def test_logpdf_missing_data(): # Setup model. m = 3 noise = 1e-2 latent_noises = 2e-2 * B.ones(m) kernels = [0.5 * EQ().stretch(0.75) for _ in range(m)] x = B.linspace(0, 10, 20) # Concatenate two orthogonal matrices, to make the missing data # approximation exact. u1 = B.svd(B.randn(m, m))[0] u2 = B.svd(B.randn(m, m))[0] u = Dense(B.concat(u1, u2, axis=0) / B.sqrt(2)) s_sqrt = Diagonal(B.rand(m)) # Construct a reference model. oilmm_pp = ILMMPP(kernels, u @ s_sqrt, noise, latent_noises) # Sample to generate test data. y = oilmm_pp.sample(x, latent=False) # Throw away data, but retain orthogonality. y[5:10, 3:] = np.nan y[10:, :3] = np.nan # Construct OILMM to test. oilmm = OILMM(kernels, u, s_sqrt, noise, latent_noises) # Check that evidence is still exact. approx(oilmm_pp.logpdf(x, y), oilmm.logpdf(x, y), atol=1e-7)
def test_compare_ilmm(): # Setup models. kernels = [EQ(), 2 * EQ().stretch(1.5)] noise_obs = 0.1 noises_latent = np.array([0.1, 0.2]) u, s_sqrt = B.svd(B.randn(3, 2))[:2] u = Dense(u) s_sqrt = Diagonal(s_sqrt) # Construct models. ilmm = ILMMPP(kernels, u @ s_sqrt, noise_obs, noises_latent) oilmm = OILMM(kernels, u, s_sqrt, noise_obs, noises_latent) # Construct data. x = B.linspace(0, 3, 5) y = ilmm.sample(x, latent=False) x2 = B.linspace(4, 7, 5) y2 = ilmm.sample(x2, latent=False) # Check LML before conditioning. approx(ilmm.logpdf(x, y), oilmm.logpdf(x, y)) approx(ilmm.logpdf(x2, y2), oilmm.logpdf(x2, y2)) ilmm = ilmm.condition(x, y) oilmm = oilmm.condition(x, y) # Check LML after conditioning. approx(ilmm.logpdf(x, y), oilmm.logpdf(x, y)) approx(ilmm.logpdf(x2, y2), oilmm.logpdf(x2, y2)) # Predict. means_pp, lowers_pp, uppers_pp = ilmm.predict(x2) means, lowers, uppers = oilmm.predict(x2) # Check predictions. approx(means_pp, means) approx(lowers_pp, lowers) approx(uppers_pp, uppers)