_df = cfg.PARAMS['vas_ref_tstars_rgi5_histalp'] vascaling.local_t_star(gdir, ref_df=ref_df) # instance a constant mass balance model, centred around t* mb_model = vascaling.ConstantVASMassBalance(gdir) # add a positive temperature bias mb_model.temp_bias = 0.5 # create a VAS model: start with year 0 since we are using a constant # massbalance model, other values are read from RGI min_hgt, max_hgt = vascaling.get_min_max_elevation(gdir) model = vascaling.VAScalingModel(year_0=0, area_m2_0=gdir.rgi_area_m2, min_hgt=min_hgt, max_hgt=max_hgt, mb_model=mb_model) # run glacier with new mass balance model model.run_until_equilibrium(rate=1e-4) # equilibrium should be reached after a couple of 100 years assert model.year <= 300 # new equilibrium glacier should be smaller (positive temperature bias) assert model.volume_m3 < model.volume_m3_0 # run glacier for another 100 years and check volume again v_eq = model.volume_m3 model.run_until(model.year + 100) assert abs(1 - (model.volume_m3 / v_eq)) < 0.01
def gdir_from_prepro(entity, from_prepro_level=None, prepro_border=None, prepro_rgi_version=None, base_url=None): if prepro_border is None: prepro_border = int(cfg.PARAMS['border']) if prepro_rgi_version is None: prepro_rgi_version = cfg.PARAMS['rgi_version'] try: rid = entity.RGIId except AttributeError: rid = entity tar_base = utils.get_prepro_gdir(prepro_rgi_version, rid, prepro_border, from_prepro_level, base_url=base_url) from_tar = os.path.join(tar_base.replace('.tar', ''), rid + '.tar.gz') return oggm.GlacierDirectory(entity, from_tar=from_tar)
def _setup_mb_test(self): """Avoiding a chunk of code duplicate. Performs needed prepo tasks and returns the oggm.GlacierDirectory. """ # read the Hintereisferner DEM hef_file = get_demo_file('Hintereisferner_RGI5.shp') entity = gpd.read_file(hef_file).iloc[0] # initialize the GlacierDirectory gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir) # define the local grid and the glacier mask gis.define_glacier_region(gdir, entity=entity) gis.glacier_masks(gdir) # process the given climate file climate.process_custom_climate_data(gdir) # run centerline prepro tasks centerlines.compute_centerlines(gdir) centerlines.initialize_flowlines(gdir) centerlines.catchment_area(gdir) centerlines.catchment_intersections(gdir) centerlines.catchment_width_geom(gdir) centerlines.catchment_width_correction(gdir) # read reference glacier mass balance data mbdf = gdir.get_ref_mb_data() # compute the reference t* for the glacier # given the reference of mass balance measurements res = vascaling.t_star_from_refmb(gdir, mbdf=mbdf['ANNUAL_BALANCE']) t_star, bias = res['t_star'], res['bias'] # compute local t* and the corresponding mu* vascaling.local_t_star(gdir, tstar=t_star, bias=bias) # run OGGM mu* calibration climate.local_t_star(gdir, tstar=t_star, bias=bias) climate.mu_star_calibration(gdir) # pass the GlacierDirectory return gdir
def init_glacier_regions(rgidf, reset=False, force=False): """Very first task to do (always). Set reset=True in order to delete the content of the directories. """ if reset and not force: reset = utils.query_yes_no('Delete all glacier directories?') # if reset delete also the log directory if reset: fpath = os.path.join(cfg.PATHS['working_dir'], 'log') if os.path.exists(fpath): rmtree(fpath) gdirs = [] for _, entity in rgidf.iterrows(): gdir = oggm.GlacierDirectory(entity, reset=reset) if not os.path.exists(gdir.get_filepath('dem')): tasks.define_glacier_region(gdir, entity=entity) gdirs.append(gdir) return gdirs
def init_columbia(reset=False): from oggm.core import gis, centerlines import geopandas as gpd # test directory testdir = os.path.join(get_test_dir(), 'tmp_columbia') if not os.path.exists(testdir): os.makedirs(testdir) reset = True # Init cfg.initialize() cfg.PATHS['working_dir'] = testdir cfg.PARAMS['use_intersects'] = False cfg.PATHS['dem_file'] = get_demo_file('dem_Columbia.tif') cfg.PARAMS['border'] = 10 cfg.PARAMS['use_kcalving_for_inversion'] = True cfg.PARAMS['use_kcalving_for_run'] = True entity = gpd.read_file(get_demo_file('01_rgi60_Columbia.shp')).iloc[0] gdir = oggm.GlacierDirectory(entity, reset=reset) if gdir.has_file('climate_historical'): return gdir gis.define_glacier_region(gdir) gis.glacier_masks(gdir) centerlines.compute_centerlines(gdir) centerlines.initialize_flowlines(gdir) centerlines.compute_downstream_line(gdir) centerlines.catchment_area(gdir) centerlines.catchment_intersections(gdir) centerlines.catchment_width_geom(gdir) centerlines.catchment_width_correction(gdir) tasks.process_dummy_cru_file(gdir, seed=0) apply_test_ref_tstars() return gdir
def gdir_from_prepro(entity, from_prepro_level=None, prepro_border=None, prepro_rgi_version=None, check_demo_glacier=False, base_url=None): if prepro_border is None: prepro_border = int(cfg.PARAMS['border']) if prepro_rgi_version is None: prepro_rgi_version = cfg.PARAMS['rgi_version'] try: rid = entity.RGIId except AttributeError: rid = entity if check_demo_glacier and base_url is None: demo_id = utils.demo_glacier_id(rid) if demo_id is not None: rid = demo_id entity = demo_id base_url = utils.DEMO_GDIR_URL tar_base = utils.get_prepro_gdir(prepro_rgi_version, rid, prepro_border, from_prepro_level, base_url=base_url) from_tar = os.path.join(tar_base.replace('.tar', ''), rid + '.tar.gz') return oggm.GlacierDirectory(entity, from_tar=from_tar)
def test_terminus_temp(self): """Testing the subroutine which computes the terminus temperature from the given climate file and glacier DEM. Pretty straight forward and somewhat useless, but nice finger exercise. """ # read the Hintereisferner DEM hef_file = get_demo_file('Hintereisferner_RGI5.shp') entity = gpd.read_file(hef_file).iloc[0] # initialize the GlacierDirectory gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir) # define the local grid gis.define_glacier_region(gdir, entity=entity) # process the given climate file climate.process_custom_climate_data(gdir) # read the following variable from the center pixel (46.83N 10.75E) # of the Hintereisferner HistAlp climate file for the # entire time period from October 1801 until September 2003 # - surface height in m asl. # - total precipitation amount in kg/m2 # - 2m air temperature in °C with utils.ncDataset(get_demo_file('histalp_merged_hef.nc')) as nc_r: ref_h = nc_r.variables['hgt'][1, 1] ref_t = nc_r.variables['temp'][:, 1, 1] # define a temperature anomaly temp_anomaly = 0 # specify temperature gradient temp_grad = -0.0065 # the terminus temperature must equal the input temperature # if terminus elevation equals reference elevation temp_terminus =\ vascaling._compute_temp_terminus(ref_t, temp_grad, ref_hgt=ref_h, terminus_hgt=ref_h, temp_anomaly=temp_anomaly) np.testing.assert_allclose(temp_terminus, ref_t + temp_anomaly) # the terminus temperature must equal the input terperature # if the gradient is zero for term_h in np.array([-100, 0, 100]) + ref_h: temp_terminus =\ vascaling._compute_temp_terminus(ref_t, temp_grad=0, ref_hgt=ref_h, terminus_hgt=term_h, temp_anomaly=temp_anomaly) np.testing.assert_allclose(temp_terminus, ref_t + temp_anomaly) # now test the routine with actual elevation differences # and a non zero temperature gradient for h_diff in np.array([-100, 0, 100]): term_h = ref_h + h_diff temp_diff = temp_grad * h_diff temp_terminus =\ vascaling._compute_temp_terminus(ref_t, temp_grad, ref_hgt=ref_h, terminus_hgt=term_h, temp_anomaly=temp_anomaly) np.testing.assert_allclose(temp_terminus, ref_t + temp_anomaly + temp_diff)
from oggm.core.climate import (mb_yearly_climate_on_glacier, t_star_from_refmb, local_t_star, mu_star_calibration) from oggm.core.massbalance import (ConstantMassBalance) from oggm.utils import get_demo_file, gettempdir from oggm.shop import histalp cfg.initialize() cfg.set_intersects_db(get_demo_file('rgi_intersect_oetztal.shp')) cfg.PATHS['dem_file'] = get_demo_file('hef_srtm.tif') histalp.set_histalp_url('https://cluster.klima.uni-bremen.de/~oggm/' 'test_climate/histalp/') base_dir = gettempdir('Climate_docs') cfg.PATHS['working_dir'] = base_dir entity = gpd.read_file(get_demo_file('HEF_MajDivide.shp')).iloc[0] gdir = oggm.GlacierDirectory(entity, base_dir=base_dir, reset=True) tasks.define_glacier_region(gdir) tasks.glacier_masks(gdir) tasks.compute_centerlines(gdir) tasks.initialize_flowlines(gdir) tasks.compute_downstream_line(gdir) tasks.catchment_area(gdir) tasks.catchment_width_geom(gdir) tasks.catchment_width_correction(gdir) cfg.PARAMS['baseline_climate'] = 'HISTALP' cfg.PARAMS['baseline_y0'] = 1850 tasks.process_histalp_data(gdir) mu_yr_clim = tasks.glacier_mu_candidates(gdir) mbdf = gdir.get_ref_mb_data()
def init_hef(reset=False, border=40, logging_level='INFO'): from oggm.core import gis, inversion, climate, centerlines, flowline import geopandas as gpd # test directory testdir = os.path.join(get_test_dir(), 'tmp_border{}'.format(border)) if not os.path.exists(testdir): os.makedirs(testdir) reset = True # Init cfg.initialize(logging_level=logging_level) cfg.set_intersects_db(get_demo_file('rgi_intersect_oetztal.shp')) cfg.PATHS['dem_file'] = get_demo_file('hef_srtm.tif') cfg.PATHS['climate_file'] = get_demo_file('histalp_merged_hef.nc') cfg.PARAMS['baseline_climate'] = '' cfg.PATHS['working_dir'] = testdir cfg.PARAMS['border'] = border hef_file = get_demo_file('Hintereisferner_RGI5.shp') entity = gpd.read_file(hef_file).iloc[0] gdir = oggm.GlacierDirectory(entity, reset=reset) if not gdir.has_file('inversion_params'): reset = True gdir = oggm.GlacierDirectory(entity, reset=reset) if not reset: return gdir gis.define_glacier_region(gdir) execute_entity_task(gis.glacier_masks, [gdir]) execute_entity_task(centerlines.compute_centerlines, [gdir]) centerlines.initialize_flowlines(gdir) centerlines.compute_downstream_line(gdir) centerlines.compute_downstream_bedshape(gdir) centerlines.catchment_area(gdir) centerlines.catchment_intersections(gdir) centerlines.catchment_width_geom(gdir) centerlines.catchment_width_correction(gdir) climate.process_custom_climate_data(gdir) mbdf = gdir.get_ref_mb_data()['ANNUAL_BALANCE'] res = climate.t_star_from_refmb(gdir, mbdf=mbdf) climate.local_t_star(gdir, tstar=res['t_star'], bias=res['bias']) climate.mu_star_calibration(gdir) inversion.prepare_for_inversion(gdir, add_debug_var=True) ref_v = 0.573 * 1e9 glen_n = cfg.PARAMS['glen_n'] def to_optimize(x): # For backwards compat _fd = 1.9e-24 * x[0] glen_a = (glen_n + 2) * _fd / 2. fs = 5.7e-20 * x[1] v, _ = inversion.mass_conservation_inversion(gdir, fs=fs, glen_a=glen_a) return (v - ref_v)**2 out = optimization.minimize(to_optimize, [1, 1], bounds=((0.01, 10), (0.01, 10)), tol=1e-4)['x'] _fd = 1.9e-24 * out[0] glen_a = (glen_n + 2) * _fd / 2. fs = 5.7e-20 * out[1] v, _ = inversion.mass_conservation_inversion(gdir, fs=fs, glen_a=glen_a, write=True) d = dict(fs=fs, glen_a=glen_a) d['factor_glen_a'] = out[0] d['factor_fs'] = out[1] gdir.write_pickle(d, 'inversion_params') # filter inversion.filter_inversion_output(gdir) inversion.distribute_thickness_interp(gdir, varname_suffix='_interp') inversion.distribute_thickness_per_altitude(gdir, varname_suffix='_alt') flowline.init_present_time_glacier(gdir) return gdir
def test_repro_to_glacier(self, class_case_dir, monkeypatch): # Init cfg.initialize() cfg.PATHS['working_dir'] = class_case_dir cfg.PARAMS['use_intersects'] = False cfg.PATHS['dem_file'] = get_demo_file('dem_Columbia.tif') cfg.PARAMS['border'] = 10 entity = gpd.read_file(get_demo_file('RGI60-01.10689.shp')).iloc[0] gdir = oggm.GlacierDirectory(entity) tasks.define_glacier_region(gdir) tasks.glacier_masks(gdir) # use our files region_files = { 'ALA': { 'vx': get_demo_file('crop_ALA_G0120_0000_vx.tif'), 'vy': get_demo_file('crop_ALA_G0120_0000_vy.tif') } } monkeypatch.setattr(its_live, 'region_files', region_files) monkeypatch.setattr(utils, 'file_downloader', lambda x: x) with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=RuntimeWarning) its_live.velocity_to_gdir(gdir) with xr.open_dataset(gdir.get_filepath('gridded_data')) as ds: mask = ds.glacier_mask.data.astype(bool) vx = ds.obs_icevel_x.where(mask).data vy = ds.obs_icevel_y.where(mask).data vel = np.sqrt(vx**2 + vy**2) assert np.nanmax(vel) > 2900 assert np.nanmin(vel) < 2 # We reproject with rasterio and check no big diff cfg.BASENAMES['its_live_vx'] = ('its_live_vx.tif', '') cfg.BASENAMES['its_live_vy'] = ('its_live_vy.tif', '') gis.rasterio_to_gdir(gdir, region_files['ALA']['vx'], 'its_live_vx', resampling='bilinear') gis.rasterio_to_gdir(gdir, region_files['ALA']['vy'], 'its_live_vy', resampling='bilinear') with xr.open_rasterio(gdir.get_filepath('its_live_vx')) as da: _vx = da.where(mask).data.squeeze() with xr.open_rasterio(gdir.get_filepath('its_live_vy')) as da: _vy = da.where(mask).data.squeeze() _vel = np.sqrt(_vx**2 + _vy**2) np.testing.assert_allclose(utils.rmsd(vel[mask], _vel[mask]), 0, atol=40) np.testing.assert_allclose(utils.md(vel[mask], _vel[mask]), 0, atol=8) if DO_PLOT: import matplotlib.pyplot as plt smap = salem.Map(gdir.grid.center_grid, countries=False) smap.set_shapefile(gdir.read_shapefile('outlines')) with warnings.catch_warnings(): warnings.filterwarnings('ignore', category=RuntimeWarning) smap.set_topography(gdir.get_filepath('dem')) vel = np.sqrt(vx**2 + vy**2) smap.set_data(vel) smap.set_plot_params(cmap='Blues', vmin=None, vmax=None) xx, yy = gdir.grid.center_grid.xy_coordinates xx, yy = smap.grid.transform(xx, yy, crs=gdir.grid.proj) yy = yy[2::5, 2::5] xx = xx[2::5, 2::5] vx = vx[2::5, 2::5] vy = vy[2::5, 2::5] f, ax = plt.subplots() smap.visualize(ax=ax, title='ITS_LIVE velocity', cbar_title='m yr-1') ax.quiver(xx, yy, vx, vy) plt.show()
def test_run_random_climate(self): """ Test the run_random_climate task for a climate based on the equilibrium period centred around t*. Additionally a positive and a negative temperature bias are tested. Returns ------- """ # let's not use the mass balance bias since we want to reproduce # results from mass balance calibration cfg.PARAMS['use_bias_for_run'] = False # read the Hintereisferner DEM hef_file = get_demo_file('Hintereisferner_RGI5.shp') entity = gpd.read_file(hef_file).iloc[0] # initialize the GlacierDirectory gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir) # define the local grid and glacier mask gis.define_glacier_region(gdir, entity=entity) gis.glacier_masks(gdir) # process the given climate file climate.process_custom_climate_data(gdir) # compute mass balance parameters ref_df = cfg.PARAMS['vas_ref_tstars_rgi5_histalp'] vascaling.local_t_star(gdir, ref_df=ref_df) # define some parameters for the random climate model nyears = 300 seed = 1 temp_bias = 0.5 # read the equilibirum year used for the mass balance calibration t_star = gdir.read_json('vascaling_mustar')['t_star'] # run model with random climate _ = vascaling.run_random_climate(gdir, nyears=nyears, y0=t_star, seed=seed) # run model with positive temperature bias _ = vascaling.run_random_climate(gdir, nyears=nyears, y0=t_star, seed=seed, temperature_bias=temp_bias, output_filesuffix='_bias_p') # run model with negative temperature bias _ = vascaling.run_random_climate(gdir, nyears=nyears, y0=t_star, seed=seed, temperature_bias=-temp_bias, output_filesuffix='_bias_n') # compile run outputs ds = utils.compile_run_output([gdir], input_filesuffix='') ds_p = utils.compile_run_output([gdir], input_filesuffix='_bias_p') ds_n = utils.compile_run_output([gdir], input_filesuffix='_bias_n') # the glacier should not change much under a random climate # based on the equilibirum period centered around t* assert abs(1 - ds.volume.mean() / ds.volume[0]) < 0.015 # higher temperatures should result in a smaller glacier assert ds.volume.mean() > ds_p.volume.mean() # lower temperatures should result in a larger glacier assert ds.volume.mean() < ds_n.volume.mean()
def init_glacier_directories(rgidf=None, *, reset=False, force=False, from_prepro_level=None, prepro_border=None, prepro_rgi_version=None, prepro_base_url=None, from_tar=False, delete_tar=False, use_demo_glaciers=None): """Initializes the list of Glacier Directories for this run. This is the very first task to do (always). If the directories are already available in the working directory, use them. If not, create new ones. Parameters ---------- rgidf : GeoDataFrame or list of ids, optional for pre-computed runs the RGI glacier outlines. If unavailable, OGGM will parse the information from the glacier directories found in the working directory. It is required for new runs. reset : bool delete the existing glacier directories if found. force : bool setting `reset=True` will trigger a yes/no question to the user. Set `force=True` to avoid this. from_prepro_level : int get the gdir data from the official pre-processed pool. See the documentation for more information prepro_border : int for `from_prepro_level` only: if you want to override the default behavior which is to use `cfg.PARAMS['border']` prepro_rgi_version : str for `from_prepro_level` only: if you want to override the default behavior which is to use `cfg.PARAMS['rgi_version']` prepro_base_url : str for `from_prepro_level` only: if you want to override the default URL from which to download the gdirs. Default currently is https://cluster.klima.uni-bremen.de/~fmaussion/gdirs/oggm_v1.1/ use_demo_glaciers : bool whether to check the demo glaciers for download (faster than the standard prepro downloads). The default is to decide whether or not to check based on simple criteria such as glacier list size. from_tar : bool, default=False extract the gdir data from a tar file. If set to `True`, will check for a tar file at the expected location in `base_dir`. delete_tar : bool, default=False delete the original tar file after extraction. Returns ------- gdirs : list of :py:class:`oggm.GlacierDirectory` objects the initialised glacier directories Notes ----- This task is very similar to init_glacier_regions, with one main difference: it does not process the DEMs for this glacier. Eventually, init_glacier_regions will be deprecated and removed from the codebase. """ _check_duplicates(rgidf) if reset and not force: reset = utils.query_yes_no('Delete all glacier directories?') if from_prepro_level: url = utils.get_prepro_base_url(base_url=prepro_base_url, border=prepro_border, prepro_level=from_prepro_level, rgi_version=prepro_rgi_version) if cfg.PARAMS['has_internet'] and not utils.url_exists(url): raise InvalidParamsError("base url seems unreachable with these " "parameters: {}".format(url)) # if reset delete also the log directory if reset: fpath = os.path.join(cfg.PATHS['working_dir'], 'log') if os.path.exists(fpath): rmtree(fpath) if rgidf is None: # Infer the glacier directories from folders available in working dir if reset: raise ValueError('Cannot use reset without setting rgidf') log.workflow('init_glacier_directories by parsing all available ' 'folders (this takes time: if possible, provide rgidf ' 'instead).') # The dirs should be there already gl_dir = os.path.join(cfg.PATHS['working_dir'], 'per_glacier') gdirs = [] for root, _, files in os.walk(gl_dir): if files and ('outlines.shp' in files or 'outlines.tar.gz' in files): gdirs.append(oggm.GlacierDirectory(os.path.basename(root))) else: # Create glacier directories from input # Check if dataframe or list of str try: entities = [] for _, entity in rgidf.iterrows(): entities.append(entity) except AttributeError: entities = utils.tolist(rgidf) # Check demo if use_demo_glaciers is None: use_demo_glaciers = len(entities) < 100 if from_prepro_level is not None: log.workflow('init_glacier_directories from prepro level {} on ' '{} glaciers.'.format(from_prepro_level, len(entities))) # Read the hash dictionary before we use multiproc if cfg.PARAMS['dl_verify']: utils.get_dl_verify_data('cluster.klima.uni-bremen.de') gdirs = execute_entity_task(gdir_from_prepro, entities, from_prepro_level=from_prepro_level, prepro_border=prepro_border, prepro_rgi_version=prepro_rgi_version, check_demo_glacier=use_demo_glaciers, base_url=prepro_base_url) else: # We can set the intersects file automatically here if (cfg.PARAMS['use_intersects'] and len(cfg.PARAMS['intersects_gdf']) == 0): try: rgi_ids = np.unique(np.sort([entity.RGIId for entity in entities])) rgi_version = rgi_ids[0].split('-')[0][-2:] fp = utils.get_rgi_intersects_entities(rgi_ids, version=rgi_version) cfg.set_intersects_db(fp) except AttributeError: # List of str pass gdirs = execute_entity_task(utils.GlacierDirectory, entities, reset=reset, from_tar=from_tar, delete_tar=delete_tar) return gdirs
import xarray as xr import matplotlib.pyplot as plt from oggm import cfg, tasks from oggm.utils import get_demo_file from oggm.core.preprocessing.climate import mb_yearly_climate_on_glacier, \ t_star_from_refmb, local_mustar_apparent_mb from oggm.core.models.massbalance import PastMassBalanceModel cfg.initialize() cfg.PATHS['dem_file'] = get_demo_file('hef_srtm.tif') pcp_fac = 2.6 cfg.PARAMS['prcp_scaling_factor'] = pcp_fac base_dir = os.path.join(os.path.expanduser('~'), 'Climate') entity = gpd.read_file(get_demo_file('Hintereisferner.shp')).iloc[0] gdir = oggm.GlacierDirectory(entity, base_dir=base_dir) tasks.define_glacier_region(gdir, entity=entity) tasks.glacier_masks(gdir) tasks.compute_centerlines(gdir) tasks.initialize_flowlines(gdir) tasks.catchment_area(gdir) tasks.catchment_width_geom(gdir) tasks.catchment_width_correction(gdir) cfg.PATHS['climate_file'] = get_demo_file('histalp_merged_hef.nc') tasks.process_custom_climate_data(gdir) tasks.mu_candidates(gdir) mbdf = gdir.get_ref_mb_data() res = t_star_from_refmb(gdir, mbdf.ANNUAL_BALANCE)
def setup_cache(self): setattr(full_workflow.setup_cache, "timeout", 360) utils.mkdir(self.testdir, reset=True) self.cfg_init() entity = gpd.read_file(get_demo_file('01_rgi60_Columbia.shp')).iloc[0] gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir) tasks.define_glacier_region(gdir, entity=entity) tasks.glacier_masks(gdir) tasks.compute_centerlines(gdir) tasks.initialize_flowlines(gdir) tasks.compute_downstream_line(gdir) tasks.compute_downstream_bedshape(gdir) tasks.catchment_area(gdir) tasks.catchment_intersections(gdir) tasks.catchment_width_geom(gdir) tasks.catchment_width_correction(gdir) climate.process_dummy_cru_file(gdir, seed=0) rho = cfg.PARAMS['ice_density'] i = 0 calving_flux = [] mu_star = [] ite = [] cfg.PARAMS['clip_mu_star'] = False cfg.PARAMS['min_mu_star'] = 0 # default is now 1 while i < 12: # Calculates a calving flux from model output if i == 0: # First call we set to zero (not very necessary, # this first loop could be removed) f_calving = 0 elif i == 1: # Second call we set a very small positive calving f_calving = utils.calving_flux_from_depth(gdir, water_depth=1) elif cfg.PARAMS['clip_mu_star']: # If we have to clip mu the calving becomes the real flux fl = gdir.read_pickle('inversion_flowlines')[-1] f_calving = fl.flux[-1] * (gdir.grid.dx**2) * 1e-9 / rho else: # Otherwise it is parameterized f_calving = utils.calving_flux_from_depth(gdir) # Give it back to the inversion and recompute gdir.inversion_calving_rate = f_calving # At this step we might raise a MassBalanceCalibrationError mu_is_zero = False try: climate.local_t_star(gdir) df = gdir.read_json('local_mustar') except MassBalanceCalibrationError as e: assert 'mu* out of specified bounds' in str(e) # When this happens we clip mu* to zero and store the # bad value (just for plotting) cfg.PARAMS['clip_mu_star'] = True df = gdir.read_json('local_mustar') df['mu_star_glacierwide'] = float(str(e).split(':')[-1]) climate.local_t_star(gdir) climate.mu_star_calibration(gdir) tasks.prepare_for_inversion(gdir, add_debug_var=True) v_inv, _ = tasks.mass_conservation_inversion(gdir) # Store the data calving_flux = np.append(calving_flux, f_calving) mu_star = np.append(mu_star, df['mu_star_glacierwide']) ite = np.append(ite, i) # Do we have to do another_loop? if i > 0: avg_one = np.mean(calving_flux[-4:]) avg_two = np.mean(calving_flux[-5:-1]) difference = abs(avg_two - avg_one) conv = (difference < 0.05 * avg_two or calving_flux[-1] == 0 or calving_flux[-1] == calving_flux[-2]) if mu_is_zero or conv: break i += 1 assert i < 8 assert calving_flux[-1] < np.max(calving_flux) assert calving_flux[-1] > 2 assert mu_star[-1] == 0 mbmod = massbalance.MultipleFlowlineMassBalance mb = mbmod(gdir, use_inversion_flowlines=True, mb_model_class=massbalance.ConstantMassBalance, bias=0) flux_mb = (mb.get_specific_mb() * gdir.rgi_area_m2) * 1e-9 / rho np.testing.assert_allclose(flux_mb, calving_flux[-1], atol=0.001) return calving_flux, mu_star
def test_run_constant_climate(self): """ Test the run_constant_climate task for a climate based on the equilibrium period centred around t*. Additionally a positive and a negative temperature bias are tested. """ # let's not use the mass balance bias since we want to reproduce # results from mass balance calibration cfg.PARAMS['use_bias_for_run'] = False # read the Hintereisferner DEM hef_file = get_demo_file('Hintereisferner_RGI5.shp') entity = gpd.read_file(hef_file).iloc[0] # initialize the GlacierDirectory gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir) # define the local grid and glacier mask gis.define_glacier_region(gdir, entity=entity) gis.glacier_masks(gdir) # process the given climate file climate.process_custom_climate_data(gdir) # compute mass balance parameters ref_df = cfg.PARAMS['vas_ref_tstars_rgi5_histalp'] vascaling.local_t_star(gdir, ref_df=ref_df) # define some parameters for the constant climate model nyears = 500 temp_bias = 0.5 _ = vascaling.run_constant_climate(gdir, nyears=nyears, output_filesuffix='') _ = vascaling.run_constant_climate(gdir, nyears=nyears, temperature_bias=+temp_bias, output_filesuffix='_bias_p') _ = vascaling.run_constant_climate(gdir, nyears=nyears, temperature_bias=-temp_bias, output_filesuffix='_bias_n') # compile run outputs ds = utils.compile_run_output([gdir], input_filesuffix='') ds_p = utils.compile_run_output([gdir], input_filesuffix='_bias_p') ds_n = utils.compile_run_output([gdir], input_filesuffix='_bias_n') # the glacier should not change under a constant climate # based on the equilibirum period centered around t* assert abs(1 - ds.volume.mean() / ds.volume[0]) < 1e-7 # higher temperatures should result in a smaller glacier assert ds.volume.mean() > ds_p.volume.mean() # lower temperatures should result in a larger glacier assert ds.volume.mean() < ds_n.volume.mean() # compute volume change from one year to the next dV_p = (ds_p.volume[1:].values - ds_p.volume[:-1].values).flatten() dV_n = (ds_n.volume[1:].values - ds_n.volume[:-1].values).flatten() # compute relative volume change, with respect to the final volume rate_p = abs(dV_p / float(ds_p.volume.values[-1])) rate_n = abs(dV_n / float(ds_n.volume.values[-1])) # the glacier should be in a new equilibirum for last 300 years assert max(rate_p[-300:]) < 0.001 assert max(rate_n[-300:]) < 0.001
def test_yearly_mb_temp_prcp(self): """Test the routine which returns the yearly mass balance relevant climate parameters, i.e. positive melting temperature and solid precipitation. The testing target is the output of the corresponding OGGM routine `get_yearly_mb_climate_on_glacier(gdir)`. """ # read the Hintereisferner DEM hef_file = get_demo_file('Hintereisferner_RGI5.shp') entity = gpd.read_file(hef_file).iloc[0] # initialize the GlacierDirectory gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir) # define the local grid and glacier mask gis.define_glacier_region(gdir, entity=entity) gis.glacier_masks(gdir) # run centerline prepro tasks centerlines.compute_centerlines(gdir) centerlines.initialize_flowlines(gdir) centerlines.catchment_area(gdir) centerlines.catchment_intersections(gdir) centerlines.catchment_width_geom(gdir) centerlines.catchment_width_correction(gdir) # process the given climate file climate.process_custom_climate_data(gdir) # get yearly sums of terminus temperature and solid precipitation years, temp, prcp = vascaling.get_yearly_mb_temp_prcp(gdir) # use the OGGM methode to get the mass balance # relevant climate parameters years_oggm, temp_oggm, prcp_oggm = \ climate.mb_yearly_climate_on_glacier(gdir) # the energy input at the glacier terminus must be greater than (or # equal to) the glacier wide average, since the air temperature drops # with elevation, i.e. the mean deviation must be positive, using the # OGGM data as reference assert md(temp_oggm, temp) >= 0 # consequentially, the average mass input must be less than (or equal # to) the mass input integrated over the whole glacier surface, i.e. # the mean deviation must be negative, using the OGGM data as reference # TODO: does it actually?! And if so, why?! @ASK assert md(prcp_oggm, prcp) <= 0 # correlation must be higher than set threshold assert corrcoef(temp, temp_oggm) >= 0.94 assert corrcoef(prcp, prcp_oggm) >= 0.98 # get terminus temperature using the OGGM routine fpath = gdir.get_filepath('gridded_data') with ncDataset(fpath) as nc: mask = nc.variables['glacier_mask'][:] topo = nc.variables['topo'][:] heights = np.array([np.min(topo[np.where(mask == 1)])]) years_height, temp_height, _ = \ climate.mb_yearly_climate_on_height(gdir, heights, flatten=False) temp_height = temp_height[0] # both time series must be equal np.testing.assert_array_equal(temp, temp_height) # get solid precipitation averaged over the glacier # (not weighted with widths) fls = gdir.read_pickle('inversion_flowlines') heights = np.array([]) for fl in fls: heights = np.append(heights, fl.surface_h) years_height, _, prcp_height = \ climate.mb_yearly_climate_on_height(gdir, heights, flatten=True) # correlation must be higher than set threshold assert corrcoef(prcp, prcp_height) >= 0.99 # TODO: assert absolute values (or differences) of precipitation @ASK # test exception handling of out of bounds time/year range with self.assertRaises(climate.MassBalanceCalibrationError): # start year out of bounds year_range = [1500, 1980] _, _, _ = vascaling.get_yearly_mb_temp_prcp(gdir, year_range=year_range) with self.assertRaises(climate.MassBalanceCalibrationError): # end year oud of bounds year_range = [1980, 3000] _, _, _ = vascaling.get_yearly_mb_temp_prcp(gdir, year_range=year_range) with self.assertRaises(ValueError): # get not N full years t0 = datetime.datetime(1980, 1, 1) t1 = datetime.datetime(1980, 3, 1) time_range = [t0, t1] _, _, _ = vascaling.get_yearly_mb_temp_prcp(gdir, time_range=time_range) # TODO: assert gradient in climate file?! pass
def test_solid_prcp(self): """Tests the subroutine which computes solid precipitation amount from given total precipitation and temperature. """ # read the Hintereisferner DEM hef_file = get_demo_file('Hintereisferner_RGI5.shp') entity = gpd.read_file(hef_file).iloc[0] # initialize the GlacierDirectory gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir) # define the local grid gis.define_glacier_region(gdir, entity=entity) # process the given climate file climate.process_custom_climate_data(gdir) # read the following variable from the center pixel (46.83N 10.75E) # of the Hintereisferner HistAlp climate file for the # entire time period from October 1801 until September 2003 # - surface height in m asl. # - total precipitation amount in kg/m2 # - 2m air temperature in °C with utils.ncDataset(get_demo_file('histalp_merged_hef.nc')) as nc_r: ref_h = nc_r.variables['hgt'][1, 1] ref_p = nc_r.variables['prcp'][:, 1, 1] ref_t = nc_r.variables['temp'][:, 1, 1] # define needed parameters prcp_factor = 1 temp_all_solid = 0 temp_grad = -0.0065 # define elevation levels ref_hgt = ref_h min_hgt = ref_h - 100 max_hgt = ref_h + 100 # if the terminus temperature is below the threshold for # solid precipitation all fallen precipitation must be solid temp_terminus = ref_t * 0 + temp_all_solid solid_prcp = vascaling._compute_solid_prcp(ref_p, prcp_factor, ref_hgt, min_hgt, max_hgt, temp_terminus, temp_all_solid, temp_grad, prcp_grad=0, prcp_anomaly=0) np.testing.assert_allclose(solid_prcp, ref_p) # if the temperature at the maximal elevation is above the threshold # for solid precipitation all fallen precipitation must be liquid temp_terminus = ref_t + 100 solid_prcp = vascaling._compute_solid_prcp(ref_p, prcp_factor, ref_hgt, min_hgt, max_hgt, temp_terminus, temp_all_solid, temp_grad, prcp_grad=0, prcp_anomaly=0) np.testing.assert_allclose(solid_prcp, 0) # test extreme case if max_hgt equals min_hgt test_p = ref_p * (ref_t <= temp_all_solid).astype(int) solid_prcp = vascaling._compute_solid_prcp(ref_p, prcp_factor, ref_hgt, ref_hgt, ref_hgt, ref_t, temp_all_solid, temp_grad, prcp_grad=0, prcp_anomaly=0) np.testing.assert_allclose(solid_prcp, test_p)
def init_hef(reset=False, border=40, invert_with_sliding=True, invert_with_rectangular=True): from oggm.core.preprocessing import gis, centerlines, geometry from oggm.core.preprocessing import climate, inversion import oggm import oggm.cfg as cfg from oggm.utils import get_demo_file # test directory testdir = os.path.join(cfg.PATHS['test_dir'], 'tmp_border{}'.format(border)) if not invert_with_sliding: testdir += '_withoutslide' if not invert_with_rectangular: testdir += '_withoutrectangular' if not os.path.exists(testdir): os.makedirs(testdir) reset = True # Init cfg.initialize() cfg.PATHS['dem_file'] = get_demo_file('hef_srtm.tif') cfg.PATHS['climate_file'] = get_demo_file('histalp_merged_hef.nc') cfg.PARAMS['border'] = border hef_file = get_demo_file('Hintereisferner_RGI5.shp') entity = gpd.GeoDataFrame.from_file(hef_file).iloc[0] gdir = oggm.GlacierDirectory(entity, base_dir=testdir, reset=reset) if not gdir.has_file('inversion_params'): reset = True gdir = oggm.GlacierDirectory(entity, base_dir=testdir, reset=reset) if not reset: return gdir gis.define_glacier_region(gdir, entity=entity) gis.glacier_masks(gdir) centerlines.compute_centerlines(gdir) centerlines.compute_downstream_lines(gdir) geometry.initialize_flowlines(gdir) geometry.catchment_area(gdir) geometry.catchment_intersections(gdir) geometry.catchment_width_geom(gdir) geometry.catchment_width_correction(gdir) climate.process_histalp_nonparallel([gdir]) climate.mu_candidates(gdir, div_id=0) mbdf = gdir.get_ref_mb_data()['ANNUAL_BALANCE'] res = climate.t_star_from_refmb(gdir, mbdf) climate.local_mustar_apparent_mb(gdir, tstar=res['t_star'][-1], bias=res['bias'][-1], prcp_fac=res['prcp_fac']) inversion.prepare_for_inversion( gdir, add_debug_var=True, invert_with_rectangular=invert_with_rectangular) ref_v = 0.573 * 1e9 if invert_with_sliding: def to_optimize(x): # For backwards compat _fd = 1.9e-24 * x[0] glen_a = (cfg.N + 2) * _fd / 2. fs = 5.7e-20 * x[1] v, _ = inversion.mass_conservation_inversion(gdir, fs=fs, glen_a=glen_a) return (v - ref_v)**2 out = optimization.minimize(to_optimize, [1, 1], bounds=((0.01, 10), (0.01, 10)), tol=1e-4)['x'] _fd = 1.9e-24 * out[0] glen_a = (cfg.N + 2) * _fd / 2. fs = 5.7e-20 * out[1] v, _ = inversion.mass_conservation_inversion(gdir, fs=fs, glen_a=glen_a, write=True) else: def to_optimize(x): glen_a = cfg.A * x[0] v, _ = inversion.mass_conservation_inversion(gdir, fs=0., glen_a=glen_a) return (v - ref_v)**2 out = optimization.minimize(to_optimize, [1], bounds=((0.01, 10), ), tol=1e-4)['x'] glen_a = cfg.A * out[0] fs = 0. v, _ = inversion.mass_conservation_inversion(gdir, fs=fs, glen_a=glen_a, write=True) d = dict(fs=fs, glen_a=glen_a) d['factor_glen_a'] = out[0] try: d['factor_fs'] = out[1] except IndexError: d['factor_fs'] = 0. gdir.write_pickle(d, 'inversion_params') # filter inversion.filter_inversion_output(gdir) inversion.distribute_thickness(gdir, how='per_altitude', add_nc_name=True) inversion.distribute_thickness(gdir, how='per_interpolation', add_slope=False, smooth=False, add_nc_name=True) return gdir
import geopandas as gpd import oggm from oggm import cfg, tasks from oggm.utils import get_demo_file # Set up the input data for this example cfg.initialize() cfg.PATHS['working_dir'] = oggm.utils.get_temp_dir('oggmcontrib_inv') cfg.PATHS['dem_file'] = get_demo_file('srtm_oetztal.tif') cfg.set_intersects_db(get_demo_file('rgi_intersect_oetztal.shp')) # Glacier directory for Hintereisferner in Austria entity = gpd.read_file(get_demo_file('Hintereisferner_RGI5.shp')).iloc[0] gdir = oggm.GlacierDirectory(entity) # The usual OGGM preprecessing tasks.define_glacier_region(gdir, entity=entity) tasks.glacier_masks(gdir)
def init_glacier_regions(rgidf=None, reset=False, force=False): """Initializes the list of Glacier Directories for this run. This is the very first task to do (always). If the directories are already available in the working directory, use them. If not, create new ones. Parameters ---------- rgidf : GeoDataFrame, optional for pre-computed runs the RGI glacier outlines. If unavailable, OGGM will parse the information from the glacier directories found in the working directory. It is required for new runs. reset : bool delete the existing glacier directories if found. force : bool setting `reset=True` will trigger a yes/no question to the user. Set `force=True` to avoid this. Returns ------- a list of GlacierDirectory objects """ if reset and not force: reset = utils.query_yes_no('Delete all glacier directories?') # if reset delete also the log directory if reset: fpath = os.path.join(cfg.PATHS['working_dir'], 'log') if os.path.exists(fpath): rmtree(fpath) gdirs = [] new_gdirs = [] if rgidf is None: if reset: raise ValueError('Cannot use reset without a rgi file') # The dirs should be there already gl_dir = os.path.join(cfg.PATHS['working_dir'], 'per_glacier') for root, _, files in os.walk(gl_dir): if files and ('dem.tif' in files): gdirs.append(oggm.GlacierDirectory(os.path.basename(root))) else: for _, entity in rgidf.iterrows(): gdir = oggm.GlacierDirectory(entity, reset=reset) if not os.path.exists(gdir.get_filepath('dem')): new_gdirs.append((gdir, dict(entity=entity))) gdirs.append(gdir) # We can set the intersects file automatically here if (cfg.PARAMS['use_intersects'] and new_gdirs and (len(cfg.PARAMS['intersects_gdf']) == 0)): rgi_ids = np.unique(np.sort([t[0].rgi_id for t in new_gdirs])) rgi_version = new_gdirs[0][0].rgi_version fp = utils.get_rgi_intersects_entities(rgi_ids, version=rgi_version) cfg.set_intersects_db(fp) # If not initialized, run the task in parallel execute_entity_task(tasks.define_glacier_region, new_gdirs) return gdirs
def init_glacier_regions(rgidf=None, *, reset=False, force=False, from_prepro_level=None, prepro_border=None, prepro_rgi_version=None, prepro_base_url=None, from_tar=False, delete_tar=False, use_demo_glaciers=None): """DEPRECATED: Initializes the list of Glacier Directories for this run. This is the very first task to do (always). If the directories are already available in the working directory, use them. If not, create new ones. Parameters ---------- rgidf : GeoDataFrame or list of ids, optional for pre-computed runs the RGI glacier outlines. If unavailable, OGGM will parse the information from the glacier directories found in the working directory. It is required for new runs. reset : bool delete the existing glacier directories if found. force : bool setting `reset=True` will trigger a yes/no question to the user. Set `force=True` to avoid this. from_prepro_level : int get the gdir data from the official pre-processed pool. See the documentation for more information prepro_border : int for `from_prepro_level` only: if you want to override the default behavior which is to use `cfg.PARAMS['border']` prepro_rgi_version : str for `from_prepro_level` only: if you want to override the default behavior which is to use `cfg.PARAMS['rgi_version']` prepro_base_url : str for `from_prepro_level` only: if you want to override the default URL from which to download the gdirs. Default currently is https://cluster.klima.uni-bremen.de/~oggm/gdirs/oggm_v1.1/ use_demo_glaciers : bool whether to check the demo glaciers for download (faster than the standard prepro downloads). The default is to decide whether or not to check based on simple criteria such as glacier list size. from_tar : bool, default=False extract the gdir data from a tar file. If set to `True`, will check for a tar file at the expected location in `base_dir`. delete_tar : bool, default=False delete the original tar file after extraction. delete_tar : bool, default=False delete the original tar file after extraction. Returns ------- gdirs : list of :py:class:`oggm.GlacierDirectory` objects the initialised glacier directories Notes ----- This task is deprecated in favor of the more explicit init_glacier_directories. Indeed, init_glacier_directories is very similar to init_glacier_regions, but it does not process the DEMs: a glacier directory is valid also without DEM. """ _check_duplicates(rgidf) if reset and not force: reset = utils.query_yes_no('Delete all glacier directories?') if prepro_border is None: prepro_border = int(cfg.PARAMS['border']) if from_prepro_level and prepro_border not in [10, 80, 160, 250]: if 'test' not in utils._downloads.GDIR_URL: raise InvalidParamsError("prepro_border or cfg.PARAMS['border'] " "should be one of: 10, 80, 160, 250.") # if reset delete also the log directory if reset: fpath = os.path.join(cfg.PATHS['working_dir'], 'log') if os.path.exists(fpath): rmtree(fpath) gdirs = [] new_gdirs = [] if rgidf is None: if reset: raise ValueError('Cannot use reset without setting rgidf') log.workflow('init_glacier_regions by parsing available folders ' '(can be slow).') # The dirs should be there already gl_dir = os.path.join(cfg.PATHS['working_dir'], 'per_glacier') for root, _, files in os.walk(gl_dir): if files and ('dem.tif' in files): gdirs.append(oggm.GlacierDirectory(os.path.basename(root))) else: # Check if dataframe or list of strs try: entities = [] for _, entity in rgidf.iterrows(): entities.append(entity) except AttributeError: entities = utils.tolist(rgidf) # Check demo if use_demo_glaciers is None: use_demo_glaciers = len(entities) < 100 if from_prepro_level is not None: log.workflow('init_glacier_regions from prepro level {} on ' '{} glaciers.'.format(from_prepro_level, len(entities))) # Read the hash dictionary before we use multiproc if cfg.PARAMS['dl_verify']: utils.get_dl_verify_data('cluster.klima.uni-bremen.de') gdirs = execute_entity_task(gdir_from_prepro, entities, from_prepro_level=from_prepro_level, prepro_border=prepro_border, prepro_rgi_version=prepro_rgi_version, check_demo_glacier=use_demo_glaciers, base_url=prepro_base_url) else: # We can set the intersects file automatically here if (cfg.PARAMS['use_intersects'] and len(cfg.PARAMS['intersects_gdf']) == 0): rgi_ids = np.unique(np.sort([entity.RGIId for entity in entities])) rgi_version = rgi_ids[0].split('-')[0][-2:] fp = utils.get_rgi_intersects_entities(rgi_ids, version=rgi_version) cfg.set_intersects_db(fp) gdirs = execute_entity_task(utils.GlacierDirectory, entities, reset=reset, from_tar=from_tar, delete_tar=delete_tar) for gdir in gdirs: if not os.path.exists(gdir.get_filepath('dem')): new_gdirs.append(gdir) if len(new_gdirs) > 0: # If not initialized, run the task in parallel execute_entity_task(tasks.define_glacier_region, new_gdirs) return gdirs
dir_path = os.path.join(tempfile.gettempdir(), 'fig_01') fig_path = os.path.join(PLOT_DIR, 'workflow_tas.pdf') cfg.initialize() cfg.PARAMS['border'] = 20 cfg.PATHS['working_dir'] = dir_path utils.mkdir(dir_path, reset=True) rgidf = utils.get_rgi_glacier_entities(['RGI60-18.02342']) entity = rgidf.iloc[0] cfg.set_intersects_db(utils.get_rgi_intersects_entities(['RGI60-18.02342'])) gdir = oggm.GlacierDirectory(entity, base_dir=dir_path) tasks.define_glacier_region(gdir, entity=entity) tasks.glacier_masks(gdir) tasks.compute_centerlines(gdir) tasks.initialize_flowlines(gdir) tasks.compute_downstream_line(gdir) tasks.compute_downstream_bedshape(gdir) tasks.catchment_area(gdir) tasks.catchment_intersections(gdir) tasks.catchment_width_geom(gdir) tasks.catchment_width_correction(gdir) tasks.process_cru_data(gdir) tasks.local_t_star(gdir) tasks.mu_star_calibration(gdir)
def test_run_until_and_store(self): """Test the volume/area scaling model against the oggm.FluxBasedModel. Both models run the Hintereisferner over the entire HistAlp climate period, initialized with the 2003 RGI outline without spin up. The following two parameters for length, area and volume are tested: - correlation coefficient - relative RMSE, i.e. RMSE/mean(OGGM). Whereby the results from the VAS model are offset with the average differences to the OGGM results. """ # read the Hintereisferner DEM hef_file = get_demo_file('Hintereisferner_RGI5.shp') entity = gpd.read_file(hef_file).iloc[0] # initialize the GlacierDirectory gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir) # define the local grid and glacier mask gis.define_glacier_region(gdir, entity=entity) gis.glacier_masks(gdir) # process the given climate file climate.process_custom_climate_data(gdir) # run center line preprocessing tasks centerlines.compute_centerlines(gdir) centerlines.initialize_flowlines(gdir) centerlines.compute_downstream_line(gdir) centerlines.compute_downstream_bedshape(gdir) centerlines.catchment_area(gdir) centerlines.catchment_intersections(gdir) centerlines.catchment_width_geom(gdir) centerlines.catchment_width_correction(gdir) # read reference glacier mass balance data mbdf = gdir.get_ref_mb_data() # compute the reference t* for the glacier # given the reference of mass balance measurements res = climate.t_star_from_refmb(gdir, mbdf=mbdf['ANNUAL_BALANCE']) t_star, bias = res['t_star'], res['bias'] # -------------------- # SCALING MODEL # -------------------- # compute local t* and the corresponding mu* vascaling.local_t_star(gdir, tstar=t_star, bias=bias) # instance the mass balance models vas_mbmod = vascaling.VAScalingMassBalance(gdir) # get reference area a0 = gdir.rgi_area_m2 # get reference year y0 = gdir.read_json('climate_info')['baseline_hydro_yr_0'] # get min and max glacier surface elevation h0, h1 = vascaling.get_min_max_elevation(gdir) vas_model = vascaling.VAScalingModel(year_0=y0, area_m2_0=a0, min_hgt=h0, max_hgt=h1, mb_model=vas_mbmod) # let model run over entire HistAlp climate period vas_ds = vas_model.run_until_and_store(2003) # ------ # OGGM # ------ # compute local t* and the corresponding mu* climate.local_t_star(gdir, tstar=t_star, bias=bias) climate.mu_star_calibration(gdir) # instance the mass balance models mb_mod = massbalance.PastMassBalance(gdir) # perform ice thickness inversion inversion.prepare_for_inversion(gdir) inversion.mass_conservation_inversion(gdir) inversion.filter_inversion_output(gdir) # initialize present time glacier flowline.init_present_time_glacier(gdir) # instance flowline model fls = gdir.read_pickle('model_flowlines') y0 = gdir.read_json('climate_info')['baseline_hydro_yr_0'] fl_mod = flowline.FluxBasedModel(flowlines=fls, mb_model=mb_mod, y0=y0) # run model and store output as xarray data set _, oggm_ds = fl_mod.run_until_and_store(2003) # temporal indices must be equal assert (vas_ds.time == oggm_ds.time).all() # specify which parameters to compare and their respective correlation # coefficients and rmsd values params = ['length_m', 'area_m2', 'volume_m3'] corr_coeffs = np.array([0.96, 0.90, 0.93]) rmsds = np.array([0.43e3, 0.14e6, 0.03e9]) # compare given parameters for param, cc, rmsd in zip(params, corr_coeffs, rmsds): # correlation coefficient assert corrcoef(oggm_ds[param].values, vas_ds[param].values) >= cc # root mean squared deviation rmsd_an = rmsd_bc(oggm_ds[param].values, vas_ds[param].values) assert rmsd_an <= rmsd
def init_hef(reset=False, border=40, invert_with_sliding=True, invert_with_rectangular=True): # test directory testdir = os.path.join(get_test_dir(), 'tmp_border{}'.format(border)) if not invert_with_sliding: testdir += '_withoutslide' if not invert_with_rectangular: testdir += '_withoutrectangular' if not os.path.exists(testdir): os.makedirs(testdir) reset = True # Init cfg.initialize() cfg.set_intersects_db(get_demo_file('rgi_intersect_oetztal.shp')) cfg.PATHS['dem_file'] = get_demo_file('hef_srtm.tif') cfg.PATHS['climate_file'] = get_demo_file('histalp_merged_hef.nc') cfg.PARAMS['border'] = border cfg.PARAMS['use_optimized_inversion_params'] = True hef_file = get_demo_file('Hintereisferner_RGI5.shp') entity = gpd.read_file(hef_file).iloc[0] gdir = oggm.GlacierDirectory(entity, base_dir=testdir, reset=reset) if not gdir.has_file('inversion_params'): reset = True gdir = oggm.GlacierDirectory(entity, base_dir=testdir, reset=reset) if not reset: return gdir gis.define_glacier_region(gdir, entity=entity) execute_entity_task(gis.glacier_masks, [gdir]) execute_entity_task(centerlines.compute_centerlines, [gdir]) centerlines.initialize_flowlines(gdir) centerlines.compute_downstream_line(gdir) centerlines.compute_downstream_bedshape(gdir) centerlines.catchment_area(gdir) centerlines.catchment_intersections(gdir) centerlines.catchment_width_geom(gdir) centerlines.catchment_width_correction(gdir) climate.process_custom_climate_data(gdir) climate.mu_candidates(gdir) mbdf = gdir.get_ref_mb_data()['ANNUAL_BALANCE'] res = climate.t_star_from_refmb(gdir, mbdf) climate.local_mustar(gdir, tstar=res['t_star'][-1], bias=res['bias'][-1], prcp_fac=res['prcp_fac']) climate.apparent_mb(gdir) inversion.prepare_for_inversion( gdir, add_debug_var=True, invert_with_rectangular=invert_with_rectangular) ref_v = 0.573 * 1e9 if invert_with_sliding: def to_optimize(x): # For backwards compat _fd = 1.9e-24 * x[0] glen_a = (cfg.N + 2) * _fd / 2. fs = 5.7e-20 * x[1] v, _ = inversion.mass_conservation_inversion(gdir, fs=fs, glen_a=glen_a) return (v - ref_v)**2 out = optimization.minimize(to_optimize, [1, 1], bounds=((0.01, 10), (0.01, 10)), tol=1e-4)['x'] _fd = 1.9e-24 * out[0] glen_a = (cfg.N + 2) * _fd / 2. fs = 5.7e-20 * out[1] v, _ = inversion.mass_conservation_inversion(gdir, fs=fs, glen_a=glen_a, write=True) else: def to_optimize(x): glen_a = cfg.A * x[0] v, _ = inversion.mass_conservation_inversion(gdir, fs=0., glen_a=glen_a) return (v - ref_v)**2 out = optimization.minimize(to_optimize, [1], bounds=((0.01, 10), ), tol=1e-4)['x'] glen_a = cfg.A * out[0] fs = 0. v, _ = inversion.mass_conservation_inversion(gdir, fs=fs, glen_a=glen_a, write=True) d = dict(fs=fs, glen_a=glen_a) d['factor_glen_a'] = out[0] try: d['factor_fs'] = out[1] except IndexError: d['factor_fs'] = 0. gdir.write_pickle(d, 'inversion_params') # filter inversion.filter_inversion_output(gdir) inversion.distribute_thickness_interp(gdir, varname_suffix='_interp') inversion.distribute_thickness_per_altitude(gdir, varname_suffix='_alt') flowline.init_present_time_glacier(gdir) return gdir