Exemple #1
0
def test_inner_loop(dask_client):
    # Test TPI.inner_loop function.  Provide inputs to function and
    # ensure that output returned matches what it has been before.
    input_tuple = utils.safe_read_pickle(
        os.path.join(CUR_PATH, 'test_io_data', 'tpi_inner_loop_inputs.pkl'))
    guesses, outer_loop_vars, params, j = input_tuple
    income_tax_params, tpi_params, initial_values, ind = params
    initial_values = initial_values[:-1]
    tpi_params = tpi_params
    p = Specifications(client=dask_client, num_workers=NUM_WORKERS)
    (p.J, p.S, p.T, p.BW, p.beta, p.sigma, p.alpha, p.gamma, p.epsilon,
     Z, p.delta, p.ltilde, p.nu, p.g_y, p.g_n, tau_b, delta_tau,
     tau_payroll, tau_bq, p.rho, p.omega, N_tilde, lambdas,
     p.imm_rates, p.e, retire, p.mean_income_data, factor, h_wealth,
     p_wealth, m_wealth, p.b_ellipse, p.upsilon, p.chi_b, p.chi_n,
     theta, p.baseline) = tpi_params
    p.eta = p.omega.reshape(p.T + p.S, p.S, 1) * p.lambdas.reshape(1, p.J)
    p.Z = np.ones(p.T + p.S) * Z
    p.tau_bq = np.ones(p.T + p.S) * 0.0
    p.tau_payroll = np.ones(p.T + p.S) * tau_payroll
    p.tau_b = np.ones(p.T + p.S) * tau_b
    p.delta_tau = np.ones(p.T + p.S) * delta_tau
    p.h_wealth = np.ones(p.T + p.S) * h_wealth
    p.p_wealth = np.ones(p.T + p.S) * p_wealth
    p.m_wealth = np.ones(p.T + p.S) * m_wealth
    p.retire = (np.ones(p.T + p.S) * retire).astype(int)
    p.tax_func_type = 'DEP'
    p.analytical_mtrs, etr_params, mtrx_params, mtry_params =\
        income_tax_params
    p.etr_params = np.transpose(etr_params, (1, 0, 2))[:p.T, :, :]
    p.mtrx_params = np.transpose(mtrx_params, (1, 0, 2))[:p.T, :, :]
    p.mtry_params = np.transpose(mtry_params, (1, 0, 2))[:p.T, :, :]
    p.lambdas = lambdas.reshape(p.J, 1)
    p.num_workers = 1
    (K0, b_sinit, b_splus1init, factor, initial_b, initial_n,
     p.omega_S_preTP, initial_debt) = initial_values
    initial_values_in = (K0, b_sinit, b_splus1init, factor, initial_b,
                         initial_n)
    (r, K, BQ, TR) = outer_loop_vars
    wss = firm.get_w_from_r(r[-1], p, 'SS')
    w = np.ones(p.T + p.S) * wss
    w[:p.T] = firm.get_w_from_r(r[:p.T], p, 'TPI')
    outer_loop_vars_in = (r, w, r, BQ, TR, theta)

    guesses = (guesses[0], guesses[1])
    test_tuple = TPI.inner_loop(guesses, outer_loop_vars_in,
                                initial_values_in, j, ind, p)

    expected_tuple = utils.safe_read_pickle(
        os.path.join(CUR_PATH, 'test_io_data',
                     'tpi_inner_loop_outputs.pkl'))

    for i, v in enumerate(expected_tuple):
        assert(np.allclose(test_tuple[i], v))
Exemple #2
0
def test_inner_loop():
    # Test TPI.inner_loop function.  Provide inputs to function and
    # ensure that output returned matches what it has been before.
    input_tuple = utils.safe_read_pickle(
        os.path.join(CUR_PATH, 'test_io_data/tpi_inner_loop_inputs.pkl'))
    guesses, outer_loop_vars, params, j = input_tuple
    income_tax_params, tpi_params, initial_values, ind = params
    initial_values = initial_values
    tpi_params = tpi_params
    p = Specifications()
    (p.J, p.S, p.T, p.BW, p.beta, p.sigma, p.alpha, p.gamma, p.epsilon,
     Z, p.delta, p.ltilde, p.nu, p.g_y, p.g_n, tau_b, delta_tau,
     tau_payroll, tau_bq, p.rho, p.omega, N_tilde, lambdas,
     p.imm_rates, p.e, retire, p.mean_income_data, factor, h_wealth,
     p_wealth, m_wealth, p.b_ellipse, p.upsilon, p.chi_b, p.chi_n,
     theta, p.baseline) = tpi_params
    p.Z = np.ones(p.T + p.S) * Z
    p.tau_bq = np.ones(p.T + p.S) * 0.0
    p.tau_payroll = np.ones(p.T + p.S) * tau_payroll
    p.tau_b = np.ones(p.T + p.S) * tau_b
    p.delta_tau = np.ones(p.T + p.S) * delta_tau
    p.h_wealth = np.ones(p.T + p.S) * h_wealth
    p.p_wealth = np.ones(p.T + p.S) * p_wealth
    p.m_wealth = np.ones(p.T + p.S) * m_wealth
    p.retire = (np.ones(p.T + p.S) * retire).astype(int)
    p.tax_func_type = 'DEP'
    p.analytical_mtrs, etr_params, mtrx_params, mtry_params =\
        income_tax_params
    p.etr_params = np.transpose(etr_params, (1, 0, 2))[:p.T, :, :]
    p.mtrx_params = np.transpose(mtrx_params, (1, 0, 2))[:p.T, :, :]
    p.mtry_params = np.transpose(mtry_params, (1, 0, 2))[:p.T, :, :]
    p.lambdas = lambdas.reshape(p.J, 1)
    p.num_workers = 1
    (K0, b_sinit, b_splus1init, factor, initial_b, initial_n,
     p.omega_S_preTP, initial_debt, D0) = initial_values
    initial_values_in = (K0, b_sinit, b_splus1init, factor, initial_b,
                         initial_n, D0)
    (r, K, BQ, T_H) = outer_loop_vars
    wss = firm.get_w_from_r(r[-1], p, 'SS')
    w = np.ones(p.T + p.S) * wss
    w[:p.T] = firm.get_w_from_r(r[:p.T], p, 'TPI')
    outer_loop_vars_in = (r, w, r, BQ, T_H, theta)

    guesses = (guesses[0], guesses[1])
    test_tuple = TPI.inner_loop(guesses, outer_loop_vars_in,
                                initial_values_in, j, ind, p)

    expected_tuple = utils.safe_read_pickle(
        os.path.join(CUR_PATH, 'test_io_data/tpi_inner_loop_outputs.pkl'))

    for i, v in enumerate(expected_tuple):
        assert(np.allclose(test_tuple[i], v))
def test_get_w_from_r(r, p, method, expected):
    """
        choose values that simplify the calculations and are similar to
        observed values
    """
    w = firm.get_w_from_r(r, p, method)
    assert (np.allclose(w, expected, atol=1e-6))
Exemple #4
0
def run_TPI(p, client=None):

    # unpack tuples of parameters
    initial_values, SS_values, baseline_values = get_initial_SS_values(p)
    (B0, b_sinit, b_splus1init, factor, initial_b, initial_n,
     D0) = initial_values
    (Kss, Bss, Lss, rss, wss, BQss, T_Hss, total_revenue_ss, bssmat_splus1,
     nssmat, Yss, Gss, theta) = SS_values
    (T_Hbaseline, Gbaseline) = baseline_values

    print('Government spending breakpoints are tG1: ', p.tG1, '; and tG2:',
          p.tG2)

    # Initialize guesses at time paths
    # Make array of initial guesses for labor supply and savings
    domain = np.linspace(0, p.T, p.T)
    domain2 = np.tile(domain.reshape(p.T, 1, 1), (1, p.S, p.J))
    ending_b = bssmat_splus1
    guesses_b = (-1 / (domain2 + 1)) * (ending_b - initial_b) + ending_b
    ending_b_tail = np.tile(ending_b.reshape(1, p.S, p.J), (p.S, 1, 1))
    guesses_b = np.append(guesses_b, ending_b_tail, axis=0)

    domain3 = np.tile(np.linspace(0, 1, p.T).reshape(p.T, 1, 1), (1, p.S, p.J))
    guesses_n = domain3 * (nssmat - initial_n) + initial_n
    ending_n_tail = np.tile(nssmat.reshape(1, p.S, p.J), (p.S, 1, 1))
    guesses_n = np.append(guesses_n, ending_n_tail, axis=0)
    b_mat = guesses_b  # np.zeros((p.T + p.S, p.S, p.J))
    n_mat = guesses_n  # np.zeros((p.T + p.S, p.S, p.J))
    ind = np.arange(p.S)

    L_init = np.ones((p.T + p.S, )) * Lss
    B_init = np.ones((p.T + p.S, )) * Bss
    L_init[:p.T] = aggr.get_L(n_mat[:p.T], p, 'TPI')
    B_init[1:p.T] = aggr.get_K(b_mat[:p.T], p, 'TPI', False)[:p.T - 1]
    B_init[0] = B0

    if not p.small_open:
        if p.budget_balance:
            K_init = B_init
        else:
            K_init = B_init * Kss / Bss
    else:
        K_init = firm.get_K(L_init, p.firm_r, p, 'TPI')

    K = K_init

    L = L_init
    B = B_init
    Y = np.zeros_like(K)
    Y[:p.T] = firm.get_Y(K[:p.T], L[:p.T], p, 'TPI')
    Y[p.T:] = Yss
    r = np.zeros_like(Y)
    if not p.small_open:
        r[:p.T] = firm.get_r(Y[:p.T], K[:p.T], p, 'TPI')
        r[p.T:] = rss
    else:
        r = p.firm_r
    # compute w
    w = np.zeros_like(r)
    w[:p.T] = firm.get_w_from_r(r[:p.T], p, 'TPI')
    w[p.T:] = wss
    r_gov = fiscal.get_r_gov(r, p)
    if p.budget_balance:
        r_hh = r
    else:
        r_hh = aggr.get_r_hh(r, r_gov, K, p.debt_ratio_ss * Y)
    if p.small_open:
        r_hh = p.hh_r

    BQ0 = aggr.get_BQ(r[0], initial_b, None, p, 'SS', True)
    if not p.use_zeta:
        BQ = np.zeros((p.T + p.S, p.J))
        for j in range(p.J):
            BQ[:,
               j] = (list(np.linspace(BQ0[j], BQss[j], p.T)) + [BQss[j]] * p.S)
        BQ = np.array(BQ)
    else:
        BQ = (list(np.linspace(BQ0, BQss, p.T)) + [BQss] * p.S)
        BQ = np.array(BQ)
    if p.budget_balance:
        if np.abs(T_Hss) < 1e-13:
            T_Hss2 = 0.0  # sometimes SS is very small but not zero,
            # even if taxes are zero, this get's rid of the approximation
            # error, which affects the perc changes below
        else:
            T_Hss2 = T_Hss
        T_H = np.ones(p.T + p.S) * T_Hss2
        total_revenue = T_H
        G = np.zeros(p.T + p.S)
    elif not p.baseline_spending:
        T_H = p.alpha_T * Y
    elif p.baseline_spending:
        T_H = T_Hbaseline
        T_H_new = p.T_H  # Need to set T_H_new for later reference
        G = Gbaseline
        G_0 = Gbaseline[0]

    # Initialize some starting value
    if p.budget_balance:
        D = 0.0 * Y
    else:
        D = p.debt_ratio_ss * Y
    TPIiter = 0
    TPIdist = 10
    euler_errors = np.zeros((p.T, 2 * p.S, p.J))
    TPIdist_vec = np.zeros(p.maxiter)

    print('analytical mtrs in tpi = ', p.analytical_mtrs)
    print('tax function type in tpi = ', p.tax_func_type)

    # TPI loop
    while (TPIiter < p.maxiter) and (TPIdist >= p.mindist_TPI):
        r_gov[:p.T] = fiscal.get_r_gov(r[:p.T], p)
        if p.budget_balance:
            r_hh[:p.T] = r[:p.T]
        else:
            K[:p.T] = firm.get_K_from_Y(Y[:p.T], r[:p.T], p, 'TPI')
            r_hh[:p.T] = aggr.get_r_hh(r[:p.T], r_gov[:p.T], K[:p.T], D[:p.T])
        if p.small_open:
            r_hh[:p.T] = p.hh_r[:p.T]

        outer_loop_vars = (r, w, r_hh, BQ, T_H, theta)

        euler_errors = np.zeros((p.T, 2 * p.S, p.J))
        lazy_values = []
        for j in range(p.J):
            guesses = (guesses_b[:, :, j], guesses_n[:, :, j])
            lazy_values.append(
                delayed(inner_loop)(guesses, outer_loop_vars, initial_values,
                                    j, ind, p))
        results = compute(*lazy_values,
                          scheduler=dask.multiprocessing.get,
                          num_workers=p.num_workers)
        for j, result in enumerate(results):
            euler_errors[:, :, j], b_mat[:, :, j], n_mat[:, :, j] = result

        bmat_s = np.zeros((p.T, p.S, p.J))
        bmat_s[0, 1:, :] = initial_b[:-1, :]
        bmat_s[1:, 1:, :] = b_mat[:p.T - 1, :-1, :]
        bmat_splus1 = np.zeros((p.T, p.S, p.J))
        bmat_splus1[:, :, :] = b_mat[:p.T, :, :]

        L[:p.T] = aggr.get_L(n_mat[:p.T], p, 'TPI')
        B[1:p.T] = aggr.get_K(bmat_splus1[:p.T], p, 'TPI', False)[:p.T - 1]
        if np.any(B) < 0:
            print('B has negative elements. B[0:9]:', B[0:9])
            print('B[T-2:T]:', B[p.T - 2, p.T])

        etr_params_4D = np.tile(
            p.etr_params.reshape(p.T, p.S, 1, p.etr_params.shape[2]),
            (1, 1, p.J, 1))
        bqmat = household.get_bq(BQ, None, p, 'TPI')
        tax_mat = tax.total_taxes(r_hh[:p.T], w[:p.T], bmat_s,
                                  n_mat[:p.T, :, :], bqmat[:p.T, :, :], factor,
                                  T_H[:p.T], theta, 0, None, False, 'TPI', p.e,
                                  etr_params_4D, p)
        r_hh_path = utils.to_timepath_shape(r_hh, p)
        wpath = utils.to_timepath_shape(w, p)
        c_mat = household.get_cons(r_hh_path[:p.T, :, :], wpath[:p.T, :, :],
                                   bmat_s, bmat_splus1, n_mat[:p.T, :, :],
                                   bqmat[:p.T, :, :], tax_mat, p.e,
                                   p.tau_c[:p.T, :, :], p)

        if not p.small_open:
            if p.budget_balance:
                K[:p.T] = B[:p.T]
            else:
                if not p.baseline_spending:
                    Y = T_H / p.alpha_T  # maybe unecessary

                    (total_rev, T_Ipath, T_Ppath, T_BQpath, T_Wpath,
                     T_Cpath, business_revenue) = aggr.revenue(
                         r_hh[:p.T], w[:p.T], bmat_s, n_mat[:p.T, :, :],
                         bqmat[:p.T, :, :], c_mat[:p.T, :, :], Y[:p.T],
                         L[:p.T], K[:p.T], factor, theta, etr_params_4D, p,
                         'TPI')
                    total_revenue = np.array(
                        list(total_rev) + [total_revenue_ss] * p.S)

                # set intial debt value
                if p.baseline:
                    D_0 = p.initial_debt_ratio * Y[0]
                else:
                    D_0 = D0
                if not p.baseline_spending:
                    G_0 = p.alpha_G[0] * Y[0]
                dg_fixed_values = (Y, total_revenue, T_H, D_0, G_0)
                Dnew, G = fiscal.D_G_path(r_gov, dg_fixed_values, Gbaseline, p)

                K[:p.T] = B[:p.T] - Dnew[:p.T]
                if np.any(K < 0):
                    print('K has negative elements. Setting them ' +
                          'positive to prevent NAN.')
                    K[:p.T] = np.fmax(K[:p.T], 0.05 * B[:p.T])
        else:
            K[:p.T] = firm.get_K(L[:p.T], p.firm_r[:p.T], p, 'TPI')
        Ynew = firm.get_Y(K[:p.T], L[:p.T], p, 'TPI')
        if not p.small_open:
            rnew = firm.get_r(Ynew[:p.T], K[:p.T], p, 'TPI')
        else:
            rnew = r.copy()
        r_gov_new = fiscal.get_r_gov(rnew, p)
        if p.budget_balance:
            r_hh_new = rnew[:p.T]
        else:
            r_hh_new = aggr.get_r_hh(rnew, r_gov_new, K[:p.T], Dnew[:p.T])
        if p.small_open:
            r_hh_new = p.hh_r[:p.T]
        # compute w
        wnew = firm.get_w_from_r(rnew[:p.T], p, 'TPI')

        b_mat_shift = np.append(np.reshape(initial_b, (1, p.S, p.J)),
                                b_mat[:p.T - 1, :, :],
                                axis=0)
        BQnew = aggr.get_BQ(r_hh_new[:p.T], b_mat_shift, None, p, 'TPI', False)
        bqmat_new = household.get_bq(BQnew, None, p, 'TPI')
        (total_rev, T_Ipath, T_Ppath, T_BQpath,
         T_Wpath, T_Cpath, business_revenue) = aggr.revenue(
             r_hh_new[:p.T], wnew[:p.T], bmat_s, n_mat[:p.T, :, :],
             bqmat_new[:p.T, :, :], c_mat[:p.T, :, :], Ynew[:p.T], L[:p.T],
             K[:p.T], factor, theta, etr_params_4D, p, 'TPI')
        total_revenue = np.array(list(total_rev) + [total_revenue_ss] * p.S)

        if p.budget_balance:
            T_H_new = total_revenue
        elif not p.baseline_spending:
            T_H_new = p.alpha_T[:p.T] * Ynew[:p.T]
        # If baseline_spending==True, no need to update T_H, it's fixed

        if p.small_open and not p.budget_balance:
            # Loop through years to calculate debt and gov't spending.
            # This is done earlier when small_open=False.
            if p.baseline:
                D_0 = p.initial_debt_ratio * Y[0]
            else:
                D_0 = D0
            if not p.baseline_spending:
                G_0 = p.alpha_G[0] * Ynew[0]
            dg_fixed_values = (Ynew, total_revenue, T_H, D_0, G_0)
            Dnew, G = fiscal.D_G_path(r_gov_new, dg_fixed_values, Gbaseline, p)

        if p.budget_balance:
            Dnew = D

        w[:p.T] = wnew[:p.T]
        r[:p.T] = utils.convex_combo(rnew[:p.T], r[:p.T], p.nu)
        BQ[:p.T] = utils.convex_combo(BQnew[:p.T], BQ[:p.T], p.nu)
        D = Dnew
        Y[:p.T] = utils.convex_combo(Ynew[:p.T], Y[:p.T], p.nu)
        if not p.baseline_spending:
            T_H[:p.T] = utils.convex_combo(T_H_new[:p.T], T_H[:p.T], p.nu)
        guesses_b = utils.convex_combo(b_mat, guesses_b, p.nu)
        guesses_n = utils.convex_combo(n_mat, guesses_n, p.nu)

        print('r diff: ', (rnew[:p.T] - r[:p.T]).max(),
              (rnew[:p.T] - r[:p.T]).min())
        print('BQ diff: ', (BQnew[:p.T] - BQ[:p.T]).max(),
              (BQnew[:p.T] - BQ[:p.T]).min())
        print('T_H diff: ', (T_H_new[:p.T] - T_H[:p.T]).max(),
              (T_H_new[:p.T] - T_H[:p.T]).min())
        print('Y diff: ', (Ynew[:p.T] - Y[:p.T]).max(),
              (Ynew[:p.T] - Y[:p.T]).min())
        if not p.baseline_spending:
            if T_H.all() != 0:
                TPIdist = np.array(
                    list(utils.pct_diff_func(rnew[:p.T], r[:p.T])) + list(
                        utils.pct_diff_func(BQnew[:p.T], BQ[:p.T]).flatten()) +
                    list(utils.pct_diff_func(wnew[:p.T], w[:p.T])) +
                    list(utils.pct_diff_func(T_H_new[:p.T], T_H[:p.T]))).max()
            else:
                TPIdist = np.array(
                    list(utils.pct_diff_func(rnew[:p.T], r[:p.T])) + list(
                        utils.pct_diff_func(BQnew[:p.T], BQ[:p.T]).flatten()) +
                    list(utils.pct_diff_func(wnew[:p.T], w[:p.T])) +
                    list(np.abs(T_H[:p.T]))).max()
        else:
            TPIdist = np.array(
                list(utils.pct_diff_func(rnew[:p.T], r[:p.T])) +
                list(utils.pct_diff_func(BQnew[:p.T], BQ[:p.T]).flatten()) +
                list(utils.pct_diff_func(wnew[:p.T], w[:p.T])) +
                list(utils.pct_diff_func(Ynew[:p.T], Y[:p.T]))).max()

        TPIdist_vec[TPIiter] = TPIdist
        # After T=10, if cycling occurs, drop the value of nu
        # wait til after T=10 or so, because sometimes there is a jump up
        # in the first couple iterations
        # if TPIiter > 10:
        #     if TPIdist_vec[TPIiter] - TPIdist_vec[TPIiter - 1] > 0:
        #         nu /= 2
        #         print 'New Value of nu:', nu
        TPIiter += 1
        print('Iteration:', TPIiter)
        print('\tDistance:', TPIdist)

    # Compute effective and marginal tax rates for all agents
    mtrx_params_4D = np.tile(
        p.mtrx_params.reshape(p.T, p.S, 1, p.mtrx_params.shape[2]),
        (1, 1, p.J, 1))
    mtry_params_4D = np.tile(
        p.mtry_params.reshape(p.T, p.S, 1, p.mtry_params.shape[2]),
        (1, 1, p.J, 1))

    e_3D = np.tile(p.e.reshape(1, p.S, p.J), (p.T, 1, 1))
    mtry_path = tax.MTR_income(r_hh_path[:p.T], wpath[:p.T],
                               bmat_s[:p.T, :, :], n_mat[:p.T, :, :], factor,
                               True, e_3D, etr_params_4D, mtry_params_4D, p)
    mtrx_path = tax.MTR_income(r_hh_path[:p.T], wpath[:p.T],
                               bmat_s[:p.T, :, :], n_mat[:p.T, :, :], factor,
                               False, e_3D, etr_params_4D, mtrx_params_4D, p)
    etr_path = tax.ETR_income(r_hh_path[:p.T], wpath[:p.T], bmat_s[:p.T, :, :],
                              n_mat[:p.T, :, :], factor, e_3D, etr_params_4D,
                              p)

    C = aggr.get_C(c_mat, p, 'TPI')

    if not p.small_open:
        I = aggr.get_I(bmat_splus1[:p.T], K[1:p.T + 1], K[:p.T], p, 'TPI')
        rc_error = Y[:p.T] - C[:p.T] - I[:p.T] - G[:p.T]
    else:
        I = ((1 + np.squeeze(np.hstack(
            (p.g_n[1:p.T], p.g_n_ss)))) * np.exp(p.g_y) * K[1:p.T + 1] -
             (1.0 - p.delta) * K[:p.T])
        BI = aggr.get_I(bmat_splus1[:p.T], B[1:p.T + 1], B[:p.T], p, 'TPI')
        new_borrowing = (D[1:p.T] * (1 + p.g_n[1:p.T]) * np.exp(p.g_y) -
                         D[:p.T - 1])
        rc_error = (Y[:p.T - 1] + new_borrowing -
                    (C[:p.T - 1] + BI[:p.T - 1] + G[:p.T - 1]) +
                    (p.hh_r[:p.T - 1] * B[:p.T - 1] -
                     (p.delta + p.firm_r[:p.T - 1]) * K[:p.T - 1] -
                     p.hh_r[:p.T - 1] * D[:p.T - 1]))

    # Compute total investment (not just domestic)
    I_total = ((1 + p.g_n[:p.T]) * np.exp(p.g_y) * K[1:p.T + 1] -
               (1.0 - p.delta) * K[:p.T])

    rce_max = np.amax(np.abs(rc_error))
    print('Max absolute value resource constraint error:', rce_max)

    print('Checking time path for violations of constraints.')
    for t in range(p.T):
        household.constraint_checker_TPI(b_mat[t], n_mat[t], c_mat[t], t,
                                         p.ltilde)

    eul_savings = euler_errors[:, :p.S, :].max(1).max(1)
    eul_laborleisure = euler_errors[:, p.S:, :].max(1).max(1)

    print('Max Euler error, savings: ', eul_savings)
    print('Max Euler error labor supply: ', eul_laborleisure)
    '''
    ------------------------------------------------------------------------
    Save variables/values so they can be used in other modules
    ------------------------------------------------------------------------
    '''

    output = {
        'Y': Y[:p.T],
        'B': B,
        'K': K,
        'L': L,
        'C': C,
        'I': I,
        'I_total': I_total,
        'BQ': BQ,
        'total_revenue': total_revenue,
        'business_revenue': business_revenue,
        'IITpayroll_revenue': T_Ipath,
        'T_H': T_H,
        'T_P': T_Ppath,
        'T_BQ': T_BQpath,
        'T_W': T_Wpath,
        'T_C': T_Cpath,
        'G': G,
        'D': D,
        'r': r,
        'r_gov': r_gov,
        'r_hh': r_hh,
        'w': w,
        'bmat_splus1': bmat_splus1,
        'bmat_s': bmat_s[:p.T, :, :],
        'n_mat': n_mat[:p.T, :, :],
        'c_path': c_mat,
        'bq_path': bqmat,
        'tax_path': tax_mat,
        'eul_savings': eul_savings,
        'eul_laborleisure': eul_laborleisure,
        'resource_constraint_error': rc_error,
        'etr_path': etr_path,
        'mtrx_path': mtrx_path,
        'mtry_path': mtry_path
    }

    tpi_dir = os.path.join(p.output_base, "TPI")
    utils.mkdirs(tpi_dir)
    tpi_vars = os.path.join(tpi_dir, "TPI_vars.pkl")
    pickle.dump(output, open(tpi_vars, "wb"))

    if np.any(G) < 0:
        print('Government spending is negative along transition path' +
              ' to satisfy budget')

    if (((TPIiter >= p.maxiter) or (np.absolute(TPIdist) > p.mindist_TPI))
            and ENFORCE_SOLUTION_CHECKS):
        raise RuntimeError('Transition path equlibrium not found' +
                           ' (TPIdist)')

    if ((np.any(np.absolute(rc_error) >= p.mindist_TPI * 10))
            and ENFORCE_SOLUTION_CHECKS):
        raise RuntimeError('Transition path equlibrium not found ' +
                           '(rc_error)')

    if ((np.any(np.absolute(eul_savings) >= p.mindist_TPI) or
         (np.any(np.absolute(eul_laborleisure) > p.mindist_TPI)))
            and ENFORCE_SOLUTION_CHECKS):
        raise RuntimeError('Transition path equlibrium not found ' +
                           '(eulers)')

    return output
Exemple #5
0
def inner_loop(guesses, outer_loop_vars, initial_values, j, ind, p):
    '''
    Solves inner loop of TPI.  Given path of economic aggregates and
    factor prices, solves household problem.

    Inputs:
        r          = [T,] vector, interest rate
        w          = [T,] vector, wage rate
        b          = [T,S,J] array, wealth holdings
        n          = [T,S,J] array, labor supply
        BQ         = [T,J] vector,  bequest amounts
        factor     = scalar, model income scaling factor
        T_H        = [T,] vector, lump sum transfer amount(s)

    Functions called:
        firstdoughnutring()
        twist_doughnut()

    Objects in function:

    Returns: euler_errors, b_mat, n_mat
    '''
    # unpack variables and parameters pass to function
    (K0, b_sinit, b_splus1init, factor, initial_b, initial_n,
     D0) = initial_values
    guesses_b, guesses_n = guesses
    r, w, r_hh, BQ, T_H, theta = outer_loop_vars

    # compute w
    w[:p.T] = firm.get_w_from_r(r[:p.T], p, 'TPI')
    # compute bq
    bq = household.get_bq(BQ, None, p, 'TPI')

    # initialize arrays
    b_mat = np.zeros((p.T + p.S, p.S))
    n_mat = np.zeros((p.T + p.S, p.S))
    euler_errors = np.zeros((p.T, 2 * p.S))

    b_mat[0, -1], n_mat[0, -1] =\
        np.array(opt.fsolve(firstdoughnutring, [guesses_b[0, -1],
                                                guesses_n[0, -1]],
                            args=(r_hh[0], w[0], bq[0, -1, j], T_H[0],
                                  theta * p.replacement_rate_adjust[0],
                                  factor, j, initial_b, p),
                            xtol=MINIMIZER_TOL))

    for s in range(p.S - 2):  # Upper triangle
        ind2 = np.arange(s + 2)
        b_guesses_to_use = np.diag(guesses_b[:p.S, :], p.S - (s + 2))
        n_guesses_to_use = np.diag(guesses_n[:p.S, :], p.S - (s + 2))
        theta_to_use = theta[j] * p.replacement_rate_adjust[:p.S]
        bq_to_use = np.diag(bq[:p.S, :, j], p.S - (s + 2))
        tau_c_to_use = np.diag(p.tau_c[:p.S, :, j], p.S - (s + 2))

        length_diag =\
            np.diag(p.etr_params[:p.S, :, 0], p.S-(s + 2)).shape[0]
        etr_params_to_use = np.zeros((length_diag, p.etr_params.shape[2]))
        mtrx_params_to_use = np.zeros((length_diag, p.mtrx_params.shape[2]))
        mtry_params_to_use = np.zeros((length_diag, p.mtry_params.shape[2]))
        for i in range(p.etr_params.shape[2]):
            etr_params_to_use[:, i] =\
                np.diag(p.etr_params[:p.S, :, i], p.S - (s + 2))
            mtrx_params_to_use[:, i] =\
                np.diag(p.mtrx_params[:p.S, :, i], p.S - (s + 2))
            mtry_params_to_use[:, i] =\
                np.diag(p.mtry_params[:p.S, :, i], p.S - (s + 2))

        solutions = opt.fsolve(twist_doughnut,
                               list(b_guesses_to_use) + list(n_guesses_to_use),
                               args=(r_hh, w, bq_to_use, T_H, theta_to_use,
                                     factor, j, s, 0, tau_c_to_use,
                                     etr_params_to_use, mtrx_params_to_use,
                                     mtry_params_to_use, initial_b, p),
                               xtol=MINIMIZER_TOL)

        b_vec = solutions[:int(len(solutions) / 2)]
        b_mat[ind2, p.S - (s + 2) + ind2] = b_vec
        n_vec = solutions[int(len(solutions) / 2):]
        n_mat[ind2, p.S - (s + 2) + ind2] = n_vec

    for t in range(0, p.T):
        b_guesses_to_use = .75 * \
            np.diag(guesses_b[t:t + p.S, :])
        n_guesses_to_use = np.diag(guesses_n[t:t + p.S, :])
        theta_to_use = theta[j] * p.replacement_rate_adjust[t:t + p.S]
        bq_to_use = np.diag(bq[t:t + p.S, :, j])
        tau_c_to_use = np.diag(p.tau_c[t:t + p.S, :, j])

        # initialize array of diagonal elements
        etr_params_TP = np.zeros((p.T + p.S, p.S, p.etr_params.shape[2]))
        etr_params_TP[:p.T, :, :] = p.etr_params
        etr_params_TP[p.T:, :, :] = p.etr_params[-1, :, :]

        mtrx_params_TP = np.zeros((p.T + p.S, p.S, p.mtrx_params.shape[2]))
        mtrx_params_TP[:p.T, :, :] = p.mtrx_params
        mtrx_params_TP[p.T:, :, :] = p.mtrx_params[-1, :, :]

        mtry_params_TP = np.zeros((p.T + p.S, p.S, p.mtry_params.shape[2]))
        mtry_params_TP[:p.T, :, :] = p.mtry_params
        mtry_params_TP[p.T:, :, :] = p.mtry_params[-1, :, :]

        length_diag =\
            np.diag(etr_params_TP[t:t + p.S, :, 0]).shape[0]
        etr_params_to_use = np.zeros((length_diag, p.etr_params.shape[2]))
        mtrx_params_to_use = np.zeros((length_diag, p.mtrx_params.shape[2]))
        mtry_params_to_use = np.zeros((length_diag, p.mtry_params.shape[2]))

        for i in range(p.etr_params.shape[2]):
            etr_params_to_use[:, i] = np.diag(etr_params_TP[t:t + p.S, :, i])
            mtrx_params_to_use[:, i] = np.diag(mtrx_params_TP[t:t + p.S, :, i])
            mtry_params_to_use[:, i] = np.diag(mtry_params_TP[t:t + p.S, :, i])
        #
        # TPI_solver_params = (inc_tax_params_TP, tpi_params, None)
        [solutions, infodict, ier, message] =\
            opt.fsolve(twist_doughnut, list(b_guesses_to_use) +
                       list(n_guesses_to_use),
                       args=(r_hh, w, bq_to_use, T_H,
                             theta_to_use, factor,
                             j, None, t, tau_c_to_use,
                             etr_params_to_use, mtrx_params_to_use,
                             mtry_params_to_use, initial_b, p),
                       xtol=MINIMIZER_TOL, full_output=True)
        euler_errors[t, :] = infodict['fvec']

        b_vec = solutions[:p.S]
        b_mat[t + ind, ind] = b_vec
        n_vec = solutions[p.S:]
        n_mat[t + ind, ind] = n_vec

    print('Type ', j, ' max euler error = ', euler_errors.max())

    return euler_errors, b_mat, n_mat
Exemple #6
0
def run_TPI(p, client=None):
    '''
    Solve for transition path equilibrium of OG-USA.

    Args:
        p (OG-USA Specifications object): model parameters
        client (Dask client object): client

    Returns:
        output (dictionary): dictionary with transition path solution
            results

    '''
    # unpack tuples of parameters
    initial_values, ss_vars, theta, baseline_values = get_initial_SS_values(p)
    (B0, b_sinit, b_splus1init, factor, initial_b, initial_n) =\
        initial_values
    (TRbaseline, Gbaseline, D0_baseline) = baseline_values

    print('Government spending breakpoints are tG1: ', p.tG1, '; and tG2:',
          p.tG2)

    # Initialize guesses at time paths
    # Make array of initial guesses for labor supply and savings
    guesses_b = utils.get_initial_path(initial_b, ss_vars['bssmat_splus1'], p,
                                       'ratio')
    guesses_n = utils.get_initial_path(initial_n, ss_vars['nssmat'], p,
                                       'ratio')
    b_mat = guesses_b
    n_mat = guesses_n
    ind = np.arange(p.S)

    # Get path for aggregate savings and labor supply`
    L_init = np.ones((p.T + p.S, )) * ss_vars['Lss']
    B_init = np.ones((p.T + p.S, )) * ss_vars['Bss']
    L_init[:p.T] = aggr.get_L(n_mat[:p.T], p, 'TPI')
    B_init[1:p.T] = aggr.get_B(b_mat[:p.T], p, 'TPI', False)[:p.T - 1]
    B_init[0] = B0
    K_init = B_init * ss_vars['Kss'] / ss_vars['Bss']
    K = K_init
    K_d = K_init * ss_vars['K_d_ss'] / ss_vars['Kss']
    K_f = K_init * ss_vars['K_f_ss'] / ss_vars['Kss']
    L = L_init
    B = B_init
    Y = np.zeros_like(K)
    Y[:p.T] = firm.get_Y(K[:p.T], L[:p.T], p, 'TPI')
    Y[p.T:] = ss_vars['Yss']
    r = np.zeros_like(Y)
    r[:p.T] = firm.get_r(Y[:p.T], K[:p.T], p, 'TPI')
    r[p.T:] = ss_vars['rss']
    # For case where economy is small open econ
    r[p.zeta_K == 1] = p.world_int_rate[p.zeta_K == 1]
    # Compute other interest rates
    r_gov = fiscal.get_r_gov(r, p)
    r_hh = aggr.get_r_hh(r, r_gov, K, ss_vars['Dss'])

    # compute w
    w = np.zeros_like(r)
    w[:p.T] = firm.get_w_from_r(r[:p.T], p, 'TPI')
    w[p.T:] = ss_vars['wss']

    # initial guesses at fiscal vars
    if p.budget_balance:
        if np.abs(ss_vars['TR_ss']) < 1e-13:
            TR_ss2 = 0.0  # sometimes SS is very small but not zero,
            # even if taxes are zero, this get's rid of the
            # approximation error, which affects the pct changes below
        else:
            TR_ss2 = ss_vars['TR_ss']
        TR = np.ones(p.T + p.S) * TR_ss2
        total_tax_revenue = TR - ss_vars['agg_pension_outlays']
        G = np.zeros(p.T + p.S)
        D = np.zeros(p.T + p.S)
        D_d = np.zeros(p.T + p.S)
        D_f = np.zeros(p.T + p.S)
    else:
        if p.baseline_spending:
            TR = TRbaseline
            G = Gbaseline
            G[p.T:] = ss_vars['Gss']
        else:
            TR = p.alpha_T * Y
            G = np.ones(p.T + p.S) * ss_vars['Gss']
        D = np.ones(p.T + p.S) * ss_vars['Dss']
        D_d = D * ss_vars['D_d_ss'] / ss_vars['Dss']
        D_f = D * ss_vars['D_f_ss'] / ss_vars['Dss']
    total_tax_revenue = np.ones(p.T + p.S) * ss_vars['total_tax_revenue']

    # Initialize bequests
    BQ0 = aggr.get_BQ(r_hh[0], initial_b, None, p, 'SS', True)
    if not p.use_zeta:
        BQ = np.zeros((p.T + p.S, p.J))
        for j in range(p.J):
            BQ[:, j] = (list(np.linspace(BQ0[j], ss_vars['BQss'][j], p.T)) +
                        [ss_vars['BQss'][j]] * p.S)
        BQ = np.array(BQ)
    else:
        BQ = (list(np.linspace(BQ0, ss_vars['BQss'], p.T)) +
              [ss_vars['BQss']] * p.S)
        BQ = np.array(BQ)

    TPIiter = 0
    TPIdist = 10
    euler_errors = np.zeros((p.T, 2 * p.S, p.J))
    TPIdist_vec = np.zeros(p.maxiter)

    # TPI loop
    while (TPIiter < p.maxiter) and (TPIdist >= p.mindist_TPI):
        r_gov[:p.T] = fiscal.get_r_gov(r[:p.T], p)
        if not p.budget_balance:
            K[:p.T] = firm.get_K_from_Y(Y[:p.T], r[:p.T], p, 'TPI')

        r_hh[:p.T] = aggr.get_r_hh(r[:p.T], r_gov[:p.T], K[:p.T], D[:p.T])

        outer_loop_vars = (r, w, r_hh, BQ, TR, theta)

        euler_errors = np.zeros((p.T, 2 * p.S, p.J))
        lazy_values = []
        for j in range(p.J):
            guesses = (guesses_b[:, :, j], guesses_n[:, :, j])
            lazy_values.append(
                delayed(inner_loop)(guesses, outer_loop_vars, initial_values,
                                    j, ind, p))
        if client:
            futures = client.compute(lazy_values, num_workers=p.num_workers)
            results = client.gather(futures)
        else:
            results = results = compute(*lazy_values,
                                        scheduler=dask.multiprocessing.get,
                                        num_workers=p.num_workers)

        for j, result in enumerate(results):
            euler_errors[:, :, j], b_mat[:, :, j], n_mat[:, :, j] = result

        bmat_s = np.zeros((p.T, p.S, p.J))
        bmat_s[0, 1:, :] = initial_b[:-1, :]
        bmat_s[1:, 1:, :] = b_mat[:p.T - 1, :-1, :]
        bmat_splus1 = np.zeros((p.T, p.S, p.J))
        bmat_splus1[:, :, :] = b_mat[:p.T, :, :]

        etr_params_4D = np.tile(
            p.etr_params.reshape(p.T, p.S, 1, p.etr_params.shape[2]),
            (1, 1, p.J, 1))
        bqmat = household.get_bq(BQ, None, p, 'TPI')
        trmat = household.get_tr(TR, None, p, 'TPI')
        tax_mat = tax.net_taxes(r_hh[:p.T], w[:p.T], bmat_s, n_mat[:p.T, :, :],
                                bqmat[:p.T, :, :], factor, trmat[:p.T, :, :],
                                theta, 0, None, False, 'TPI', p.e,
                                etr_params_4D, p)
        r_hh_path = utils.to_timepath_shape(r_hh)
        wpath = utils.to_timepath_shape(w)
        c_mat = household.get_cons(r_hh_path[:p.T, :, :], wpath[:p.T, :, :],
                                   bmat_s, bmat_splus1, n_mat[:p.T, :, :],
                                   bqmat[:p.T, :, :], tax_mat, p.e,
                                   p.tau_c[:p.T, :, :], p)
        y_before_tax_mat = household.get_y(r_hh_path[:p.T, :, :],
                                           wpath[:p.T, :, :],
                                           bmat_s[:p.T, :, :],
                                           n_mat[:p.T, :, :], p)

        (total_tax_rev, iit_payroll_tax_revenue, agg_pension_outlays,
         bequest_tax_revenue, wealth_tax_revenue, cons_tax_revenue,
         business_tax_revenue, payroll_tax_revenue,
         iit_revenue) = aggr.revenue(r_hh[:p.T], w[:p.T], bmat_s,
                                     n_mat[:p.T, :, :], bqmat[:p.T, :, :],
                                     c_mat[:p.T, :, :], Y[:p.T], L[:p.T],
                                     K[:p.T], factor, theta, etr_params_4D, p,
                                     'TPI')
        total_tax_revenue[:p.T] = total_tax_rev
        dg_fixed_values = (Y, total_tax_revenue, agg_pension_outlays, TR,
                           Gbaseline, D0_baseline)
        (Dnew, G[:p.T], D_d[:p.T], D_f[:p.T], new_borrowing,
         debt_service, new_borrowing_f) =\
            fiscal.D_G_path(r_gov, dg_fixed_values, p)
        L[:p.T] = aggr.get_L(n_mat[:p.T], p, 'TPI')
        B[1:p.T] = aggr.get_B(bmat_splus1[:p.T], p, 'TPI', False)[:p.T - 1]
        K_demand_open = firm.get_K(L[:p.T], p.world_int_rate[:p.T], p, 'TPI')
        K[:p.T], K_d[:p.T], K_f[:p.T] = aggr.get_K_splits(
            B[:p.T], K_demand_open, D_d[:p.T], p.zeta_K[:p.T])
        Ynew = firm.get_Y(K[:p.T], L[:p.T], p, 'TPI')
        rnew = r.copy()
        rnew[:p.T] = firm.get_r(Ynew[:p.T], K[:p.T], p, 'TPI')
        # For case where economy is small open econ
        r[p.zeta_K == 1] = p.world_int_rate[p.zeta_K == 1]
        r_gov_new = fiscal.get_r_gov(rnew, p)
        r_hh_new = aggr.get_r_hh(rnew[:p.T], r_gov_new[:p.T], K[:p.T],
                                 Dnew[:p.T])
        # compute w
        wnew = firm.get_w_from_r(rnew[:p.T], p, 'TPI')

        b_mat_shift = np.append(np.reshape(initial_b, (1, p.S, p.J)),
                                b_mat[:p.T - 1, :, :],
                                axis=0)
        BQnew = aggr.get_BQ(r_hh_new[:p.T], b_mat_shift, None, p, 'TPI', False)
        bqmat_new = household.get_bq(BQnew, None, p, 'TPI')
        (total_tax_rev, iit_payroll_tax_revenue, agg_pension_outlays,
         bequest_tax_revenue, wealth_tax_revenue, cons_tax_revenue,
         business_tax_revenue, payroll_tax_revenue,
         iit_revenue) = aggr.revenue(r_hh_new[:p.T], wnew[:p.T], bmat_s,
                                     n_mat[:p.T, :, :], bqmat_new[:p.T, :, :],
                                     c_mat[:p.T, :, :], Ynew[:p.T], L[:p.T],
                                     K[:p.T], factor, theta, etr_params_4D, p,
                                     'TPI')
        total_tax_revenue[:p.T] = total_tax_rev
        TR_new = fiscal.get_TR(Ynew[:p.T], TR[:p.T], G[:p.T],
                               total_tax_revenue[:p.T],
                               agg_pension_outlays[:p.T], p, 'TPI')

        # update vars for next iteration
        w[:p.T] = wnew[:p.T]
        r[:p.T] = utils.convex_combo(rnew[:p.T], r[:p.T], p.nu)
        BQ[:p.T] = utils.convex_combo(BQnew[:p.T], BQ[:p.T], p.nu)
        D[:p.T] = Dnew[:p.T]
        Y[:p.T] = utils.convex_combo(Ynew[:p.T], Y[:p.T], p.nu)
        if not p.baseline_spending:
            TR[:p.T] = utils.convex_combo(TR_new[:p.T], TR[:p.T], p.nu)
        guesses_b = utils.convex_combo(b_mat, guesses_b, p.nu)
        guesses_n = utils.convex_combo(n_mat, guesses_n, p.nu)
        print('r diff: ', (rnew[:p.T] - r[:p.T]).max(),
              (rnew[:p.T] - r[:p.T]).min())
        print('BQ diff: ', (BQnew[:p.T] - BQ[:p.T]).max(),
              (BQnew[:p.T] - BQ[:p.T]).min())
        print('TR diff: ', (TR_new[:p.T] - TR[:p.T]).max(),
              (TR_new[:p.T] - TR[:p.T]).min())
        print('Y diff: ', (Ynew[:p.T] - Y[:p.T]).max(),
              (Ynew[:p.T] - Y[:p.T]).min())
        if not p.baseline_spending:
            if TR.all() != 0:
                TPIdist = np.array(
                    list(utils.pct_diff_func(rnew[:p.T], r[:p.T])) + list(
                        utils.pct_diff_func(BQnew[:p.T], BQ[:p.T]).flatten()) +
                    list(utils.pct_diff_func(TR_new[:p.T], TR[:p.T]))).max()
            else:
                TPIdist = np.array(
                    list(utils.pct_diff_func(rnew[:p.T], r[:p.T])) + list(
                        utils.pct_diff_func(BQnew[:p.T], BQ[:p.T]).flatten()) +
                    list(np.abs(TR[:p.T]))).max()
        else:
            TPIdist = np.array(
                list(utils.pct_diff_func(rnew[:p.T], r[:p.T])) +
                list(utils.pct_diff_func(BQnew[:p.T], BQ[:p.T]).flatten()) +
                list(utils.pct_diff_func(Ynew[:p.T], Y[:p.T]))).max()

        TPIdist_vec[TPIiter] = TPIdist
        # After T=10, if cycling occurs, drop the value of nu
        # wait til after T=10 or so, because sometimes there is a jump up
        # in the first couple iterations
        # if TPIiter > 10:
        #     if TPIdist_vec[TPIiter] - TPIdist_vec[TPIiter - 1] > 0:
        #         nu /= 2
        #         print 'New Value of nu:', nu
        TPIiter += 1
        print('Iteration:', TPIiter)
        print('\tDistance:', TPIdist)

    # Compute effective and marginal tax rates for all agents
    mtrx_params_4D = np.tile(
        p.mtrx_params.reshape(p.T, p.S, 1, p.mtrx_params.shape[2]),
        (1, 1, p.J, 1))
    mtry_params_4D = np.tile(
        p.mtry_params.reshape(p.T, p.S, 1, p.mtry_params.shape[2]),
        (1, 1, p.J, 1))

    e_3D = np.tile(p.e.reshape(1, p.S, p.J), (p.T, 1, 1))
    mtry_path = tax.MTR_income(r_hh_path[:p.T], wpath[:p.T],
                               bmat_s[:p.T, :, :], n_mat[:p.T, :, :], factor,
                               True, e_3D, etr_params_4D, mtry_params_4D, p)
    mtrx_path = tax.MTR_income(r_hh_path[:p.T], wpath[:p.T],
                               bmat_s[:p.T, :, :], n_mat[:p.T, :, :], factor,
                               False, e_3D, etr_params_4D, mtrx_params_4D, p)
    etr_path = tax.ETR_income(r_hh_path[:p.T], wpath[:p.T], bmat_s[:p.T, :, :],
                              n_mat[:p.T, :, :], factor, e_3D, etr_params_4D,
                              p)

    C = aggr.get_C(c_mat, p, 'TPI')
    # Note that implicity in this computation is that immigrants'
    # wealth is all in the form of private capital
    I_d = aggr.get_I(bmat_splus1[:p.T], K_d[1:p.T + 1], K_d[:p.T], p, 'TPI')
    I = aggr.get_I(bmat_splus1[:p.T], K[1:p.T + 1], K[:p.T], p, 'TPI')
    # solve resource constraint
    # foreign debt service costs
    debt_service_f = fiscal.get_debt_service_f(r_hh, D_f)
    RC_error = aggr.resource_constraint(Y[:p.T - 1], C[:p.T - 1], G[:p.T - 1],
                                        I_d[:p.T - 1], K_f[:p.T - 1],
                                        new_borrowing_f[:p.T - 1],
                                        debt_service_f[:p.T - 1],
                                        r_hh[:p.T - 1], p)
    # Compute total investment (not just domestic)
    I_total = aggr.get_I(None, K[1:p.T + 1], K[:p.T], p, 'total_tpi')

    # Compute resource constraint error
    rce_max = np.amax(np.abs(RC_error))
    print('Max absolute value resource constraint error:', rce_max)

    print('Checking time path for violations of constraints.')
    for t in range(p.T):
        household.constraint_checker_TPI(b_mat[t], n_mat[t], c_mat[t], t,
                                         p.ltilde)

    eul_savings = euler_errors[:, :p.S, :].max(1).max(1)
    eul_laborleisure = euler_errors[:, p.S:, :].max(1).max(1)

    print('Max Euler error, savings: ', eul_savings)
    print('Max Euler error labor supply: ', eul_laborleisure)
    '''
    ------------------------------------------------------------------------
    Save variables/values so they can be used in other modules
    ------------------------------------------------------------------------
    '''

    output = {
        'Y': Y[:p.T],
        'B': B,
        'K': K,
        'K_f': K_f,
        'K_d': K_d,
        'L': L,
        'C': C,
        'I': I,
        'I_total': I_total,
        'I_d': I_d,
        'BQ': BQ,
        'total_tax_revenue': total_tax_revenue,
        'business_tax_revenue': business_tax_revenue,
        'iit_payroll_tax_revenue': iit_payroll_tax_revenue,
        'iit_revenue': iit_revenue,
        'payroll_tax_revenue': payroll_tax_revenue,
        'TR': TR,
        'agg_pension_outlays': agg_pension_outlays,
        'bequest_tax_revenue': bequest_tax_revenue,
        'wealth_tax_revenue': wealth_tax_revenue,
        'cons_tax_revenue': cons_tax_revenue,
        'G': G,
        'D': D,
        'D_f': D_f,
        'D_d': D_d,
        'r': r,
        'r_gov': r_gov,
        'r_hh': r_hh,
        'w': w,
        'bmat_splus1': bmat_splus1,
        'bmat_s': bmat_s[:p.T, :, :],
        'n_mat': n_mat[:p.T, :, :],
        'c_path': c_mat,
        'bq_path': bqmat,
        'tr_path': trmat,
        'y_before_tax_mat': y_before_tax_mat,
        'tax_path': tax_mat,
        'eul_savings': eul_savings,
        'eul_laborleisure': eul_laborleisure,
        'resource_constraint_error': RC_error,
        'new_borrowing_f': new_borrowing_f,
        'debt_service_f': debt_service_f,
        'etr_path': etr_path,
        'mtrx_path': mtrx_path,
        'mtry_path': mtry_path
    }

    tpi_dir = os.path.join(p.output_base, "TPI")
    utils.mkdirs(tpi_dir)
    tpi_vars = os.path.join(tpi_dir, "TPI_vars.pkl")
    with open(tpi_vars, "wb") as f:
        pickle.dump(output, f)

    if np.any(G) < 0:
        print('Government spending is negative along transition path' +
              ' to satisfy budget')

    if (((TPIiter >= p.maxiter) or (np.absolute(TPIdist) > p.mindist_TPI))
            and ENFORCE_SOLUTION_CHECKS):
        raise RuntimeError('Transition path equlibrium not found' +
                           ' (TPIdist)')

    if ((np.any(np.absolute(RC_error) >= p.mindist_TPI * 10))
            and ENFORCE_SOLUTION_CHECKS):
        raise RuntimeError('Transition path equlibrium not found ' +
                           '(RC_error)')

    if ((np.any(np.absolute(eul_savings) >= p.mindist_TPI) or
         (np.any(np.absolute(eul_laborleisure) > p.mindist_TPI)))
            and ENFORCE_SOLUTION_CHECKS):
        raise RuntimeError('Transition path equlibrium not found ' +
                           '(eulers)')

    return output
Exemple #7
0
def inner_loop(guesses, outer_loop_vars, initial_values, j, ind, p):
    '''
    Given path of economic aggregates and factor prices, solves
    household problem.  This has been termed the inner-loop (in
    constrast to the outer fixed point loop that soves for GE factor
    prices and economic aggregates).

    Args:
        guesses (tuple): initial guesses for b and n, (guesses_b,
            guesses_n)
        outer_loop_vars (tuple): values for factor prices and economic
            aggregates used in household problem (r, w, r_hh, BQ, TR,
            theta)
        r (Numpy array): real interest rate on private capital
        w (Numpy array): real wage rate
        r (Numpy array): real interest rate on household portfolio
        BQ (array_like): aggregate bequest amounts
        TR (Numpy array): lump sum transfer amount
        theta (Numpy array): retirement replacement rates, length J
        initial_values (tuple): initial period variable values,
            (b_sinit, b_splus1init, factor, initial_b, initial_n,
            D0_baseline)
        j (int): index of ability type
        ind (Numpy array): integers from 0 to S-1
        p (OG-USA Specifications object): model parameters

    Returns:
        (tuple): household solution results:

            * euler_errors (Numpy array): errors from FOCs, size = Tx2S
            * b_mat (Numpy array): savings amounts, size = TxS
            * n_mat (Numpy array): labor supply amounts, size = TxS

    '''
    # unpack variables and parameters pass to function
    (K0, b_sinit, b_splus1init, factor, initial_b, initial_n) =\
        initial_values
    guesses_b, guesses_n = guesses
    r, w, r_hh, BQ, TR, theta = outer_loop_vars

    # compute w
    w[:p.T] = firm.get_w_from_r(r[:p.T], p, 'TPI')
    # compute bq
    bq = household.get_bq(BQ, None, p, 'TPI')
    # compute tr
    tr = household.get_tr(TR, None, p, 'TPI')

    # initialize arrays
    b_mat = np.zeros((p.T + p.S, p.S))
    n_mat = np.zeros((p.T + p.S, p.S))
    euler_errors = np.zeros((p.T, 2 * p.S))

    b_mat[0, -1], n_mat[0, -1] =\
        np.array(opt.fsolve(firstdoughnutring, [guesses_b[0, -1],
                                                guesses_n[0, -1]],
                            args=(r_hh[0], w[0], bq[0, -1, j],
                                  tr[0, -1, j],
                                  theta * p.replacement_rate_adjust[0],
                                  factor, j, initial_b, p),
                            xtol=MINIMIZER_TOL))

    for s in range(p.S - 2):  # Upper triangle
        ind2 = np.arange(s + 2)
        b_guesses_to_use = np.diag(guesses_b[:p.S, :], p.S - (s + 2))
        n_guesses_to_use = np.diag(guesses_n[:p.S, :], p.S - (s + 2))
        theta_to_use = theta[j] * p.replacement_rate_adjust[:p.S]
        bq_to_use = np.diag(bq[:p.S, :, j], p.S - (s + 2))
        tr_to_use = np.diag(tr[:p.S, :, j], p.S - (s + 2))
        tau_c_to_use = np.diag(p.tau_c[:p.S, :, j], p.S - (s + 2))

        length_diag =\
            np.diag(p.etr_params[:p.S, :, 0], p.S-(s + 2)).shape[0]
        etr_params_to_use = np.zeros((length_diag, p.etr_params.shape[2]))
        mtrx_params_to_use = np.zeros((length_diag, p.mtrx_params.shape[2]))
        mtry_params_to_use = np.zeros((length_diag, p.mtry_params.shape[2]))
        for i in range(p.etr_params.shape[2]):
            etr_params_to_use[:, i] =\
                np.diag(p.etr_params[:p.S, :, i], p.S - (s + 2))
            mtrx_params_to_use[:, i] =\
                np.diag(p.mtrx_params[:p.S, :, i], p.S - (s + 2))
            mtry_params_to_use[:, i] =\
                np.diag(p.mtry_params[:p.S, :, i], p.S - (s + 2))

        solutions = opt.fsolve(
            twist_doughnut,
            list(b_guesses_to_use) + list(n_guesses_to_use),
            args=(r_hh, w, bq_to_use, tr_to_use, theta_to_use, factor, j, s, 0,
                  tau_c_to_use, etr_params_to_use, mtrx_params_to_use,
                  mtry_params_to_use, initial_b, p),
            xtol=MINIMIZER_TOL)

        b_vec = solutions[:int(len(solutions) / 2)]
        b_mat[ind2, p.S - (s + 2) + ind2] = b_vec
        n_vec = solutions[int(len(solutions) / 2):]
        n_mat[ind2, p.S - (s + 2) + ind2] = n_vec

    for t in range(0, p.T):
        b_guesses_to_use = .75 * \
            np.diag(guesses_b[t:t + p.S, :])
        n_guesses_to_use = np.diag(guesses_n[t:t + p.S, :])
        theta_to_use = theta[j] * p.replacement_rate_adjust[t:t + p.S]
        bq_to_use = np.diag(bq[t:t + p.S, :, j])
        tr_to_use = np.diag(tr[t:t + p.S, :, j])
        tau_c_to_use = np.diag(p.tau_c[t:t + p.S, :, j])

        # initialize array of diagonal elements
        etr_params_TP = np.zeros((p.T + p.S, p.S, p.etr_params.shape[2]))
        etr_params_TP[:p.T, :, :] = p.etr_params
        etr_params_TP[p.T:, :, :] = p.etr_params[-1, :, :]

        mtrx_params_TP = np.zeros((p.T + p.S, p.S, p.mtrx_params.shape[2]))
        mtrx_params_TP[:p.T, :, :] = p.mtrx_params
        mtrx_params_TP[p.T:, :, :] = p.mtrx_params[-1, :, :]

        mtry_params_TP = np.zeros((p.T + p.S, p.S, p.mtry_params.shape[2]))
        mtry_params_TP[:p.T, :, :] = p.mtry_params
        mtry_params_TP[p.T:, :, :] = p.mtry_params[-1, :, :]

        length_diag =\
            np.diag(etr_params_TP[t:t + p.S, :, 0]).shape[0]
        etr_params_to_use = np.zeros((length_diag, p.etr_params.shape[2]))
        mtrx_params_to_use = np.zeros((length_diag, p.mtrx_params.shape[2]))
        mtry_params_to_use = np.zeros((length_diag, p.mtry_params.shape[2]))

        for i in range(p.etr_params.shape[2]):
            etr_params_to_use[:, i] = np.diag(etr_params_TP[t:t + p.S, :, i])
            mtrx_params_to_use[:, i] = np.diag(mtrx_params_TP[t:t + p.S, :, i])
            mtry_params_to_use[:, i] = np.diag(mtry_params_TP[t:t + p.S, :, i])

        [solutions, infodict, ier, message] =\
            opt.fsolve(twist_doughnut, list(b_guesses_to_use) +
                       list(n_guesses_to_use),
                       args=(r_hh, w, bq_to_use, tr_to_use,
                             theta_to_use, factor,
                             j, None, t, tau_c_to_use,
                             etr_params_to_use, mtrx_params_to_use,
                             mtry_params_to_use, initial_b, p),
                       xtol=MINIMIZER_TOL, full_output=True)
        euler_errors[t, :] = infodict['fvec']

        b_vec = solutions[:p.S]
        b_mat[t + ind, ind] = b_vec
        n_vec = solutions[p.S:]
        n_mat[t + ind, ind] = n_vec

    print('Type ', j, ' max euler error = ', np.absolute(euler_errors).max())

    return euler_errors, b_mat, n_mat
Exemple #8
0
def run_TPI(p, client=None):

    # unpack tuples of parameters
    initial_values, SS_values, baseline_values = get_initial_SS_values(p)
    (B0, b_sinit, b_splus1init, factor, initial_b, initial_n,
     D0) = initial_values
    (Kss, Bss, Lss, rss, wss, BQss, T_Hss, total_revenue_ss, bssmat_splus1,
     nssmat, Yss, Gss, theta) = SS_values
    (T_Hbaseline, Gbaseline) = baseline_values

    print('Government spending breakpoints are tG1: ', p.tG1,
          '; and tG2:', p.tG2)

    # Initialize guesses at time paths
    # Make array of initial guesses for labor supply and savings
    domain = np.linspace(0, p.T, p.T)
    domain2 = np.tile(domain.reshape(p.T, 1, 1), (1, p.S, p.J))
    ending_b = bssmat_splus1
    guesses_b = (-1 / (domain2 + 1)) * (ending_b - initial_b) + ending_b
    ending_b_tail = np.tile(ending_b.reshape(1, p.S, p.J), (p.S, 1, 1))
    guesses_b = np.append(guesses_b, ending_b_tail, axis=0)

    domain3 = np.tile(np.linspace(0, 1, p.T).reshape(p.T, 1, 1), (1, p.S, p.J))
    guesses_n = domain3 * (nssmat - initial_n) + initial_n
    ending_n_tail = np.tile(nssmat.reshape(1, p.S, p.J), (p.S, 1, 1))
    guesses_n = np.append(guesses_n, ending_n_tail, axis=0)
    b_mat = guesses_b  # np.zeros((p.T + p.S, p.S, p.J))
    n_mat = guesses_n  # np.zeros((p.T + p.S, p.S, p.J))
    ind = np.arange(p.S)

    L_init = np.ones((p.T + p.S,)) * Lss
    B_init = np.ones((p.T + p.S,)) * Bss
    L_init[:p.T] = aggr.get_L(n_mat[:p.T], p, 'TPI')
    B_init[1:p.T] = aggr.get_K(b_mat[:p.T], p, 'TPI', False)[:p.T - 1]
    B_init[0] = B0

    if not p.small_open:
        if p.budget_balance:
            K_init = B_init
        else:
            K_init = B_init * Kss / Bss
    else:
        K_init = firm.get_K(L_init, p.firm_r, p, 'TPI')

    K = K_init

    L = L_init
    B = B_init
    Y = np.zeros_like(K)
    Y[:p.T] = firm.get_Y(K[:p.T], L[:p.T], p, 'TPI')
    Y[p.T:] = Yss
    r = np.zeros_like(Y)
    if not p.small_open:
        r[:p.T] = firm.get_r(Y[:p.T], K[:p.T], p, 'TPI')
        r[p.T:] = rss
    else:
        r = p.firm_r
    # compute w
    w = np.zeros_like(r)
    w[:p.T] = firm.get_w_from_r(r[:p.T], p, 'TPI')
    w[p.T:] = wss
    r_gov = fiscal.get_r_gov(r, p)
    if p.budget_balance:
        r_hh = r
    else:
        r_hh = aggr.get_r_hh(r, r_gov, K, p.debt_ratio_ss * Y)
    if p.small_open:
        r_hh = p.hh_r

    BQ0 = aggr.get_BQ(r[0], initial_b, None, p, 'SS', True)
    if not p.use_zeta:
        BQ = np.zeros((p.T + p.S, p.J))
        for j in range(p.J):
            BQ[:, j] = (list(np.linspace(BQ0[j], BQss[j], p.T)) +
                        [BQss[j]] * p.S)
        BQ = np.array(BQ)
    else:
        BQ = (list(np.linspace(BQ0, BQss, p.T)) + [BQss] * p.S)
        BQ = np.array(BQ)
    if p.budget_balance:
        if np.abs(T_Hss) < 1e-13:
            T_Hss2 = 0.0  # sometimes SS is very small but not zero,
            # even if taxes are zero, this get's rid of the approximation
            # error, which affects the perc changes below
        else:
            T_Hss2 = T_Hss
        T_H = np.ones(p.T + p.S) * T_Hss2
        total_revenue = T_H
        G = np.zeros(p.T + p.S)
    elif not p.baseline_spending:
        T_H = p.alpha_T * Y
    elif p.baseline_spending:
        T_H = T_Hbaseline
        T_H_new = p.T_H   # Need to set T_H_new for later reference
        G = Gbaseline
        G_0 = Gbaseline[0]

    # Initialize some starting value
    if p.budget_balance:
        D = 0.0 * Y
    else:
        D = p.debt_ratio_ss * Y
    TPIiter = 0
    TPIdist = 10
    euler_errors = np.zeros((p.T, 2 * p.S, p.J))
    TPIdist_vec = np.zeros(p.maxiter)

    print('analytical mtrs in tpi = ', p.analytical_mtrs)
    print('tax function type in tpi = ', p.tax_func_type)

    # TPI loop
    while (TPIiter < p.maxiter) and (TPIdist >= p.mindist_TPI):
        r_gov[:p.T] = fiscal.get_r_gov(r[:p.T], p)
        if p.budget_balance:
            r_hh[:p.T] = r[:p.T]
        else:
            K[:p.T] = firm.get_K_from_Y(Y[:p.T], r[:p.T], p, 'TPI')
            r_hh[:p.T] = aggr.get_r_hh(r[:p.T], r_gov[:p.T], K[:p.T], D[:p.T])
        if p.small_open:
            r_hh[:p.T] = p.hh_r[:p.T]

        outer_loop_vars = (r, w, r_hh, BQ, T_H, theta)

        euler_errors = np.zeros((p.T, 2 * p.S, p.J))
        lazy_values = []
        for j in range(p.J):
            guesses = (guesses_b[:, :, j], guesses_n[:, :, j])
            lazy_values.append(
                delayed(inner_loop)(guesses, outer_loop_vars,
                                    initial_values, j, ind, p))
        results = compute(*lazy_values, scheduler=dask.multiprocessing.get,
                          num_workers=p.num_workers)
        for j, result in enumerate(results):
            euler_errors[:, :, j], b_mat[:, :, j], n_mat[:, :, j] = result

        bmat_s = np.zeros((p.T, p.S, p.J))
        bmat_s[0, 1:, :] = initial_b[:-1, :]
        bmat_s[1:, 1:, :] = b_mat[:p.T-1, :-1, :]
        bmat_splus1 = np.zeros((p.T, p.S, p.J))
        bmat_splus1[:, :, :] = b_mat[:p.T, :, :]

        L[:p.T] = aggr.get_L(n_mat[:p.T], p, 'TPI')
        B[1:p.T] = aggr.get_K(bmat_splus1[:p.T], p, 'TPI',
                              False)[:p.T - 1]
        if np.any(B) < 0:
            print('B has negative elements. B[0:9]:', B[0:9])
            print('B[T-2:T]:', B[p.T - 2, p.T])

        etr_params_4D = np.tile(
            p.etr_params.reshape(p.T, p.S, 1, p.etr_params.shape[2]),
            (1, 1, p.J, 1))
        bqmat = household.get_bq(BQ, None, p, 'TPI')
        tax_mat = tax.total_taxes(r_hh[:p.T], w[:p.T], bmat_s,
                                  n_mat[:p.T, :, :], bqmat[:p.T, :, :],
                                  factor, T_H[:p.T], theta, 0, None,
                                  False, 'TPI', p.e, etr_params_4D, p)
        r_hh_path = utils.to_timepath_shape(r_hh, p)
        wpath = utils.to_timepath_shape(w, p)
        c_mat = household.get_cons(r_hh_path[:p.T, :, :], wpath[:p.T, :, :],
                                   bmat_s, bmat_splus1,
                                   n_mat[:p.T, :, :], bqmat[:p.T, :, :],
                                   tax_mat, p.e, p.tau_c[:p.T, :, :], p)

        if not p.small_open:
            if p.budget_balance:
                K[:p.T] = B[:p.T]
            else:
                if not p.baseline_spending:
                    Y = T_H / p.alpha_T  # maybe unecessary

                    (total_rev, T_Ipath, T_Ppath, T_BQpath, T_Wpath,
                     T_Cpath, business_revenue) = aggr.revenue(
                        r_hh[:p.T], w[:p.T], bmat_s, n_mat[:p.T, :, :],
                        bqmat[:p.T, :, :], c_mat[:p.T, :, :], Y[:p.T],
                        L[:p.T], K[:p.T], factor, theta, etr_params_4D,
                        p, 'TPI')
                    total_revenue = np.array(list(total_rev) +
                                             [total_revenue_ss] * p.S)

                # set intial debt value
                if p.baseline:
                    D_0 = p.initial_debt_ratio * Y[0]
                else:
                    D_0 = D0
                if not p.baseline_spending:
                    G_0 = p.alpha_G[0] * Y[0]
                dg_fixed_values = (Y, total_revenue, T_H, D_0, G_0)
                Dnew, G = fiscal.D_G_path(r_gov, dg_fixed_values,
                                          Gbaseline, p)

                K[:p.T] = B[:p.T] - Dnew[:p.T]
                if np.any(K < 0):
                    print('K has negative elements. Setting them ' +
                          'positive to prevent NAN.')
                    K[:p.T] = np.fmax(K[:p.T], 0.05 * B[:p.T])
        else:
            K[:p.T] = firm.get_K(L[:p.T], p.firm_r[:p.T], p, 'TPI')
        Ynew = firm.get_Y(K[:p.T], L[:p.T], p, 'TPI')
        if not p.small_open:
            rnew = firm.get_r(Ynew[:p.T], K[:p.T], p, 'TPI')
        else:
            rnew = r.copy()
        r_gov_new = fiscal.get_r_gov(rnew, p)
        if p.budget_balance:
            r_hh_new = rnew[:p.T]
        else:
            r_hh_new = aggr.get_r_hh(rnew, r_gov_new, K[:p.T],
                                     Dnew[:p.T])
        if p.small_open:
            r_hh_new = p.hh_r[:p.T]
        # compute w
        wnew = firm.get_w_from_r(rnew[:p.T], p, 'TPI')

        b_mat_shift = np.append(np.reshape(initial_b, (1, p.S, p.J)),
                                b_mat[:p.T - 1, :, :], axis=0)
        BQnew = aggr.get_BQ(r_hh_new[:p.T], b_mat_shift, None, p,
                            'TPI', False)
        bqmat_new = household.get_bq(BQnew, None, p, 'TPI')
        (total_rev, T_Ipath, T_Ppath, T_BQpath, T_Wpath, T_Cpath,
         business_revenue) = aggr.revenue(
                r_hh_new[:p.T], wnew[:p.T], bmat_s, n_mat[:p.T, :, :],
                bqmat_new[:p.T, :, :], c_mat[:p.T, :, :], Ynew[:p.T],
                L[:p.T], K[:p.T], factor, theta, etr_params_4D, p, 'TPI')
        total_revenue = np.array(list(total_rev) +
                                 [total_revenue_ss] * p.S)

        if p.budget_balance:
            T_H_new = total_revenue
        elif not p.baseline_spending:
            T_H_new = p.alpha_T[:p.T] * Ynew[:p.T]
        # If baseline_spending==True, no need to update T_H, it's fixed

        if p.small_open and not p.budget_balance:
            # Loop through years to calculate debt and gov't spending.
            # This is done earlier when small_open=False.
            if p.baseline:
                D_0 = p.initial_debt_ratio * Y[0]
            else:
                D_0 = D0
            if not p.baseline_spending:
                G_0 = p.alpha_G[0] * Ynew[0]
            dg_fixed_values = (Ynew, total_revenue, T_H, D_0, G_0)
            Dnew, G = fiscal.D_G_path(r_gov_new, dg_fixed_values, Gbaseline, p)

        if p.budget_balance:
            Dnew = D

        w[:p.T] = wnew[:p.T]
        r[:p.T] = utils.convex_combo(rnew[:p.T], r[:p.T], p.nu)
        BQ[:p.T] = utils.convex_combo(BQnew[:p.T], BQ[:p.T], p.nu)
        D = Dnew
        Y[:p.T] = utils.convex_combo(Ynew[:p.T], Y[:p.T], p.nu)
        if not p.baseline_spending:
            T_H[:p.T] = utils.convex_combo(T_H_new[:p.T], T_H[:p.T], p.nu)
        guesses_b = utils.convex_combo(b_mat, guesses_b, p.nu)
        guesses_n = utils.convex_combo(n_mat, guesses_n, p.nu)

        print('r diff: ', (rnew[:p.T] - r[:p.T]).max(),
              (rnew[:p.T] - r[:p.T]).min())
        print('BQ diff: ', (BQnew[:p.T] - BQ[:p.T]).max(),
              (BQnew[:p.T] - BQ[:p.T]).min())
        print('T_H diff: ', (T_H_new[:p.T]-T_H[:p.T]).max(),
              (T_H_new[:p.T] - T_H[:p.T]).min())
        print('Y diff: ', (Ynew[:p.T]-Y[:p.T]).max(),
              (Ynew[:p.T] - Y[:p.T]).min())
        if not p.baseline_spending:
            if T_H.all() != 0:
                TPIdist = np.array(
                    list(utils.pct_diff_func(rnew[:p.T], r[:p.T])) +
                    list(utils.pct_diff_func(BQnew[:p.T],
                                             BQ[:p.T]).flatten()) +
                    list(utils.pct_diff_func(wnew[:p.T], w[:p.T])) +
                    list(utils.pct_diff_func(T_H_new[:p.T],
                                             T_H[:p.T]))).max()
            else:
                TPIdist = np.array(
                    list(utils.pct_diff_func(rnew[:p.T], r[:p.T])) +
                    list(utils.pct_diff_func(BQnew[:p.T],
                                             BQ[:p.T]).flatten()) +
                    list(utils.pct_diff_func(wnew[:p.T], w[:p.T])) +
                    list(np.abs(T_H[:p.T]))).max()
        else:
            TPIdist = np.array(
                list(utils.pct_diff_func(rnew[:p.T], r[:p.T])) +
                list(utils.pct_diff_func(BQnew[:p.T], BQ[:p.T]).flatten())
                + list(utils.pct_diff_func(wnew[:p.T], w[:p.T])) +
                list(utils.pct_diff_func(Ynew[:p.T], Y[:p.T]))).max()

        TPIdist_vec[TPIiter] = TPIdist
        # After T=10, if cycling occurs, drop the value of nu
        # wait til after T=10 or so, because sometimes there is a jump up
        # in the first couple iterations
        # if TPIiter > 10:
        #     if TPIdist_vec[TPIiter] - TPIdist_vec[TPIiter - 1] > 0:
        #         nu /= 2
        #         print 'New Value of nu:', nu
        TPIiter += 1
        print('Iteration:', TPIiter)
        print('\tDistance:', TPIdist)

    # Compute effective and marginal tax rates for all agents
    mtrx_params_4D = np.tile(
        p.mtrx_params.reshape(p.T, p.S, 1, p.mtrx_params.shape[2]),
        (1, 1, p.J, 1))
    mtry_params_4D = np.tile(
        p.mtry_params.reshape(p.T, p.S, 1, p.mtry_params.shape[2]),
        (1, 1, p.J, 1))

    e_3D = np.tile(p.e.reshape(1, p.S, p.J), (p.T, 1, 1))
    mtry_path = tax.MTR_income(r_hh_path[:p.T], wpath[:p.T],
                               bmat_s[:p.T, :, :],
                               n_mat[:p.T, :, :], factor, True,
                               e_3D, etr_params_4D, mtry_params_4D, p)
    mtrx_path = tax.MTR_income(r_hh_path[:p.T], wpath[:p.T],
                               bmat_s[:p.T, :, :],
                               n_mat[:p.T, :, :], factor, False,
                               e_3D, etr_params_4D, mtrx_params_4D, p)
    etr_path = tax.ETR_income(r_hh_path[:p.T], wpath[:p.T],
                              bmat_s[:p.T, :, :],
                              n_mat[:p.T, :, :], factor, e_3D,
                              etr_params_4D, p)

    C = aggr.get_C(c_mat, p, 'TPI')

    if not p.small_open:
        I = aggr.get_I(bmat_splus1[:p.T], K[1:p.T + 1], K[:p.T], p, 'TPI')
        rc_error = Y[:p.T] - C[:p.T] - I[:p.T] - G[:p.T]
    else:
        I = ((1 + np.squeeze(np.hstack((p.g_n[1:p.T], p.g_n_ss)))) *
             np.exp(p.g_y) * K[1:p.T + 1] - (1.0 - p.delta) * K[:p.T])
        BI = aggr.get_I(bmat_splus1[:p.T], B[1:p.T + 1], B[:p.T], p, 'TPI')
        new_borrowing = (D[1:p.T] * (1 + p.g_n[1:p.T]) *
                         np.exp(p.g_y) - D[:p.T - 1])
        rc_error = (Y[:p.T - 1] + new_borrowing - (
            C[:p.T - 1] + BI[:p.T - 1] + G[:p.T - 1]) +
                    (p.hh_r[:p.T - 1] * B[:p.T - 1] - (
                        p.delta + p.firm_r[:p.T - 1]) * K[:p.T - 1] -
                     p.hh_r[:p.T - 1] * D[:p.T - 1]))

    # Compute total investment (not just domestic)
    I_total = ((1 + p.g_n[:p.T]) * np.exp(p.g_y) * K[1:p.T + 1] -
               (1.0 - p.delta) * K[:p.T])

    rce_max = np.amax(np.abs(rc_error))
    print('Max absolute value resource constraint error:', rce_max)

    print('Checking time path for violations of constraints.')
    for t in range(p.T):
        household.constraint_checker_TPI(
            b_mat[t], n_mat[t], c_mat[t], t, p.ltilde)

    eul_savings = euler_errors[:, :p.S, :].max(1).max(1)
    eul_laborleisure = euler_errors[:, p.S:, :].max(1).max(1)

    print('Max Euler error, savings: ', eul_savings)
    print('Max Euler error labor supply: ', eul_laborleisure)

    '''
    ------------------------------------------------------------------------
    Save variables/values so they can be used in other modules
    ------------------------------------------------------------------------
    '''

    output = {'Y': Y[:p.T], 'B': B, 'K': K, 'L': L, 'C': C, 'I': I,
              'I_total': I_total, 'BQ': BQ, 'total_revenue': total_revenue,
              'business_revenue': business_revenue,
              'IITpayroll_revenue': T_Ipath, 'T_H': T_H,
              'T_P': T_Ppath, 'T_BQ': T_BQpath, 'T_W': T_Wpath,
              'T_C': T_Cpath, 'G': G, 'D': D, 'r': r, 'r_gov': r_gov,
              'r_hh': r_hh, 'w': w, 'bmat_splus1': bmat_splus1,
              'bmat_s': bmat_s[:p.T, :, :], 'n_mat': n_mat[:p.T, :, :],
              'c_path': c_mat, 'bq_path': bqmat,
              'tax_path': tax_mat, 'eul_savings': eul_savings,
              'eul_laborleisure': eul_laborleisure,
              'resource_constraint_error': rc_error,
              'etr_path': etr_path, 'mtrx_path': mtrx_path,
              'mtry_path': mtry_path}

    tpi_dir = os.path.join(p.output_base, "TPI")
    utils.mkdirs(tpi_dir)
    tpi_vars = os.path.join(tpi_dir, "TPI_vars.pkl")
    pickle.dump(output, open(tpi_vars, "wb"))

    if np.any(G) < 0:
        print('Government spending is negative along transition path' +
              ' to satisfy budget')

    if (((TPIiter >= p.maxiter) or
         (np.absolute(TPIdist) > p.mindist_TPI)) and
        ENFORCE_SOLUTION_CHECKS):
        raise RuntimeError('Transition path equlibrium not found' +
                           ' (TPIdist)')

    if ((np.any(np.absolute(rc_error) >= p.mindist_TPI * 10)) and
        ENFORCE_SOLUTION_CHECKS):
        raise RuntimeError('Transition path equlibrium not found ' +
                           '(rc_error)')

    if ((np.any(np.absolute(eul_savings) >= p.mindist_TPI) or
         (np.any(np.absolute(eul_laborleisure) > p.mindist_TPI))) and
        ENFORCE_SOLUTION_CHECKS):
        raise RuntimeError('Transition path equlibrium not found ' +
                           '(eulers)')

    return output
Exemple #9
0
def inner_loop(guesses, outer_loop_vars, initial_values, j, ind, p):
    '''
    Solves inner loop of TPI.  Given path of economic aggregates and
    factor prices, solves household problem.

    Inputs:
        r          = [T,] vector, interest rate
        w          = [T,] vector, wage rate
        b          = [T,S,J] array, wealth holdings
        n          = [T,S,J] array, labor supply
        BQ         = [T,J] vector,  bequest amounts
        factor     = scalar, model income scaling factor
        T_H        = [T,] vector, lump sum transfer amount(s)

    Functions called:
        firstdoughnutring()
        twist_doughnut()

    Objects in function:

    Returns: euler_errors, b_mat, n_mat
    '''
    # unpack variables and parameters pass to function
    (K0, b_sinit, b_splus1init, factor, initial_b, initial_n,
     D0) = initial_values
    guesses_b, guesses_n = guesses
    r, w, r_hh, BQ, T_H, theta = outer_loop_vars

    # compute w
    w[:p.T] = firm.get_w_from_r(r[:p.T], p, 'TPI')
    # compute bq
    bq = household.get_bq(BQ, None, p, 'TPI')

    # initialize arrays
    b_mat = np.zeros((p.T + p.S, p.S))
    n_mat = np.zeros((p.T + p.S, p.S))
    euler_errors = np.zeros((p.T, 2 * p.S))

    b_mat[0, -1], n_mat[0, -1] =\
        np.array(opt.fsolve(firstdoughnutring, [guesses_b[0, -1],
                                                guesses_n[0, -1]],
                            args=(r_hh[0], w[0], bq[0, -1, j], T_H[0],
                                  theta * p.replacement_rate_adjust[0],
                                  factor, j, initial_b, p),
                            xtol=MINIMIZER_TOL))

    for s in range(p.S - 2):  # Upper triangle
        ind2 = np.arange(s + 2)
        b_guesses_to_use = np.diag(guesses_b[:p.S, :], p.S - (s + 2))
        n_guesses_to_use = np.diag(guesses_n[:p.S, :], p.S - (s + 2))
        theta_to_use = theta[j] * p.replacement_rate_adjust[:p.S]
        bq_to_use = np.diag(bq[:p.S, :, j], p.S - (s + 2))
        tau_c_to_use = np.diag(p.tau_c[:p.S, :, j], p.S - (s + 2))

        length_diag =\
            np.diag(p.etr_params[:p.S, :, 0], p.S-(s + 2)).shape[0]
        etr_params_to_use = np.zeros((length_diag, p.etr_params.shape[2]))
        mtrx_params_to_use = np.zeros((length_diag, p.mtrx_params.shape[2]))
        mtry_params_to_use = np.zeros((length_diag, p.mtry_params.shape[2]))
        for i in range(p.etr_params.shape[2]):
            etr_params_to_use[:, i] =\
                np.diag(p.etr_params[:p.S, :, i], p.S - (s + 2))
            mtrx_params_to_use[:, i] =\
                np.diag(p.mtrx_params[:p.S, :, i], p.S - (s + 2))
            mtry_params_to_use[:, i] =\
                np.diag(p.mtry_params[:p.S, :, i], p.S - (s + 2))

        solutions = opt.fsolve(twist_doughnut,
                               list(b_guesses_to_use) +
                               list(n_guesses_to_use),
                               args=(r_hh, w, bq_to_use, T_H, theta_to_use,
                                     factor, j, s, 0, tau_c_to_use,
                                     etr_params_to_use,
                                     mtrx_params_to_use,
                                     mtry_params_to_use, initial_b, p),
                               xtol=MINIMIZER_TOL)

        b_vec = solutions[:int(len(solutions) / 2)]
        b_mat[ind2, p.S - (s + 2) + ind2] = b_vec
        n_vec = solutions[int(len(solutions) / 2):]
        n_mat[ind2, p.S - (s + 2) + ind2] = n_vec

    for t in range(0, p.T):
        b_guesses_to_use = .75 * \
            np.diag(guesses_b[t:t + p.S, :])
        n_guesses_to_use = np.diag(guesses_n[t:t + p.S, :])
        theta_to_use = theta[j] * p.replacement_rate_adjust[t:t + p.S]
        bq_to_use = np.diag(bq[t:t + p.S, :, j])
        tau_c_to_use = np.diag(p.tau_c[t:t + p.S, :, j])

        # initialize array of diagonal elements
        etr_params_TP = np.zeros((p.T + p.S, p.S,  p.etr_params.shape[2]))
        etr_params_TP[:p.T, :, :] = p.etr_params
        etr_params_TP[p.T:, :, :] = p.etr_params[-1, :, :]

        mtrx_params_TP = np.zeros((p.T + p.S, p.S,  p.mtrx_params.shape[2]))
        mtrx_params_TP[:p.T, :, :] = p.mtrx_params
        mtrx_params_TP[p.T:, :, :] = p.mtrx_params[-1, :, :]

        mtry_params_TP = np.zeros((p.T + p.S, p.S,  p.mtry_params.shape[2]))
        mtry_params_TP[:p.T, :, :] = p.mtry_params
        mtry_params_TP[p.T:, :, :] = p.mtry_params[-1, :, :]

        length_diag =\
            np.diag(etr_params_TP[t:t + p.S, :, 0]).shape[0]
        etr_params_to_use = np.zeros((length_diag, p.etr_params.shape[2]))
        mtrx_params_to_use = np.zeros((length_diag, p.mtrx_params.shape[2]))
        mtry_params_to_use = np.zeros((length_diag, p.mtry_params.shape[2]))

        for i in range(p.etr_params.shape[2]):
            etr_params_to_use[:, i] = np.diag(etr_params_TP[t:t + p.S, :, i])
            mtrx_params_to_use[:, i] = np.diag(mtrx_params_TP[t:t + p.S, :, i])
            mtry_params_to_use[:, i] = np.diag(mtry_params_TP[t:t + p.S, :, i])
        #
        # TPI_solver_params = (inc_tax_params_TP, tpi_params, None)
        [solutions, infodict, ier, message] =\
            opt.fsolve(twist_doughnut, list(b_guesses_to_use) +
                       list(n_guesses_to_use),
                       args=(r_hh, w, bq_to_use, T_H,
                             theta_to_use, factor,
                             j, None, t, tau_c_to_use,
                             etr_params_to_use, mtrx_params_to_use,
                             mtry_params_to_use, initial_b, p),
                       xtol=MINIMIZER_TOL, full_output=True)
        euler_errors[t, :] = infodict['fvec']

        b_vec = solutions[:p.S]
        b_mat[t + ind, ind] = b_vec
        n_vec = solutions[p.S:]
        n_mat[t + ind, ind] = n_vec

    print('Type ', j, ' max euler error = ', euler_errors.max())

    return euler_errors, b_mat, n_mat
Exemple #10
0
def inner_loop(outer_loop_vars, p, client):
    '''
    This function solves for the inner loop of
    the SS.  That is, given the guesses of the
    outer loop variables (r, w, Y, factor)
    this function solves the households'
    problems in the SS.

    Inputs:
        r          = [T,] vector, interest rate
        w          = [T,] vector, wage rate
        b          = [T,S,J] array, wealth holdings
        n          = [T,S,J] array, labor supply
        BQ         = [T,J] vector,  bequest amounts
        factor     = scalar, model income scaling factor
        Y        = [T,] vector, lump sum transfer amount(s)


    Functions called:
        euler_equation_solver()
        aggr.get_K()
        aggr.get_L()
        firm.get_Y()
        firm.get_r()
        firm.get_w()
        aggr.get_BQ()
        tax.replacement_rate_vals()
        aggr.revenue()

    Objects in function:


    Returns: euler_errors, bssmat, nssmat, new_r, new_w
             new_T_H, new_factor, new_BQ

    '''
    # unpack variables to pass to function
    if p.budget_balance:
        bssmat, nssmat, r, BQ, T_H, factor = outer_loop_vars
    else:
        bssmat, nssmat, r, BQ, Y, T_H, factor = outer_loop_vars

    euler_errors = np.zeros((2 * p.S, p.J))

    w = firm.get_w_from_r(r, p, 'SS')
    r_gov = fiscal.get_r_gov(r, p)
    if p.budget_balance:
        r_hh = r
        D = 0
    else:
        D = p.debt_ratio_ss * Y
        K = firm.get_K_from_Y(Y, r, p, 'SS')
        r_hh = aggr.get_r_hh(r, r_gov, K, D)
    if p.small_open:
        r_hh = p.hh_r[-1]
    bq = household.get_bq(BQ, None, p, 'SS')

    lazy_values = []
    for j in range(p.J):
        guesses = np.append(bssmat[:, j], nssmat[:, j])
        euler_params = (r_hh, w, bq[:, j], T_H, factor, j, p)
        lazy_values.append(delayed(opt.fsolve)(euler_equation_solver,
                                               guesses * .9,
                                               args=euler_params,
                                               xtol=MINIMIZER_TOL,
                                               full_output=True))
    results = compute(*lazy_values, scheduler=dask.multiprocessing.get,
                      num_workers=p.num_workers)

    # for j, result in results.items():
    for j, result in enumerate(results):
        [solutions, infodict, ier, message] = result
        euler_errors[:, j] = infodict['fvec']
        bssmat[:, j] = solutions[:p.S]
        nssmat[:, j] = solutions[p.S:]

    L = aggr.get_L(nssmat, p, 'SS')
    B = aggr.get_K(bssmat, p, 'SS', False)
    K_demand_open = firm.get_K(L, p.firm_r[-1], p, 'SS')
    D_f = p.zeta_D[-1] * D
    D_d = D - D_f
    if not p.small_open:
        K_d = B - D_d
        K_f = p.zeta_K[-1] * (K_demand_open - B + D_d)
        K = K_f + K_d
    else:
        # can remove this else statement by making small open the case where zeta_K = 1
        K_d = B - D_d
        K_f = K_demand_open - B + D_d
        K = K_f + K_d
    new_Y = firm.get_Y(K, L, p, 'SS')
    if p.budget_balance:
        Y = new_Y
    if not p.small_open:
        new_r = firm.get_r(Y, K, p, 'SS')
    else:
        new_r = p.firm_r[-1]
    new_w = firm.get_w_from_r(new_r, p, 'SS')

    b_s = np.array(list(np.zeros(p.J).reshape(1, p.J)) +
                   list(bssmat[:-1, :]))
    new_r_gov = fiscal.get_r_gov(new_r, p)
    new_r_hh = aggr.get_r_hh(new_r, new_r_gov, K, D)
    average_income_model = ((new_r_hh * b_s + new_w * p.e * nssmat) *
                            p.omega_SS.reshape(p.S, 1) *
                            p.lambdas.reshape(1, p.J)).sum()
    if p.baseline:
        new_factor = p.mean_income_data / average_income_model
    else:
        new_factor = factor
    new_BQ = aggr.get_BQ(new_r_hh, bssmat, None, p, 'SS', False)
    new_bq = household.get_bq(new_BQ, None, p, 'SS')
    theta = tax.replacement_rate_vals(nssmat, new_w, new_factor, None, p)

    if p.budget_balance:
        etr_params_3D = np.tile(np.reshape(
            p.etr_params[-1, :, :], (p.S, 1, p.etr_params.shape[2])),
                                (1, p.J, 1))
        taxss = tax.total_taxes(new_r_hh, new_w, b_s, nssmat, new_bq,
                                factor, T_H, theta, None, None, False,
                                'SS', p.e, etr_params_3D, p)
        cssmat = household.get_cons(new_r_hh, new_w, b_s, bssmat,
                                    nssmat, new_bq, taxss,
                                    p.e, p.tau_c[-1, :, :], p)
        new_T_H, _, _, _, _, _, _ = aggr.revenue(
            new_r_hh, new_w, b_s, nssmat, new_bq, cssmat, new_Y, L, K,
            factor, theta, etr_params_3D, p, 'SS')
    elif p.baseline_spending:
        new_T_H = T_H
    else:
        new_T_H = p.alpha_T[-1] * new_Y

    return euler_errors, bssmat, nssmat, new_r, new_r_gov, new_r_hh, \
        new_w, new_T_H, new_Y, new_factor, new_BQ, average_income_model
Exemple #11
0
def run_TPI(p, client=None):

    # unpack tuples of parameters
    initial_values, ss_vars, theta, baseline_values = get_initial_SS_values(p)
    (B0, b_sinit, b_splus1init, factor, initial_b, initial_n,
     D0) = initial_values
    (T_Hbaseline, Gbaseline) = baseline_values

    print('Government spending breakpoints are tG1: ', p.tG1, '; and tG2:',
          p.tG2)

    # Initialize guesses at time paths
    # Make array of initial guesses for labor supply and savings
    domain = np.linspace(0, p.T, p.T)
    domain2 = np.tile(domain.reshape(p.T, 1, 1), (1, p.S, p.J))
    ending_b = ss_vars['bssmat_splus1']
    guesses_b = (-1 / (domain2 + 1)) * (ending_b - initial_b) + ending_b
    ending_b_tail = np.tile(ending_b.reshape(1, p.S, p.J), (p.S, 1, 1))
    guesses_b = np.append(guesses_b, ending_b_tail, axis=0)

    domain3 = np.tile(np.linspace(0, 1, p.T).reshape(p.T, 1, 1), (1, p.S, p.J))
    guesses_n = domain3 * (ss_vars['nssmat'] - initial_n) + initial_n
    ending_n_tail = np.tile(ss_vars['nssmat'].reshape(1, p.S, p.J),
                            (p.S, 1, 1))
    guesses_n = np.append(guesses_n, ending_n_tail, axis=0)
    b_mat = guesses_b
    n_mat = guesses_n
    ind = np.arange(p.S)

    L_init = np.ones((p.T + p.S, )) * ss_vars['Lss']
    B_init = np.ones((p.T + p.S, )) * ss_vars['Bss']
    L_init[:p.T] = aggr.get_L(n_mat[:p.T], p, 'TPI')
    B_init[1:p.T] = aggr.get_K(b_mat[:p.T], p, 'TPI', False)[:p.T - 1]
    B_init[0] = B0

    if not p.small_open:
        if p.budget_balance:
            K_init = B_init
        else:
            K_init = B_init * ss_vars['Kss'] / ss_vars['Bss']
    else:
        K_init = firm.get_K(L_init, p.firm_r, p, 'TPI')

    K = K_init
    K_d = K_init * ss_vars['K_d_ss'] / ss_vars['Kss']
    K_f = K_init * ss_vars['K_f_ss'] / ss_vars['Kss']

    L = L_init
    B = B_init
    Y = np.zeros_like(K)
    Y[:p.T] = firm.get_Y(K[:p.T], L[:p.T], p, 'TPI')
    Y[p.T:] = ss_vars['Yss']
    r = np.zeros_like(Y)
    if not p.small_open:
        r[:p.T] = firm.get_r(Y[:p.T], K[:p.T], p, 'TPI')
        r[p.T:] = ss_vars['rss']
    else:
        r = p.firm_r
    # compute w
    w = np.zeros_like(r)
    w[:p.T] = firm.get_w_from_r(r[:p.T], p, 'TPI')
    w[p.T:] = ss_vars['wss']
    r_gov = fiscal.get_r_gov(r, p)
    if p.budget_balance:
        r_hh = r
    else:
        r_hh = aggr.get_r_hh(r, r_gov, K, ss_vars['Dss'])
    if p.small_open:
        r_hh = p.hh_r

    BQ0 = aggr.get_BQ(r[0], initial_b, None, p, 'SS', True)
    if not p.use_zeta:
        BQ = np.zeros((p.T + p.S, p.J))
        for j in range(p.J):
            BQ[:, j] = (list(np.linspace(BQ0[j], ss_vars['BQss'][j], p.T)) +
                        [ss_vars['BQss'][j]] * p.S)
        BQ = np.array(BQ)
    else:
        BQ = (list(np.linspace(BQ0, ss_vars['BQss'], p.T)) +
              [ss_vars['BQss']] * p.S)
        BQ = np.array(BQ)
    if p.budget_balance:
        if np.abs(ss_vars['T_Hss']) < 1e-13:
            T_Hss2 = 0.0  # sometimes SS is very small but not zero,
            # even if taxes are zero, this get's rid of the approximation
            # error, which affects the perc changes below
        else:
            T_Hss2 = ss_vars['T_Hss']
        T_H = np.ones(p.T + p.S) * T_Hss2
        total_revenue = T_H
        G = np.zeros(p.T + p.S)
    elif not p.baseline_spending:
        T_H = p.alpha_T * Y
        G = np.ones(p.T + p.S) * ss_vars['Gss']
    elif p.baseline_spending:
        T_H = T_Hbaseline
        T_H_new = p.T_H  # Need to set T_H_new for later reference
        G = Gbaseline
        G_0 = Gbaseline[0]

    # Initialize some starting values
    if p.budget_balance:
        D = np.zeros(p.T + p.S)
    else:
        D = np.ones(p.T + p.S) * ss_vars['Dss']
    if ss_vars['Dss'] == 0:
        D_d = np.zeros(p.T + p.S)
        D_f = np.zeros(p.T + p.S)
    else:
        D_d = D * ss_vars['D_d_ss'] / ss_vars['Dss']
        D_f = D * ss_vars['D_f_ss'] / ss_vars['Dss']
    total_revenue = np.ones(p.T + p.S) * ss_vars['total_revenue_ss']

    TPIiter = 0
    TPIdist = 10
    euler_errors = np.zeros((p.T, 2 * p.S, p.J))
    TPIdist_vec = np.zeros(p.maxiter)

    # TPI loop
    while (TPIiter < p.maxiter) and (TPIdist >= p.mindist_TPI):
        r_gov[:p.T] = fiscal.get_r_gov(r[:p.T], p)
        if p.budget_balance:
            r_hh[:p.T] = r[:p.T]
        else:
            K[:p.T] = firm.get_K_from_Y(Y[:p.T], r[:p.T], p, 'TPI')
            r_hh[:p.T] = aggr.get_r_hh(r[:p.T], r_gov[:p.T], K[:p.T], D[:p.T])
        if p.small_open:
            r_hh[:p.T] = p.hh_r[:p.T]

        outer_loop_vars = (r, w, r_hh, BQ, T_H, theta)

        euler_errors = np.zeros((p.T, 2 * p.S, p.J))
        lazy_values = []
        for j in range(p.J):
            guesses = (guesses_b[:, :, j], guesses_n[:, :, j])
            lazy_values.append(
                delayed(inner_loop)(guesses, outer_loop_vars, initial_values,
                                    j, ind, p))
        results = compute(*lazy_values,
                          scheduler=dask.multiprocessing.get,
                          num_workers=p.num_workers)
        for j, result in enumerate(results):
            euler_errors[:, :, j], b_mat[:, :, j], n_mat[:, :, j] = result

        bmat_s = np.zeros((p.T, p.S, p.J))
        bmat_s[0, 1:, :] = initial_b[:-1, :]
        bmat_s[1:, 1:, :] = b_mat[:p.T - 1, :-1, :]
        bmat_splus1 = np.zeros((p.T, p.S, p.J))
        bmat_splus1[:, :, :] = b_mat[:p.T, :, :]

        etr_params_4D = np.tile(
            p.etr_params.reshape(p.T, p.S, 1, p.etr_params.shape[2]),
            (1, 1, p.J, 1))
        bqmat = household.get_bq(BQ, None, p, 'TPI')
        tax_mat = tax.total_taxes(r_hh[:p.T], w[:p.T], bmat_s,
                                  n_mat[:p.T, :, :], bqmat[:p.T, :, :], factor,
                                  T_H[:p.T], theta, 0, None, False, 'TPI', p.e,
                                  etr_params_4D, p)
        r_hh_path = utils.to_timepath_shape(r_hh, p)
        wpath = utils.to_timepath_shape(w, p)
        c_mat = household.get_cons(r_hh_path[:p.T, :, :], wpath[:p.T, :, :],
                                   bmat_s, bmat_splus1, n_mat[:p.T, :, :],
                                   bqmat[:p.T, :, :], tax_mat, p.e,
                                   p.tau_c[:p.T, :, :], p)
        y_before_tax_mat = (r_hh_path[:p.T, :, :] * bmat_s[:p.T, :, :] +
                            wpath[:p.T, :, :] * p.e * n_mat[:p.T, :, :])

        if not p.baseline_spending and not p.budget_balance:
            Y[:p.T] = T_H[:p.T] / p.alpha_T[:p.T]  # maybe unecessary

            (total_rev, T_Ipath, T_Ppath, T_BQpath,
             T_Wpath, T_Cpath, business_revenue) = aggr.revenue(
                 r_hh[:p.T], w[:p.T], bmat_s, n_mat[:p.T, :, :],
                 bqmat[:p.T, :, :], c_mat[:p.T, :, :], Y[:p.T], L[:p.T],
                 K[:p.T], factor, theta, etr_params_4D, p, 'TPI')
            total_revenue[:p.T] = total_rev
            # set intial debt value
            if p.baseline:
                D0 = p.initial_debt_ratio * Y[0]
            if not p.baseline_spending:
                G_0 = p.alpha_G[0] * Y[0]
            dg_fixed_values = (Y, total_revenue, T_H, D0, G_0)
            Dnew, G[:p.T] = fiscal.D_G_path(r_gov, dg_fixed_values, Gbaseline,
                                            p)
            # Fix initial amount of foreign debt holding
            D_f[0] = p.initial_foreign_debt_ratio * Dnew[0]
            for t in range(1, p.T):
                D_f[t + 1] = (D_f[t] / (np.exp(p.g_y) * (1 + p.g_n[t + 1])) +
                              p.zeta_D[t] * (Dnew[t + 1] -
                                             (Dnew[t] / (np.exp(p.g_y) *
                                                         (1 + p.g_n[t + 1])))))
            D_d[:p.T] = Dnew[:p.T] - D_f[:p.T]
        else:  # if budget balance
            Dnew = np.zeros(p.T + 1)
            G[:p.T] = np.zeros(p.T)
            D_f[:p.T] = np.zeros(p.T)
            D_d[:p.T] = np.zeros(p.T)

        L[:p.T] = aggr.get_L(n_mat[:p.T], p, 'TPI')
        B[1:p.T] = aggr.get_K(bmat_splus1[:p.T], p, 'TPI', False)[:p.T - 1]
        K_demand_open = firm.get_K(L[:p.T], p.firm_r[:p.T], p, 'TPI')
        K_d[:p.T] = B[:p.T] - D_d[:p.T]
        if np.any(K_d < 0):
            print('K_d has negative elements. Setting them ' +
                  'positive to prevent NAN.')
            K_d[:p.T] = np.fmax(K_d[:p.T], 0.05 * B[:p.T])
        K_f[:p.T] = p.zeta_K[:p.T] * (K_demand_open - B[:p.T] + D_d[:p.T])
        K = K_f + K_d
        if np.any(B) < 0:
            print('B has negative elements. B[0:9]:', B[0:9])
            print('B[T-2:T]:', B[p.T - 2, p.T])
        if p.small_open:
            K[:p.T] = K_demand_open
        Ynew = firm.get_Y(K[:p.T], L[:p.T], p, 'TPI')
        rnew = r.copy()
        if not p.small_open:
            rnew[:p.T] = firm.get_r(Ynew[:p.T], K[:p.T], p, 'TPI')
        else:
            rnew[:p.T] = r[:p.T].copy()
        r_gov_new = fiscal.get_r_gov(rnew, p)
        if p.budget_balance:
            r_hh_new = rnew[:p.T]
        else:
            r_hh_new = aggr.get_r_hh(rnew[:p.T], r_gov_new[:p.T], K[:p.T],
                                     Dnew[:p.T])
        if p.small_open:
            r_hh_new = p.hh_r[:p.T]
        # compute w
        wnew = firm.get_w_from_r(rnew[:p.T], p, 'TPI')

        b_mat_shift = np.append(np.reshape(initial_b, (1, p.S, p.J)),
                                b_mat[:p.T - 1, :, :],
                                axis=0)
        BQnew = aggr.get_BQ(r_hh_new[:p.T], b_mat_shift, None, p, 'TPI', False)
        bqmat_new = household.get_bq(BQnew, None, p, 'TPI')
        (total_rev, T_Ipath, T_Ppath, T_BQpath,
         T_Wpath, T_Cpath, business_revenue) = aggr.revenue(
             r_hh_new[:p.T], wnew[:p.T], bmat_s, n_mat[:p.T, :, :],
             bqmat_new[:p.T, :, :], c_mat[:p.T, :, :], Ynew[:p.T], L[:p.T],
             K[:p.T], factor, theta, etr_params_4D, p, 'TPI')
        total_revenue[:p.T] = total_rev

        if p.budget_balance:
            T_H_new = total_revenue
        elif not p.baseline_spending:
            T_H_new = p.alpha_T[:p.T] * Ynew[:p.T]
        # If baseline_spending==True, no need to update T_H, it's fixed

        # update vars for next iteration
        w[:p.T] = wnew[:p.T]
        r[:p.T] = utils.convex_combo(rnew[:p.T], r[:p.T], p.nu)
        BQ[:p.T] = utils.convex_combo(BQnew[:p.T], BQ[:p.T], p.nu)
        D[:p.T] = Dnew[:p.T]
        Y[:p.T] = utils.convex_combo(Ynew[:p.T], Y[:p.T], p.nu)
        if not p.baseline_spending:
            T_H[:p.T] = utils.convex_combo(T_H_new[:p.T], T_H[:p.T], p.nu)
        guesses_b = utils.convex_combo(b_mat, guesses_b, p.nu)
        guesses_n = utils.convex_combo(n_mat, guesses_n, p.nu)
        print('r diff: ', (rnew[:p.T] - r[:p.T]).max(),
              (rnew[:p.T] - r[:p.T]).min())
        print('BQ diff: ', (BQnew[:p.T] - BQ[:p.T]).max(),
              (BQnew[:p.T] - BQ[:p.T]).min())
        print('T_H diff: ', (T_H_new[:p.T] - T_H[:p.T]).max(),
              (T_H_new[:p.T] - T_H[:p.T]).min())
        print('Y diff: ', (Ynew[:p.T] - Y[:p.T]).max(),
              (Ynew[:p.T] - Y[:p.T]).min())
        if not p.baseline_spending:
            if T_H.all() != 0:
                TPIdist = np.array(
                    list(utils.pct_diff_func(rnew[:p.T], r[:p.T])) + list(
                        utils.pct_diff_func(BQnew[:p.T], BQ[:p.T]).flatten()) +
                    list(utils.pct_diff_func(T_H_new[:p.T], T_H[:p.T]))).max()
            else:
                TPIdist = np.array(
                    list(utils.pct_diff_func(rnew[:p.T], r[:p.T])) + list(
                        utils.pct_diff_func(BQnew[:p.T], BQ[:p.T]).flatten()) +
                    list(np.abs(T_H[:p.T]))).max()
        else:
            TPIdist = np.array(
                list(utils.pct_diff_func(rnew[:p.T], r[:p.T])) +
                list(utils.pct_diff_func(BQnew[:p.T], BQ[:p.T]).flatten()) +
                list(utils.pct_diff_func(Ynew[:p.T], Y[:p.T]))).max()

        TPIdist_vec[TPIiter] = TPIdist
        # After T=10, if cycling occurs, drop the value of nu
        # wait til after T=10 or so, because sometimes there is a jump up
        # in the first couple iterations
        # if TPIiter > 10:
        #     if TPIdist_vec[TPIiter] - TPIdist_vec[TPIiter - 1] > 0:
        #         nu /= 2
        #         print 'New Value of nu:', nu
        TPIiter += 1
        print('Iteration:', TPIiter)
        print('\tDistance:', TPIdist)

    # Compute effective and marginal tax rates for all agents
    mtrx_params_4D = np.tile(
        p.mtrx_params.reshape(p.T, p.S, 1, p.mtrx_params.shape[2]),
        (1, 1, p.J, 1))
    mtry_params_4D = np.tile(
        p.mtry_params.reshape(p.T, p.S, 1, p.mtry_params.shape[2]),
        (1, 1, p.J, 1))

    e_3D = np.tile(p.e.reshape(1, p.S, p.J), (p.T, 1, 1))
    mtry_path = tax.MTR_income(r_hh_path[:p.T], wpath[:p.T],
                               bmat_s[:p.T, :, :], n_mat[:p.T, :, :], factor,
                               True, e_3D, etr_params_4D, mtry_params_4D, p)
    mtrx_path = tax.MTR_income(r_hh_path[:p.T], wpath[:p.T],
                               bmat_s[:p.T, :, :], n_mat[:p.T, :, :], factor,
                               False, e_3D, etr_params_4D, mtrx_params_4D, p)
    etr_path = tax.ETR_income(r_hh_path[:p.T], wpath[:p.T], bmat_s[:p.T, :, :],
                              n_mat[:p.T, :, :], factor, e_3D, etr_params_4D,
                              p)

    C = aggr.get_C(c_mat, p, 'TPI')
    # Note that implicity in this computation is that immigrants'
    # wealth is all in the form of private capital
    I_d = aggr.get_I(bmat_splus1[:p.T], K_d[1:p.T + 1], K_d[:p.T], p, 'TPI')
    I = aggr.get_I(bmat_splus1[:p.T], K[1:p.T + 1], K[:p.T], p, 'TPI')
    # solve resource constraint
    # net foreign borrowing
    new_borrowing_f = (D_f[1:p.T + 1] * np.exp(p.g_y) *
                       (1 + p.g_n[1:p.T + 1]) - D_f[:p.T])
    debt_service_f = D_f * r_hh
    RC_error = aggr.resource_constraint(Y[:p.T - 1], C[:p.T - 1], G[:p.T - 1],
                                        I_d[:p.T - 1], K_f[:p.T - 1],
                                        new_borrowing_f[:p.T - 1],
                                        debt_service_f[:p.T - 1],
                                        r_hh[:p.T - 1], p)

    # Compute total investment (not just domestic)
    I_total = ((1 + p.g_n[:p.T]) * np.exp(p.g_y) * K[1:p.T + 1] -
               (1.0 - p.delta) * K[:p.T])

    rce_max = np.amax(np.abs(RC_error))
    print('Max absolute value resource constraint error:', rce_max)

    print('Checking time path for violations of constraints.')
    for t in range(p.T):
        household.constraint_checker_TPI(b_mat[t], n_mat[t], c_mat[t], t,
                                         p.ltilde)

    eul_savings = euler_errors[:, :p.S, :].max(1).max(1)
    eul_laborleisure = euler_errors[:, p.S:, :].max(1).max(1)

    print('Max Euler error, savings: ', eul_savings)
    print('Max Euler error labor supply: ', eul_laborleisure)
    '''
    ------------------------------------------------------------------------
    Save variables/values so they can be used in other modules
    ------------------------------------------------------------------------
    '''

    output = {
        'Y': Y[:p.T],
        'B': B,
        'K': K,
        'K_f': K_f,
        'K_d': K_d,
        'L': L,
        'C': C,
        'I': I,
        'I_total': I_total,
        'I_d': I_d,
        'BQ': BQ,
        'total_revenue': total_revenue,
        'business_revenue': business_revenue,
        'IITpayroll_revenue': T_Ipath,
        'T_H': T_H,
        'T_P': T_Ppath,
        'T_BQ': T_BQpath,
        'T_W': T_Wpath,
        'T_C': T_Cpath,
        'G': G,
        'D': D,
        'D_f': D_f,
        'D_d': D_d,
        'r': r,
        'r_gov': r_gov,
        'r_hh': r_hh,
        'w': w,
        'bmat_splus1': bmat_splus1,
        'bmat_s': bmat_s[:p.T, :, :],
        'n_mat': n_mat[:p.T, :, :],
        'c_path': c_mat,
        'bq_path': bqmat,
        'y_before_tax_mat': y_before_tax_mat,
        'tax_path': tax_mat,
        'eul_savings': eul_savings,
        'eul_laborleisure': eul_laborleisure,
        'resource_constraint_error': RC_error,
        'new_borrowing_f': new_borrowing_f,
        'debt_service_f': debt_service_f,
        'etr_path': etr_path,
        'mtrx_path': mtrx_path,
        'mtry_path': mtry_path
    }

    tpi_dir = os.path.join(p.output_base, "TPI")
    utils.mkdirs(tpi_dir)
    tpi_vars = os.path.join(tpi_dir, "TPI_vars.pkl")
    pickle.dump(output, open(tpi_vars, "wb"))

    if np.any(G) < 0:
        print('Government spending is negative along transition path' +
              ' to satisfy budget')

    if (((TPIiter >= p.maxiter) or (np.absolute(TPIdist) > p.mindist_TPI))
            and ENFORCE_SOLUTION_CHECKS):
        raise RuntimeError('Transition path equlibrium not found' +
                           ' (TPIdist)')

    if ((np.any(np.absolute(RC_error) >= p.mindist_TPI * 10))
            and ENFORCE_SOLUTION_CHECKS):
        raise RuntimeError('Transition path equlibrium not found ' +
                           '(RC_error)')

    if ((np.any(np.absolute(eul_savings) >= p.mindist_TPI) or
         (np.any(np.absolute(eul_laborleisure) > p.mindist_TPI)))
            and ENFORCE_SOLUTION_CHECKS):
        raise RuntimeError('Transition path equlibrium not found ' +
                           '(eulers)')

    return output
Exemple #12
0
def inner_loop(outer_loop_vars, p, client):
    '''
    This function solves for the inner loop of the SS.  That is, given
    the guesses of the outer loop variables (r, w, TR, factor) this
    function solves the households' problems in the SS.

    Args:
        outer_loop_vars (tuple): tuple of outer loop variables,
            (bssmat, nssmat, r, BQ, TR, factor) or
            (bssmat, nssmat, r, BQ, Y, TR, factor)
        bssmat (Numpy array): initial guess at savings, size = SxJ
        nssmat (Numpy array): initial guess at labor supply, size = SxJ
        BQ (array_like): aggregate bequest amount(s)
        Y (scalar): real GDP
        TR (scalar): lump sum transfer amount
        factor (scalar): scaling factor converting model units to dollars
        w (scalar): real wage rate
        p (OG-USA Specifications object): model parameters
        client (Dask client object): client

    Returns:
        (tuple): results from household solution:

            * euler_errors (Numpy array): errors terms from FOCs,
                size = 2SxJ
            * bssmat (Numpy array): savings, size = SxJ
            * nssmat (Numpy array): labor supply, size = SxJ
            * new_r (scalar): real interest rate on firm capital
            * new_r_gov (scalar): real interest rate on government debt
            * new_r_hh (scalar): real interest rate on household
                portfolio
            * new_w (scalar): real wage rate
            * new_TR (scalar): lump sum transfer amount
            * new_Y (scalar): real GDP
            * new_factor (scalar): scaling factor converting model
                units to dollars
            * new_BQ (array_like): aggregate bequest amount(s)
            * average_income_model (scalar): average income in model
                units

    '''
    # unpack variables to pass to function
    if p.budget_balance:
        bssmat, nssmat, r, BQ, TR, factor = outer_loop_vars
    else:
        bssmat, nssmat, r, BQ, Y, TR, factor = outer_loop_vars

    euler_errors = np.zeros((2 * p.S, p.J))

    w = firm.get_w_from_r(r, p, 'SS')
    r_gov = fiscal.get_r_gov(r, p)
    if p.budget_balance:
        r_hh = r
        D = 0
    else:
        D = p.debt_ratio_ss * Y
        K = firm.get_K_from_Y(Y, r, p, 'SS')
        r_hh = aggr.get_r_hh(r, r_gov, K, D)
    if p.small_open:
        r_hh = p.hh_r[-1]
    bq = household.get_bq(BQ, None, p, 'SS')
    tr = household.get_tr(TR, None, p, 'SS')

    lazy_values = []
    for j in range(p.J):
        guesses = np.append(bssmat[:, j], nssmat[:, j])
        euler_params = (r_hh, w, bq[:, j], tr[:, j], factor, j, p)
        lazy_values.append(delayed(opt.fsolve)(euler_equation_solver,
                                               guesses * .9,
                                               args=euler_params,
                                               xtol=MINIMIZER_TOL,
                                               full_output=True))
    results = compute(*lazy_values, scheduler=dask.multiprocessing.get,
                      num_workers=p.num_workers)

    # for j, result in results.items():
    for j, result in enumerate(results):
        [solutions, infodict, ier, message] = result
        euler_errors[:, j] = infodict['fvec']
        bssmat[:, j] = solutions[:p.S]
        nssmat[:, j] = solutions[p.S:]

    L = aggr.get_L(nssmat, p, 'SS')
    B = aggr.get_B(bssmat, p, 'SS', False)
    K_demand_open = firm.get_K(L, p.firm_r[-1], p, 'SS')
    D_f = p.zeta_D[-1] * D
    D_d = D - D_f
    if not p.small_open:
        K_d = B - D_d
        K_f = p.zeta_K[-1] * (K_demand_open - B + D_d)
        K = K_f + K_d
    else:
        # can remove this else statement by making small open the case
        # where zeta_K = 1
        K_d = B - D_d
        K_f = K_demand_open - B + D_d
        K = K_f + K_d
    new_Y = firm.get_Y(K, L, p, 'SS')
    if p.budget_balance:
        Y = new_Y
    if not p.small_open:
        new_r = firm.get_r(Y, K, p, 'SS')
    else:
        new_r = p.firm_r[-1]
    new_w = firm.get_w_from_r(new_r, p, 'SS')

    b_s = np.array(list(np.zeros(p.J).reshape(1, p.J)) +
                   list(bssmat[:-1, :]))
    new_r_gov = fiscal.get_r_gov(new_r, p)
    new_r_hh = aggr.get_r_hh(new_r, new_r_gov, K, D)
    average_income_model = ((new_r_hh * b_s + new_w * p.e * nssmat) *
                            p.omega_SS.reshape(p.S, 1) *
                            p.lambdas.reshape(1, p.J)).sum()
    if p.baseline:
        new_factor = p.mean_income_data / average_income_model
    else:
        new_factor = factor
    new_BQ = aggr.get_BQ(new_r_hh, bssmat, None, p, 'SS', False)
    new_bq = household.get_bq(new_BQ, None, p, 'SS')
    tr = household.get_tr(TR, None, p, 'SS')
    theta = tax.replacement_rate_vals(nssmat, new_w, new_factor, None, p)

    if p.budget_balance:
        etr_params_3D = np.tile(np.reshape(
            p.etr_params[-1, :, :], (p.S, 1, p.etr_params.shape[2])),
                                (1, p.J, 1))
        taxss = tax.total_taxes(new_r_hh, new_w, b_s, nssmat, new_bq,
                                factor, tr, theta, None, None, False,
                                'SS', p.e, etr_params_3D, p)
        cssmat = household.get_cons(new_r_hh, new_w, b_s, bssmat,
                                    nssmat, new_bq, taxss,
                                    p.e, p.tau_c[-1, :, :], p)
        new_TR, _, _, _, _, _, _ = aggr.revenue(
            new_r_hh, new_w, b_s, nssmat, new_bq, cssmat, new_Y, L, K,
            factor, theta, etr_params_3D, p, 'SS')
    elif p.baseline_spending:
        new_TR = TR
    else:
        new_TR = p.alpha_T[-1] * new_Y

    return euler_errors, bssmat, nssmat, new_r, new_r_gov, new_r_hh, \
        new_w, new_TR, new_Y, new_factor, new_BQ, average_income_model
Exemple #13
0
def inner_loop(outer_loop_vars, p, client):
    '''
    This function solves for the inner loop of
    the SS.  That is, given the guesses of the
    outer loop variables (r, w, Y, factor)
    this function solves the households'
    problems in the SS.

    Inputs:
        r          = [T,] vector, interest rate
        w          = [T,] vector, wage rate
        b          = [T,S,J] array, wealth holdings
        n          = [T,S,J] array, labor supply
        BQ         = [T,J] vector,  bequest amounts
        factor     = scalar, model income scaling factor
        Y        = [T,] vector, lump sum transfer amount(s)


    Functions called:
        euler_equation_solver()
        aggr.get_K()
        aggr.get_L()
        firm.get_Y()
        firm.get_r()
        firm.get_w()
        aggr.get_BQ()
        tax.replacement_rate_vals()
        aggr.revenue()

    Objects in function:


    Returns: euler_errors, bssmat, nssmat, new_r, new_w
             new_T_H, new_factor, new_BQ

    '''
    # unpack variables to pass to function
    if p.budget_balance:
        bssmat, nssmat, r, BQ, T_H, factor = outer_loop_vars
    else:
        bssmat, nssmat, r, BQ, Y, T_H, factor = outer_loop_vars

    euler_errors = np.zeros((2 * p.S, p.J))

    w = firm.get_w_from_r(r, p, 'SS')
    r_gov = fiscal.get_r_gov(r, p)
    if p.budget_balance:
        r_hh = r
        D = 0
    else:
        D = p.debt_ratio_ss * Y
        K = firm.get_K_from_Y(Y, r, p, 'SS')
        r_hh = aggr.get_r_hh(r, r_gov, K, D)
    if p.small_open:
        r_hh = p.hh_r[-1]
    bq = household.get_bq(BQ, None, p, 'SS')

    lazy_values = []
    for j in range(p.J):
        guesses = np.append(bssmat[:, j], nssmat[:, j])
        euler_params = (r_hh, w, bq[:, j], T_H, factor, j, p)
        lazy_values.append(delayed(opt.fsolve)(euler_equation_solver,
                                               guesses * .9,
                                               args=euler_params,
                                               xtol=MINIMIZER_TOL,
                                               full_output=True))
    results = compute(*lazy_values, scheduler=dask.multiprocessing.get,
                      num_workers=p.num_workers)

    # for j, result in results.items():
    for j, result in enumerate(results):
        [solutions, infodict, ier, message] = result
        euler_errors[:, j] = infodict['fvec']
        bssmat[:, j] = solutions[:p.S]
        nssmat[:, j] = solutions[p.S:]

    L = aggr.get_L(nssmat, p, 'SS')
    if not p.small_open:
        B = aggr.get_K(bssmat, p, 'SS', False)
        if p.budget_balance:
            K = B
        else:
            K = B - D
    else:
        K = firm.get_K(L, r, p, 'SS')
    new_Y = firm.get_Y(K, L, p, 'SS')
    if p.budget_balance:
        Y = new_Y
    if not p.small_open:
        new_r = firm.get_r(Y, K, p, 'SS')
    else:
        new_r = p.firm_r[-1]
    new_w = firm.get_w_from_r(new_r, p, 'SS')
    print('inner factor prices: ', new_r, new_w)

    b_s = np.array(list(np.zeros(p.J).reshape(1, p.J)) +
                   list(bssmat[:-1, :]))
    new_r_gov = fiscal.get_r_gov(new_r, p)
    if p.small_open:
        new_r_hh = p.hh_r[-1]
    else:
        new_r_hh = aggr.get_r_hh(new_r, new_r_gov, K, D)
    average_income_model = ((new_r_hh * b_s + new_w * p.e * nssmat) *
                            p.omega_SS.reshape(p.S, 1) *
                            p.lambdas.reshape(1, p.J)).sum()
    if p.baseline:
        new_factor = p.mean_income_data / average_income_model
    else:
        new_factor = factor
    new_BQ = aggr.get_BQ(new_r_hh, bssmat, None, p, 'SS', False)
    new_bq = household.get_bq(new_BQ, None, p, 'SS')
    theta = tax.replacement_rate_vals(nssmat, new_w, new_factor, None, p)

    if p.budget_balance:
        etr_params_3D = np.tile(np.reshape(
            p.etr_params[-1, :, :], (p.S, 1, p.etr_params.shape[2])),
                                (1, p.J, 1))
        taxss = tax.total_taxes(new_r_hh, new_w, b_s, nssmat, new_bq,
                                factor, T_H, theta, None, None, False,
                                'SS', p.e, etr_params_3D, p)
        cssmat = household.get_cons(new_r_hh, new_w, b_s, bssmat,
                                    nssmat, new_bq, taxss,
                                    p.e, p.tau_c[-1, :, :], p)
        new_T_H, _, _, _, _, _, _ = aggr.revenue(
            new_r_hh, new_w, b_s, nssmat, new_bq, cssmat, new_Y, L, K,
            factor, theta, etr_params_3D, p, 'SS')
    elif p.baseline_spending:
        new_T_H = T_H
    else:
        new_T_H = p.alpha_T[-1] * new_Y

    return euler_errors, bssmat, nssmat, new_r, new_r_gov, new_r_hh, \
        new_w, new_T_H, new_Y, new_factor, new_BQ, average_income_model
Exemple #14
0
def inner_loop(outer_loop_vars, p, client):
    '''
    This function solves for the inner loop of the SS.  That is, given
    the guesses of the outer loop variables (r, w, TR, factor) this
    function solves the households' problems in the SS.

    Args:
        outer_loop_vars (tuple): tuple of outer loop variables,
            (bssmat, nssmat, r, BQ, TR, factor) or
            (bssmat, nssmat, r, BQ, Y, TR, factor)
        bssmat (Numpy array): initial guess at savings, size = SxJ
        nssmat (Numpy array): initial guess at labor supply, size = SxJ
        BQ (array_like): aggregate bequest amount(s)
        Y (scalar): real GDP
        TR (scalar): lump sum transfer amount
        factor (scalar): scaling factor converting model units to dollars
        w (scalar): real wage rate
        p (OG-USA Specifications object): model parameters
        client (Dask client object): client

    Returns:
        (tuple): results from household solution:

            * euler_errors (Numpy array): errors terms from FOCs,
                size = 2SxJ
            * bssmat (Numpy array): savings, size = SxJ
            * nssmat (Numpy array): labor supply, size = SxJ
            * new_r (scalar): real interest rate on firm capital
            * new_r_gov (scalar): real interest rate on government debt
            * new_r_hh (scalar): real interest rate on household
                portfolio
            * new_w (scalar): real wage rate
            * new_TR (scalar): lump sum transfer amount
            * new_Y (scalar): real GDP
            * new_factor (scalar): scaling factor converting model
                units to dollars
            * new_BQ (array_like): aggregate bequest amount(s)
            * average_income_model (scalar): average income in model
                units

    '''
    # unpack variables to pass to function
    if p.budget_balance:
        bssmat, nssmat, r, BQ, TR, factor = outer_loop_vars
        r_hh = r
        Y = 1.0  # placeholder
        K = 1.0  # placeholder
    else:
        bssmat, nssmat, r, BQ, Y, TR, factor = outer_loop_vars
        K = firm.get_K_from_Y(Y, r, p, 'SS')
    # initialize array for euler errors
    euler_errors = np.zeros((2 * p.S, p.J))

    w = firm.get_w_from_r(r, p, 'SS')
    r_gov = fiscal.get_r_gov(r, p)
    D, D_d, D_f, new_borrowing, debt_service, new_borrowing_f =\
        fiscal.get_D_ss(r_gov, Y, p)
    r_hh = aggr.get_r_hh(r, r_gov, K, D)
    bq = household.get_bq(BQ, None, p, 'SS')
    tr = household.get_tr(TR, None, p, 'SS')

    lazy_values = []
    for j in range(p.J):
        guesses = np.append(bssmat[:, j], nssmat[:, j])
        euler_params = (r_hh, w, bq[:, j], tr[:, j], factor, j, p)
        lazy_values.append(delayed(opt.fsolve)(euler_equation_solver,
                                               guesses * .9,
                                               args=euler_params,
                                               xtol=MINIMIZER_TOL,
                                               full_output=True))
    if client:
        futures = client.compute(lazy_values, num_workers=p.num_workers)
        results = client.gather(futures)
    else:
        results = results = compute(
            *lazy_values, scheduler=dask.multiprocessing.get,
            num_workers=p.num_workers)

    # for j, result in results.items():
    for j, result in enumerate(results):
        [solutions, infodict, ier, message] = result
        euler_errors[:, j] = infodict['fvec']
        bssmat[:, j] = solutions[:p.S]
        nssmat[:, j] = solutions[p.S:]

    L = aggr.get_L(nssmat, p, 'SS')
    B = aggr.get_B(bssmat, p, 'SS', False)
    K_demand_open = firm.get_K(L, p.world_int_rate[-1], p, 'SS')
    K, K_d, K_f = aggr.get_K_splits(B, K_demand_open, D_d, p.zeta_K[-1])
    Y = firm.get_Y(K, L, p, 'SS')
    if p.zeta_K[-1] == 1.0:
        new_r = p.world_int_rate[-1]
    else:
        new_r = firm.get_r(Y, K, p, 'SS')
    new_w = firm.get_w_from_r(new_r, p, 'SS')

    b_s = np.array(list(np.zeros(p.J).reshape(1, p.J)) +
                   list(bssmat[:-1, :]))
    new_r_gov = fiscal.get_r_gov(new_r, p)
    new_r_hh = aggr.get_r_hh(new_r, new_r_gov, K, D)
    average_income_model = ((new_r_hh * b_s + new_w * p.e * nssmat) *
                            p.omega_SS.reshape(p.S, 1) *
                            p.lambdas.reshape(1, p.J)).sum()
    if p.baseline:
        new_factor = p.mean_income_data / average_income_model
    else:
        new_factor = factor
    new_BQ = aggr.get_BQ(new_r_hh, bssmat, None, p, 'SS', False)
    new_bq = household.get_bq(new_BQ, None, p, 'SS')
    tr = household.get_tr(TR, None, p, 'SS')
    theta = tax.replacement_rate_vals(nssmat, new_w, new_factor, None, p)
    etr_params_3D = np.tile(
        np.reshape(p.etr_params[-1, :, :],
                   (p.S, 1, p.etr_params.shape[2])), (1, p.J, 1))
    taxss = tax.net_taxes(
        new_r_hh, new_w, b_s, nssmat, new_bq, factor, tr, theta, None,
        None, False, 'SS', p.e, etr_params_3D, p)
    cssmat = household.get_cons(
        new_r_hh, new_w, b_s, bssmat, nssmat, new_bq, taxss, p.e,
        p.tau_c[-1, :, :], p)
    total_tax_revenue, _, agg_pension_outlays, _, _, _, _, _, _ =\
        aggr.revenue(new_r_hh, new_w, b_s, nssmat, new_bq, cssmat, Y, L,
                     K, factor, theta, etr_params_3D, p, 'SS')
    G = fiscal.get_G_ss(Y, total_tax_revenue, agg_pension_outlays, TR,
                        new_borrowing, debt_service, p)
    new_TR = fiscal.get_TR(Y, TR, G, total_tax_revenue,
                           agg_pension_outlays, p, 'SS')

    return euler_errors, bssmat, nssmat, new_r, new_r_gov, new_r_hh, \
        new_w, new_TR, Y, new_factor, new_BQ, average_income_model