def __init__(self, ref_file_path): old_gs = old_read_gs(ref_file_path) gs = read_gs(ref_file_path) old_filelist = old_gs.keys() filelist = gs.keys() list_check_equality("gold_standard", old_filelist, filelist) for filename in filelist: dict_check_equality(filename, old_gs, gs)
relscore = re.split("_", relscore_type) k1 = 1.2 b = 0.75 if len(relscore) > 4: k1 = relscore[3] b = relscore[4] ft1 = RelscoreFunctionalTest( text_dict, data_set_name, relscore[0], int(relscore[1]), int(relscore[2]), float(k1), float(b) ) # check equality of two methods of getting keyphrase_candidate for relscore_type in settings["relscore"]: for winsize in settings["winsize"]: print "relscore_type : %s, winsize : %s" % (relscore_type, winsize) old_eval_score = dict() refactor_eval_score = dict() old_gs = old_read_gs("/Users/KimKR/Desktop/NEXT_LAB/keyword/gold_standard/%s.ref" % (data_set_name)) refactor_gs = read_gs("/Users/KimKR/Desktop/NEXT_LAB/keyword/gold_standard/%s.ref" % (data_set_name)) for file_name in text_dict.keys(): sentences = text_dict[file_name] old_relscore = read_relscore( ("/Users/KimKR/Desktop/NEXT_LAB/keyword/rel_score/%s/%s" % (settings["dataset"], relscore_type)), file_name, ) refact_relscore = read_relscore("/Users/KimKR/Desktop/NEXT_LAB/keyword/relScore", file_name) # check equality of keyphrase_candidates ft = GraphFunctionalTest(file_name, sentences, old_relscore, refact_relscore, int(winsize)) # old_gs[file_name] = old_check_gold_standard(sentences, old_gs[file_name]) # refactor_gs[file_name] = check_gold_standard(sentences, refactor_gs[file_name]) old_eval_score[file_name] = evaluate(ft.kokako_graph.score_candidates(), old_gs[file_name]) refactor_eval_score[file_name] = evaluate( ft.refactored_graph.score_candidates(1, ft.lamb), refactor_gs[file_name]