Exemple #1
0
    def __init__(self,sonia_model=None,include_genes=True,processes=None,custom_olga_model=None):

        if type(sonia_model)==str or sonia_model is None:
            print('ERROR: you need to pass a Sonia object')
            return

        self.sonia_model=sonia_model
        self.include_genes=include_genes
        if processes is None: self.processes = mp.cpu_count()
        else: self.processes = processes

        # define olga model
        if custom_olga_model is not None:
            self.pgen_model = custom_olga_model
        else:
            main_folder=os.path.join(os.path.dirname(__file__), 'default_models', self.sonia_model.chain_type)

            params_file_name = os.path.join(main_folder,'model_params.txt')
            marginals_file_name = os.path.join(main_folder,'model_marginals.txt')
            V_anchor_pos_file = os.path.join(main_folder,'V_gene_CDR3_anchors.csv')
            J_anchor_pos_file = os.path.join(main_folder,'J_gene_CDR3_anchors.csv')

            if self.sonia_model.vj:
                genomic_data = olga_load_model.GenomicDataVJ()
                genomic_data.load_igor_genomic_data(params_file_name, V_anchor_pos_file, J_anchor_pos_file)
                generative_model = olga_load_model.GenerativeModelVJ()
                generative_model.load_and_process_igor_model(marginals_file_name)
                self.pgen_model = pgen.GenerationProbabilityVJ(generative_model, genomic_data)
            else:
                genomic_data = olga_load_model.GenomicDataVDJ()
                genomic_data.load_igor_genomic_data(params_file_name, V_anchor_pos_file, J_anchor_pos_file)
                generative_model = olga_load_model.GenerativeModelVDJ()
                generative_model.load_and_process_igor_model(marginals_file_name)
                self.pgen_model = pgen.GenerationProbabilityVDJ(generative_model, genomic_data)
Exemple #2
0
    def __init__(self,
                 sonia_model=None,
                 include_genes=True,
                 processes=None,
                 custom_olga_model=None):

        if type(sonia_model) == str or sonia_model is None:
            print('ERROR: you need to pass a Sonia object')
            return

        self.sonia_model = sonia_model
        self.include_genes = include_genes

        # only count usable cpus
        # (mp.cpu_count() returns total number of cpus even if not all are available e.g. when running on cluster)
        if processes is None: self.processes = len(os.sched_getaffinity(0))
        else: self.processes = processes

        # define olga model
        if custom_olga_model is not None:
            self.pgen_model = custom_olga_model
        else:
            try:
                if self.sonia_model.custom_pgen_model is None:
                    main_folder = os.path.join(os.path.dirname(__file__),
                                               'default_models',
                                               self.sonia_model.chain_type)
                else:
                    main_folder = self.sonia_model.custom_pgen_model
            except:
                main_folder = os.path.join(os.path.dirname(__file__),
                                           'default_models',
                                           self.sonia_model.chain_type)

            params_file_name = os.path.join(main_folder, 'model_params.txt')
            marginals_file_name = os.path.join(main_folder,
                                               'model_marginals.txt')
            V_anchor_pos_file = os.path.join(main_folder,
                                             'V_gene_CDR3_anchors.csv')
            J_anchor_pos_file = os.path.join(main_folder,
                                             'J_gene_CDR3_anchors.csv')

            if self.sonia_model.vj:
                self.genomic_data = olga_load_model.GenomicDataVJ()
                self.genomic_data.load_igor_genomic_data(
                    params_file_name, V_anchor_pos_file, J_anchor_pos_file)
                self.generative_model = olga_load_model.GenerativeModelVJ()
                self.generative_model.load_and_process_igor_model(
                    marginals_file_name)
                self.pgen_model = pgen.GenerationProbabilityVJ(
                    self.generative_model, self.genomic_data)
            else:
                self.genomic_data = olga_load_model.GenomicDataVDJ()
                self.genomic_data.load_igor_genomic_data(
                    params_file_name, V_anchor_pos_file, J_anchor_pos_file)
                self.generative_model = olga_load_model.GenerativeModelVDJ()
                self.generative_model.load_and_process_igor_model(
                    marginals_file_name)
                self.pgen_model = pgen.GenerationProbabilityVDJ(
                    self.generative_model, self.genomic_data)
Exemple #3
0
def compute_pgen(index, seq):
    index_ = int(index)
    main_folder = os.path.join(local_directory, 'default_models',
                               options_of[index_])
    params_file_name = os.path.join(main_folder, 'model_params.txt')
    marginals_file_name = os.path.join(main_folder, 'model_marginals.txt')
    V_anchor_pos_file = os.path.join(main_folder, 'V_gene_CDR3_anchors.csv')
    J_anchor_pos_file = os.path.join(main_folder, 'J_gene_CDR3_anchors.csv')

    if options_of[index] in vj_chains:
        genomic_data = olga_load_model.GenomicDataVJ()
        genomic_data.load_igor_genomic_data(params_file_name,
                                            V_anchor_pos_file,
                                            J_anchor_pos_file)
        generative_model = olga_load_model.GenerativeModelVJ()
        generative_model.load_and_process_igor_model(marginals_file_name)
        pgen_model = pgen.GenerationProbabilityVJ(generative_model,
                                                  genomic_data)
    else:
        genomic_data = olga_load_model.GenomicDataVDJ()
        genomic_data.load_igor_genomic_data(params_file_name,
                                            V_anchor_pos_file,
                                            J_anchor_pos_file)
        generative_model = olga_load_model.GenerativeModelVDJ()
        generative_model.load_and_process_igor_model(marginals_file_name)
        pgen_model = pgen.GenerationProbabilityVDJ(generative_model,
                                                   genomic_data)

    return pgen_model.compute_aa_CDR3_pgen(seq[0], seq[1],
                                           seq[2]) / norms[index_][0]
Exemple #4
0
def main():
    """ Evaluate sequences."""
    parser = OptionParser(conflict_handler="resolve")
    
    #specify model
    parser.add_option('--humanTRA', '--human_T_alpha', action='store_true', dest='humanTRA', default=False, help='use default human TRA model (T cell alpha chain)')
    parser.add_option('--humanTRB', '--human_T_beta', action='store_true', dest='humanTRB', default=False, help='use default human TRB model (T cell beta chain)')
    parser.add_option('--mouseTRB', '--mouse_T_beta', action='store_true', dest='mouseTRB', default=False, help='use default mouse TRB model (T cell beta chain)')
    parser.add_option('--humanIGH', '--human_B_heavy', action='store_true', dest='humanIGH', default=False, help='use default human IGH model (B cell heavy chain)')
    parser.add_option('--humanIGK', '--human_B_kappa', action='store_true', dest='humanIGK', default=False, help='use default human IGK model (B cell light kappa chain)')
    parser.add_option('--humanIGL', '--human_B_lambda', action='store_true', dest='humanIGL', default=False, help='use default human IGL model (B cell light lambda chain)')
    parser.add_option('--mouseTRA', '--mouse_T_alpha', action='store_true', dest='mouseTRA', default=False, help='use default mouse TRA model (T cell alpha chain)')

    parser.add_option('--set_custom_model_VDJ', dest='vdj_model_folder', metavar='PATH/TO/FOLDER/', help='specify PATH/TO/FOLDER/ for a custom VDJ generative model')
    parser.add_option('--set_custom_model_VJ', dest='vj_model_folder', metavar='PATH/TO/FOLDER/', help='specify PATH/TO/FOLDER/ for a custom VJ generative model')
    parser.add_option('--sonia_model', type='string', default = 'leftright', dest='model_type' ,help=' specify model type: leftright or lengthpos, default is leftright')
    parser.add_option('--ppost', '--Ppost', action='store_true', dest='ppost', default=False, help='compute Ppost, also computes pgen and Q')
    parser.add_option('--pgen', '--Pgen', action='store_true', dest='pgen', default=False, help='compute pgen')
    parser.add_option('--Q', '--selection_factor', action='store_true', dest='Q', default=False, help='compute Q')
    parser.add_option('--recompute_productive_norm', '--compute_norm', action='store_true', dest='recompute_productive_norm', default=False, help='recompute productive normalization')
    parser.add_option('--skip_off','--skip_empty_off', action='store_true', dest = 'skip_empty', default=True, help='stop skipping empty or blank sequences/lines (if for example you want to keep line index fidelity between the infile and outfile).')

    parser.add_option('-s','--chunk_size', type='int',metavar='N', dest='chunck_size', default = mp.cpu_count()*int(5e2), help='Number of sequences to evaluate at each iteration')

    #vj genes
    parser.add_option('--v_in', '--v_mask_index', type='int', metavar='INDEX', dest='V_mask_index', default=None, help='specifies V_masks are found in column INDEX in the input file. Default is None (do not condition on J usage).')
    parser.add_option('--j_in', '--j_mask_index', type='int', metavar='INDEX', dest='J_mask_index', default=None, help='specifies J_masks are found in column INDEX in the input file. Default is None (do not condition on J usage).')
    parser.add_option('--v_mask', type='string', dest='V_mask', help='specify V usage to condition as arguments.')
    parser.add_option('--j_mask', type='string', dest='J_mask', help='specify J usage to condition as arguments.')

    # input output
    parser.add_option('-i', '--infile', dest = 'infile_name',metavar='PATH/TO/FILE', help='read in CDR3 sequences (and optionally V/J masks) from PATH/TO/FILE')
    parser.add_option('-o', '--outfile', dest = 'outfile_name', metavar='PATH/TO/FILE', help='write CDR3 sequences and pgens to PATH/TO/FILE')
    parser.add_option('--seq_in', '--seq_index', type='int', metavar='INDEX', dest='seq_in_index', default = 0, help='specifies sequences to be read in are in column INDEX. Default is index 0 (the first column).')
    parser.add_option('-m', '--max_number_of_seqs', type='int',metavar='N', dest='max_number_of_seqs', help='evaluate for at most N sequences.')
    parser.add_option('--lines_to_skip', type='int',metavar='N', dest='lines_to_skip', default = 0, help='skip the first N lines of the file. Default is 0.')

    
    #delimiters
    parser.add_option('-d', '--delimiter', type='choice', dest='delimiter',  choices=['tab', 'space', ',', ';', ':'], help="declare infile delimiter. Default is tab for .tsv input files, comma for .csv files, and any whitespace for all others. Choices: 'tab', 'space', ',', ';', ':'")
    parser.add_option('--raw_delimiter', type='str', dest='delimiter', help="declare infile delimiter as a raw string.")
    parser.add_option('--delimiter_out', type='choice', dest='delimiter_out',  choices=['tab', 'space', ',', ';', ':'], help="declare outfile delimiter. Default is tab for .tsv output files, comma for .csv files, and the infile delimiter for all others. Choices: 'tab', 'space', ',', ';', ':'")
    parser.add_option('--raw_delimiter_out', type='str', dest='delimiter_out', help="declare for the delimiter outfile as a raw string.")
    parser.add_option('--gene_mask_delimiter', type='choice', dest='gene_mask_delimiter',  choices=['tab', 'space', ',', ';', ':'], help="declare gene mask delimiter. Default comma unless infile delimiter is comma, then default is a semicolon. Choices: 'tab', 'space', ',', ';', ':'")
    parser.add_option('--raw_gene_mask_delimiter', type='str', dest='gene_mask_delimiter', help="declare delimiter of gene masks as a raw string.")
    parser.add_option('--comment_delimiter', type='str', dest='comment_delimiter', help="character or string to indicate comment or header lines to skip.")

    (options, args) = parser.parse_args()

    #Check that the model is specified properly
    main_folder = os.path.dirname(__file__)

    default_models = {}
    default_models['humanTRA'] = [os.path.join(main_folder, 'default_models', 'human_T_alpha'),  'VJ']
    default_models['humanTRB'] = [os.path.join(main_folder, 'default_models', 'human_T_beta'), 'VDJ']
    default_models['mouseTRB'] = [os.path.join(main_folder, 'default_models', 'mouse_T_beta'), 'VDJ']
    default_models['humanIGH'] = [os.path.join(main_folder, 'default_models', 'human_B_heavy'), 'VDJ']
    default_models['humanIGK'] = [os.path.join(main_folder, 'default_models', 'human_B_kappa'), 'VJ']
    default_models['humanIGL'] = [os.path.join(main_folder, 'default_models', 'human_B_lambda'),  'VJ']
    default_models['mouseTRA'] = [os.path.join(main_folder, 'default_models', 'mouse_T_alpha'), 'VJ']

    num_models_specified = sum([1 for x in list(default_models.keys()) + ['vj_model_folder', 'vdj_model_folder'] if getattr(options, x)])
    recompute_productive_norm=False
    if num_models_specified == 1: #exactly one model specified
        try:
            d_model = [x for x in default_models.keys() if getattr(options, x)][0]
            model_folder = default_models[d_model][0]
            recomb_type = default_models[d_model][1]
        except IndexError:
            if options.vdj_model_folder: #custom VDJ model specified
                recompute_productive_norm=True
                model_folder = options.vdj_model_folder
                recomb_type = 'VDJ'
            elif options.vj_model_folder: #custom VJ model specified
                recompute_productive_norm=True
                model_folder = options.vj_model_folder
                recomb_type = 'VJ'
    elif num_models_specified == 0:
        print('Need to indicate generative model.')
        print('Exiting...')
        return -1
    elif num_models_specified > 1:
        print('Only specify one model')
        print('Exiting...')
        return -1

    #Generative model specification -- note we'll probably change this syntax to
    #allow for arbitrary model file specification
    params_file_name = os.path.join(model_folder,'model_params.txt')
    marginals_file_name = os.path.join(model_folder,'model_marginals.txt')
    V_anchor_pos_file = os.path.join(model_folder,'V_gene_CDR3_anchors.csv')
    J_anchor_pos_file = os.path.join(model_folder,'J_gene_CDR3_anchors.csv')

    for x in [params_file_name, marginals_file_name, V_anchor_pos_file, J_anchor_pos_file]:
            if not os.path.isfile(x):
                print('Cannot find: ' + x)
                print('Please check the files (and naming conventions) in the model folder ' + model_folder)
                print('Exiting...')
                return -1

    #Load up model based on recomb_type
    #VDJ recomb case --- used for TCRB and IGH
    if recomb_type == 'VDJ':
        genomic_data = olga_load_model.GenomicDataVDJ()
        genomic_data.load_igor_genomic_data(params_file_name, V_anchor_pos_file, J_anchor_pos_file)
        generative_model = olga_load_model.GenerativeModelVDJ()
        generative_model.load_and_process_igor_model(marginals_file_name)
        pgen_model = generation_probability.GenerationProbabilityVDJ(generative_model, genomic_data)
    #VJ recomb case --- used for TCRA and light chain
    elif recomb_type == 'VJ':
        genomic_data = olga_load_model.GenomicDataVJ()
        genomic_data.load_igor_genomic_data(params_file_name, V_anchor_pos_file, J_anchor_pos_file)
        generative_model = olga_load_model.GenerativeModelVJ()
        generative_model.load_and_process_igor_model(marginals_file_name)
        pgen_model = generation_probability.GenerationProbabilityVJ(generative_model, genomic_data)

    if options.infile_name is not None:
        infile_name = options.infile_name

        if not os.path.isfile(infile_name):
            print('Cannot find input file: ' + infile_name)
            print('Exiting...')
            return -1

    if options.outfile_name is not None:
        outfile_name = options.outfile_name
#        if os.path.isfile(outfile_name):
#            if not input(outfile_name + ' already exists. Overwrite (y/n)? ').strip().lower() in ['y', 'yes']:
#                print('Exiting...')
#                return -1

    #Parse delimiter
    delimiter = options.delimiter
    if delimiter is None: #Default case
        if options.infile_name is None:
            delimiter = '\t'
        elif infile_name.endswith('.tsv'): #parse TAB separated value file
            delimiter = '\t'
        elif infile_name.endswith('.csv'): #parse COMMA separated value file
            delimiter = ','
    else:
        try:
            delimiter = {'tab': '\t', 'space': ' ', ',': ',', ';': ';', ':': ':'}[delimiter]
        except KeyError:
            pass #Other string passed as the delimiter.

    #Parse delimiter_out
    delimiter_out = options.delimiter_out
    if delimiter_out is None: #Default case
        if delimiter is None:
            delimiter_out = '\t'
        else:
            delimiter_out = delimiter
        if options.outfile_name is None:
            pass
        elif outfile_name.endswith('.tsv'): #output TAB separated value file
            delimiter_out = '\t'
        elif outfile_name.endswith('.csv'): #output COMMA separated value file
            delimiter_out = ','
    else:
        try:
            delimiter_out = {'tab': '\t', 'space': ' ', ',': ',', ';': ';', ':': ':'}[delimiter_out]
        except KeyError:
            pass #Other string passed as the delimiter.

    #Parse gene_delimiter
    gene_mask_delimiter = options.gene_mask_delimiter
    if gene_mask_delimiter is None: #Default case
        gene_mask_delimiter = ','
        if delimiter == ',':
            gene_mask_delimiter = ';'
    else:
        try:
            gene_mask_delimiter = {'tab': '\t', 'space': ' ', ',': ',', ';': ';', ':': ':'}[gene_mask_delimiter]
        except KeyError:
            pass #Other string passed as the delimiter.

    #More options
    seq_in_index = options.seq_in_index #where in the line the sequence is after line.split(delimiter)
    lines_to_skip = options.lines_to_skip #one method of skipping header
    comment_delimiter = options.comment_delimiter #another method of skipping header
    max_number_of_seqs = options.max_number_of_seqs
    V_mask_index = options.V_mask_index #Default is not conditioning on V identity
    J_mask_index = options.J_mask_index #Default is not conditioning on J identity
    skip_empty = options.skip_empty

    #print(V_mask_index,J_mask_index,seq_in_index,gene_mask_delimiter,delimiter)
    
    # choose sonia model type
    sonia_model=SoniaLeftposRightpos(feature_file=os.path.join(model_folder,'features.tsv'),log_file=os.path.join(model_folder,'log.txt'),vj=recomb_type == 'VJ',custom_pgen_model=model_folder)
    if options.recompute_productive_norm: 
        print('Recompute productive normalization.')
        sonia_model.norm_productive=pgen_model.compute_regex_CDR3_template_pgen('CX{0,}')

    # load Evaluate model class
    ev=EvaluateModel(sonia_model, custom_olga_model=pgen_model,
                     include_genes=False if ((V_mask_index is None) and (J_mask_index is None)) else True)

    if options.infile_name is None: #No infile specified -- args should be the input seq
        print_warnings = True
        if len(args)>1 : 
            print('ERROR: can process only one sequence at the time. Submit thourgh file instead.')
            return -1
        seq=args[0]

        #Format V and J masks -- uniform for all argument input sequences
 
        try:
            V_mask = options.V_mask.split(',')
            unrecognized_v_genes = [v for v in V_mask if gene_to_num_str(v, 'V') not in pgen_model.V_mask_mapping.keys()]
            V_mask = [v for v in V_mask if gene_to_num_str(v, 'V') in pgen_model.V_mask_mapping.keys()]
            if len(unrecognized_v_genes) > 0:
                print('These V genes/alleles are not recognized: ' + ', '.join(unrecognized_v_genes))
            if len(V_mask) == 0:
                print('No recognized V genes/alleles in the provided V_mask. Continuing without conditioning on V usage.')
                V_mask = None
        except AttributeError:
            V_mask = options.V_mask #Default is None, i.e. not conditioning on V identity

        try:
            J_mask = options.J_mask.split(',')
            unrecognized_j_genes = [j for j in J_mask if gene_to_num_str(j, 'J') not in pgen_model.J_mask_mapping.keys()]
            J_mask = [j for j in J_mask if gene_to_num_str(j, 'J') in pgen_model.J_mask_mapping.keys()]
            if len(unrecognized_j_genes) > 0:
                print('These J genes/alleles are not recognized: ' + ', '.join(unrecognized_j_genes))
            if len(J_mask) == 0:
                print('No recognized J genes/alleles in the provided J_mask. Continuing without conditioning on J usage.')
                J_mask = None
        except AttributeError:
            J_mask = options.J_mask #Default is None, i.e. not conditioning on J identity

        print('')

        if options.ppost:
            if options.V_mask is None: V_mask=['']
            if options.J_mask is None: J_mask=['']

            v,j=V_mask[0],J_mask[0]
            Q,pgen,ppost=ev.evaluate_seqs([[seq,v,j]])
            print('Ppost of ' + seq + ' '+v+ ' '+j+ ': ' + str(ppost[0]))
            print('Pgen of ' + seq + ' '+v+ ' '+j+ ': ' + str(pgen[0]))
            print('Q of ' + seq + ' '+v+ ' '+j+ ': ' + str(Q[0]))
            print('')
        elif options.Q:
            if options.V_mask is None: V_mask=['']
            if options.J_mask is None: J_mask=['']
            v,j=V_mask[0],J_mask[0]
            Q=ev.evaluate_selection_factors([[seq,v,j]])
            print('Q of ' + seq + ' '+v+ ' '+j+ ': ' + str(Q[0]))
        elif options.pgen:
            pgen=pgen_model.compute_aa_CDR3_pgen(seq,V_mask,J_mask)
            if J_mask is None: J_mask= ''
            if V_mask is None: V_mask= ''
            print('Pgen of ' + seq + ' '+','.join(V_mask)+ ' '+','.join(J_mask)+ ': ' + str(pgen))

        else:
            print('Specify and option: --ppost, --pgen or --Q')


    else:
        print('Load file')

        seqs = []
        V_usage_masks = []
        J_usage_masks = []

        infile = open(infile_name, 'r')

        for i, line in enumerate(infile):
            if comment_delimiter is not None: #Default case -- no comments/header delimiter
                if line.startswith(comment_delimiter): #allow comments
                    continue
            if i < lines_to_skip:
                continue

            if delimiter is None: #Default delimiter is any whitespace
                split_line = line.split('\n')[0].split()
            else:
                split_line = line.split('\n')[0].split(delimiter)
            #Find the seq
            try:
                seq = split_line[seq_in_index].strip()
                if len(seq.strip()) == 0:
                    if skip_empty:
                        continue
                    else:
                        seqs.append(seq) #keep the blank seq as a placeholder
                        #seq_types.append('aaseq')
                else:
                    seqs.append(seq)
                    #seq_types.append(determine_seq_type(seq, aa_alphabet))
            except IndexError: #no index match for seq
                if skip_empty and len(line.strip()) == 0:
                    continue
                print('seq_in_index is out of range')
                print('Exiting...')
                infile.close()
                return -1

            #Find and format V_usage_mask
            if V_mask_index is None:
                V_usage_masks.append(['']) #default mask
            else:
                try:
                    V_usage_mask = split_line[V_mask_index].strip().split(gene_mask_delimiter)
                    #check that all V gene/allele names are recognized
                    if all([gene_to_num_str(v, 'V') in pgen_model.V_mask_mapping for v in V_usage_mask]):
                        V_usage_masks.append(V_usage_mask)
                    else:
                        print(str(V_usage_mask) + " is not a usable V_usage_mask composed exclusively of recognized V gene/allele names")
                        print('Unrecognized V gene/allele names: ' + ', '.join([v for v in V_usage_mask if gene_to_num_str(v, 'V') not in pgen_model.V_mask_mapping.keys()]))
                        print('Exiting...')
                        infile.close()
                        return -1
                except IndexError: #no index match for V_mask_index
                    print('V_mask_index is out of range')
                    print('Exiting...')
                    infile.close()
                    return -1

            #Find and format J_usage_mask
            if J_mask_index is None:
                J_usage_masks.append(['']) #default mask
            else:
                try:
                    J_usage_mask = split_line[J_mask_index].strip().split(gene_mask_delimiter)
                    #check that all V gene/allele names are recognized
                    if all([gene_to_num_str(j, 'J') in pgen_model.J_mask_mapping for j in J_usage_mask]):
                        J_usage_masks.append(J_usage_mask)
                    else:
                        print(str(J_usage_mask) + " is not a usable J_usage_mask composed exclusively of recognized J gene/allele names")
                        print('Unrecognized J gene/allele names: ' + ', '.join([j for j in J_usage_mask if gene_to_num_str(j, 'J') not in pgen_model.J_mask_mapping.keys()]))
                        print('Exiting...')
                        infile.close()
                        return -1
                except IndexError: #no index match for J_mask_index
                    print('J_mask_index is out of range')
                    print('Exiting...')
                    infile.close()
                    return -1

            if max_number_of_seqs is not None:
                if len(seqs) >= max_number_of_seqs:
                    break

        # combine sequences.
        zipped=[[seqs[i],V_usage_masks[i][0],J_usage_masks[i][0]] for i in range(len(seqs))]

        print('Evaluate')

        if options.outfile_name is not None: #OUTFILE SPECIFIED
            with open(options.outfile_name,'w') as file:
                if options.ppost:file.write('Q'+delimiter_out+'Pgen'+delimiter_out+'Ppost\n')
                elif options.Q:file.write('Q\n')
                elif options.pgen:file.write('Pgen\n')
                else:
                    print('Specify one option: --ppost, --pgen or --Q')
                    return -1
                for t in tqdm(chunks(zipped,options.chunck_size)):
                    if options.ppost:
                        Q,pgen,ppost=ev.evaluate_seqs(t)
                        for i in range(len(Q)):file.write(str(Q[i])+delimiter_out+str(pgen[i])+delimiter_out+str(ppost[i])+'\n')
                    elif options.Q:
                        Q=ev.evaluate_selection_factors(t)
                        for i in range(len(Q)):file.write(str(Q[i])+'\n')
                    elif options.pgen:
                        pgens=ev.compute_all_pgens(t)
                        for i in range(len(pgens)):file.write(str(pgens[i])+'\n')

        else: #print to stdout
            for t in chunks(zipped,options.chunck_size):
                if options.ppost:
                    Q,pgen,ppost=ev.evaluate_seqs(t)
                    print ('Q, Pgen, Ppost')
                    for i in range(len(Q)):print(Q[i],pgen[i],ppost[i])
                elif options.Q:
                    Q=ev.evaluate_selection_factors(t)
                    print ('Q')
                    print(Q)
                elif options.pgen:
                    pgens=ev.compute_all_pgens(t)
                    print ('Pgen')
                    print(pgens)
                else:
                    print('Specify one option: --ppost, --pgen or --Q')
Exemple #5
0
    def __init__(self, chain_folder, recomb_type):
        """
        Sets up an OlgaModel that can be used multiple times. For instance to
        generate generation probabilities for 10K sequences.

        chain_folder : string
            'human_T_beta', 'human_T_alpha'
        recomb_type : string
            'VDJ' or "VJ"
        """

        self.chain_folder = chain_folder
        self.recomb_type = recomb_type
        self.generative_model = None
        self.genomic_data = None
        self.pgen_model = None
        self.seq_gen_model = None

        self._validate_chain_folder_arg()
        self._validate_recomb_type_arg()
        self._validate_chain_folder_with_recomb_type()

        params_file_name = op.join(path_to_olga_default_models, chain_folder,
                                   'model_params.txt')
        marginals_file_name = op.join(path_to_olga_default_models,
                                      chain_folder, 'model_marginals.txt')
        V_anchor_pos_file = op.join(path_to_olga_default_models, chain_folder,
                                    'V_gene_CDR3_anchors.csv')
        J_anchor_pos_file = op.join(path_to_olga_default_models, chain_folder,
                                    'J_gene_CDR3_anchors.csv')

        #Load up model based on recomb_type
        #VDJ recomb case --- used for TCRB and IGH
        if recomb_type == 'VDJ':
            genomic_data = load_model.GenomicDataVDJ()
            genomic_data.load_igor_genomic_data(params_file_name,
                                                V_anchor_pos_file,
                                                J_anchor_pos_file)
            generative_model = load_model.GenerativeModelVDJ()
            generative_model.load_and_process_igor_model(marginals_file_name)
            pgen_model = generation_probability.GenerationProbabilityVDJ(
                generative_model, genomic_data)
            self.genomic_data = genomic_data
            self.generative_model = generative_model
            self.pgen_model = pgen_model
            self.seq_gen_model = seq_gen.SequenceGenerationVDJ(
                self.generative_model, self.genomic_data)

        #VJ recomb case --- used for TCRA and light chain
        elif recomb_type == 'VJ':
            genomic_data = load_model.GenomicDataVJ()
            genomic_data.load_igor_genomic_data(params_file_name,
                                                V_anchor_pos_file,
                                                J_anchor_pos_file)
            generative_model = load_model.GenerativeModelVJ()
            generative_model.load_and_process_igor_model(marginals_file_name)
            pgen_model = generation_probability.GenerationProbabilityVJ(
                generative_model, genomic_data)
            self.genomic_data = genomic_data
            self.generative_model = generative_model
            self.pgen_model = pgen_model
            self.seq_gen_model = seq_gen.SequenceGenerationVJ(
                self.generative_model, self.genomic_data)
Exemple #6
0
def main():
    """ Evaluate sequences."""
    parser = OptionParser(conflict_handler="resolve")
    
    #specify model
    parser.add_option('--humanTRA', '--human_T_alpha', action='store_true', dest='humanTRA', default=False, help='use default human TRA model (T cell alpha chain)')
    parser.add_option('--humanTRB', '--human_T_beta', action='store_true', dest='humanTRB', default=False, help='use default human TRB model (T cell beta chain)')
    parser.add_option('--mouseTRB', '--mouse_T_beta', action='store_true', dest='mouseTRB', default=False, help='use default mouse TRB model (T cell beta chain)')
    parser.add_option('--humanIGH', '--human_B_heavy', action='store_true', dest='humanIGH', default=False, help='use default human IGH model (B cell heavy chain)')
    parser.add_option('--humanIGK', '--human_B_kappa', action='store_true', dest='humanIGK', default=False, help='use default human IGK model (B cell light kappa chain)')
    parser.add_option('--humanIGL', '--human_B_lambda', action='store_true', dest='humanIGL', default=False, help='use default human IGL model (B cell light lambda chain)')
    parser.add_option('--mouseTRA', '--mouse_T_alpha', action='store_true', dest='mouseTRA', default=False, help='use default mouse TRA model (T cell alpha chain)')

    parser.add_option('--set_custom_model_VDJ', dest='vdj_model_folder', metavar='PATH/TO/FOLDER/', help='specify PATH/TO/FOLDER/ for a custom VDJ generative model')
    parser.add_option('--set_custom_model_VJ', dest='vj_model_folder', metavar='PATH/TO/FOLDER/', help='specify PATH/TO/FOLDER/ for a custom VJ generative model')
    parser.add_option('--sonia_model', type='string', default = 'leftright', dest='model_type' ,help='specify model type: leftright or lengthpos, default is leftright')
    parser.add_option('--epochs', type='int', default = 30, dest='epochs' ,help='number of epochs for inference, default is 30')
    parser.add_option('--batch_size', type='int', default = 5000, dest='batch_size' ,help='size of batch for the stochastic gradient descent')
    parser.add_option('--validation_split', type='float', default = 0.2, dest='validation_split' ,help='fraction of sequences used for validation.')
    parser.add_option('--independent_genes', '--include_indep_genes', action='store_true', dest='independent_genes', default=False, help='Independent gene selection factors q_v*q_j. Deafult is joint q_vj')
    parser.add_option('--min_energy_clip', type='float', default=-5, dest='min_energy_clip',  help='Set numerical lower bound to the values of -logQ, default is -5.')
    parser.add_option('--max_energy_clip', type='float', default=10, dest='max_energy_clip', help='Set numerical upper bound to the values of -logQ, default is 10.')

    #location of seqs
    parser.add_option('--seq_in', '--seq_index', type='int', metavar='INDEX', dest='seq_in_index', default = 0, help='specifies sequences to be read in are in column INDEX. Default is index 0 (the first column).')
    parser.add_option('--v_in', '--v_mask_index', type='int', metavar='INDEX', dest='V_mask_index', default=1, help='specifies V_masks are found in column INDEX in the input file. Default is 1.')
    parser.add_option('--j_in', '--j_mask_index', type='int', metavar='INDEX', dest='J_mask_index', default=2, help='specifies J_masks are found in column INDEX in the input file. Default is 2.')

    # input output
    parser.add_option('-i', '--infile', dest = 'infile_name',metavar='PATH/TO/FILE', help='read in CDR3 sequences (and optionally V/J masks) from PATH/TO/FILE')
    parser.add_option('-o', '--outfile', dest = 'outfile_name', metavar='PATH/TO/FILE', help='write CDR3 sequences and pgens to PATH/TO/FILE')
    parser.add_option('-m', '--max_number_of_seqs', type='int',metavar='N', dest='max_number_of_seqs', help='evaluate for at most N sequences.')
    parser.add_option('-n', '--n_gen_seqs', type='int',metavar='N', dest='n_gen_seqs',default=0, help='sample n sequences from gen distribution.')
    parser.add_option('-g', '--infile_gen', dest = 'infile_gen',metavar='PATH/TO/FILE', help='read generated CDR3 sequences (and optionally V/J masks) from PATH/TO/FILE')
    parser.add_option('--lines_to_skip', type='int',metavar='N', dest='lines_to_skip', default = 0, help='skip the first N lines of the file. Default is 0.')
    parser.add_option('--no_report', '--no_plot_report', action='store_false', dest='plot_report', default=True, help='Do not produce report plots of the inferred model.')
    
    #delimeters
    parser.add_option('-d', '--delimiter', type='choice', dest='delimiter',  choices=['tab', 'space', ',', ';', ':'], help="declare infile delimiter. Default is tab for .tsv input files, comma for .csv files, and any whitespace for all others. Choices: 'tab', 'space', ',', ';', ':'")
    parser.add_option('--raw_delimiter', type='str', dest='delimiter', help="declare infile delimiter as a raw string.")
    parser.add_option('--delimiter_out', type='choice', dest='delimiter_out',  choices=['tab', 'space', ',', ';', ':'], help="declare outfile delimiter. Default is tab for .tsv output files, comma for .csv files, and the infile delimiter for all others. Choices: 'tab', 'space', ',', ';', ':'")
    parser.add_option('--raw_delimiter_out', type='str', dest='delimiter_out', help="declare for the delimiter outfile as a raw string.")
    parser.add_option('--gene_mask_delimiter', type='choice', dest='gene_mask_delimiter',  choices=['tab', 'space', ',', ';', ':'], help="declare gene mask delimiter. Default comma unless infile delimiter is comma, then default is a semicolon. Choices: 'tab', 'space', ',', ';', ':'")
    parser.add_option('--raw_gene_mask_delimiter', type='str', dest='gene_mask_delimiter', help="declare delimiter of gene masks as a raw string.")
    parser.add_option('--comment_delimiter', type='str', dest='comment_delimiter', help="character or string to indicate comment or header lines to skip.")
    parser.add_option('--seed', type='int',metavar='N', dest='seed', default = None, help='set seed for inference')

    (options, args) = parser.parse_args()

    #set seed
    if options.seed is not None: 
        import tensorflow as tf
        np.random.seed(options.seed)
        tf.random.set_seed(options.seed)

    #Check that the model is specified properly
    
    main_folder = os.path.dirname(__file__)
    
    default_models = {}
    default_models['humanTRA'] = [os.path.join(main_folder, 'default_models', 'human_T_alpha'),  'VJ']
    default_models['humanTRB'] = [os.path.join(main_folder, 'default_models', 'human_T_beta'), 'VDJ']
    default_models['mouseTRB'] = [os.path.join(main_folder, 'default_models', 'mouse_T_beta'), 'VDJ']
    default_models['humanIGH'] = [os.path.join(main_folder, 'default_models', 'human_B_heavy'), 'VDJ']
    default_models['humanIGK'] = [os.path.join(main_folder, 'default_models', 'human_B_kappa'), 'VJ']
    default_models['humanIGL'] = [os.path.join(main_folder, 'default_models', 'human_B_lambda'),  'VJ']
    default_models['mouseTRA'] = [os.path.join(main_folder, 'default_models', 'mouse_T_alpha'), 'VJ']

    if options.independent_genes:
        independent_genes=True
        joint_genes=False
    else:
        independent_genes=False
        joint_genes=True

    num_models_specified = sum([1 for x in list(default_models.keys()) + ['vj_model_folder', 'vdj_model_folder'] if getattr(options, x)])
    recompute_productive_norm=False
    if num_models_specified == 1: #exactly one model specified
        try:
            d_model = [x for x in default_models.keys() if getattr(options, x)][0]
            model_folder = default_models[d_model][0]
            recomb_type = default_models[d_model][1]
        except IndexError:
            if options.vdj_model_folder: #custom VDJ model specified
                recompute_productive_norm=True
                model_folder = options.vdj_model_folder
                recomb_type = 'VDJ'
            elif options.vj_model_folder: #custom VJ model specified
                recompute_productive_norm=True
                model_folder = options.vj_model_folder
                recomb_type = 'VJ'
    elif num_models_specified == 0:
        print('Need to indicate generative model.')
        print('Exiting...')
        return -1
    elif num_models_specified > 1:
        print('Only specify one model')
        print('Exiting...')
        return -1
    
    if options.max_energy_clip <= options.min_energy_clip :
        print('The clip for the higher energy must be strictly greater than the clip for the lower energy. ')
        print('Exiting...')
        return -1
    else :
        max_energy_clip = options.max_energy_clip
        min_energy_clip = options.min_energy_clip

    #Generative model specification -- note we'll probably change this syntax to
    #allow for arbitrary model file specification
    params_file_name = os.path.join(model_folder,'model_params.txt')
    marginals_file_name = os.path.join(model_folder,'model_marginals.txt')
    V_anchor_pos_file = os.path.join(model_folder,'V_gene_CDR3_anchors.csv')
    J_anchor_pos_file = os.path.join(model_folder,'J_gene_CDR3_anchors.csv')

    for x in [params_file_name, marginals_file_name, V_anchor_pos_file, J_anchor_pos_file]:
            if not os.path.isfile(x):
                print('Cannot find: ' + x)
                print('Please check the files (and naming conventions) in the model folder ' + model_folder)
                print('Exiting...')
                return -1

    #Load up model based on recomb_type
    #VDJ recomb case --- used for TCRB and IGH
    if recomb_type == 'VDJ':
        genomic_data = olga_load_model.GenomicDataVDJ()
        genomic_data.load_igor_genomic_data(params_file_name, V_anchor_pos_file, J_anchor_pos_file)
        generative_model = olga_load_model.GenerativeModelVDJ()
        generative_model.load_and_process_igor_model(marginals_file_name)
        pgen_model = generation_probability.GenerationProbabilityVDJ(generative_model, genomic_data)
    #VJ recomb case --- used for TCRA and light chain
    elif recomb_type == 'VJ':
        genomic_data = olga_load_model.GenomicDataVJ()
        genomic_data.load_igor_genomic_data(params_file_name, V_anchor_pos_file, J_anchor_pos_file)
        generative_model = olga_load_model.GenerativeModelVJ()
        generative_model.load_and_process_igor_model(marginals_file_name)
        pgen_model = generation_probability.GenerationProbabilityVJ(generative_model, genomic_data)

    if options.infile_name is not None:
        infile_name = options.infile_name

        if not os.path.isfile(infile_name):
            print('Cannot find input file: ' + infile_name)
            print('Exiting...')
            return -1

    if options.outfile_name is not None:
        outfile_name = options.outfile_name
        if os.path.isfile(outfile_name):
            if not input(outfile_name + ' already exists. Overwrite (y/n)? ').strip().lower() in ['y', 'yes']:
                print('Exiting...')
                return -1

    #Parse delimiter
    delimiter = options.delimiter
    if delimiter is None: #Default case
        if options.infile_name is None:
            delimiter = '\t'
        elif infile_name.endswith('.tsv'): #parse TAB separated value file
            delimiter = '\t'
        elif infile_name.endswith('.csv'): #parse COMMA separated value file
            delimiter = ','
    else:
        try:
            delimiter = {'tab': '\t', 'space': ' ', ',': ',', ';': ';', ':': ':'}[delimiter]
        except KeyError:
            pass #Other string passed as the delimiter.

    #Parse delimiter_out
    delimiter_out = options.delimiter_out
    if delimiter_out is None: #Default case
        if delimiter is None:
            delimiter_out = '\t'
        else:
            delimiter_out = delimiter
        if options.outfile_name is None:
            pass
        elif outfile_name.endswith('.tsv'): #output TAB separated value file
            delimiter_out = '\t'
        elif outfile_name.endswith('.csv'): #output COMMA separated value file
            delimiter_out = ','
    else:
        try:
            delimiter_out = {'tab': '\t', 'space': ' ', ',': ',', ';': ';', ':': ':'}[delimiter_out]
        except KeyError:
            pass #Other string passed as the delimiter.

    #Parse gene_delimiter
    gene_mask_delimiter = options.gene_mask_delimiter
    if gene_mask_delimiter is None: #Default case
        gene_mask_delimiter = ','
        if delimiter == ',':
            gene_mask_delimiter = ';'
    else:
        try:
            gene_mask_delimiter = {'tab': '\t', 'space': ' ', ',': ',', ';': ';', ':': ':'}[gene_mask_delimiter]
        except KeyError:
            pass #Other string passed as the delimiter.

    #More options
    seq_in_index = options.seq_in_index #where in the line the sequence is after line.split(delimiter)
    lines_to_skip = options.lines_to_skip #one method of skipping header
    comment_delimiter = options.comment_delimiter #another method of skipping header
    max_number_of_seqs = options.max_number_of_seqs
    V_mask_index = options.V_mask_index #Default is not conditioning on V identity
    J_mask_index = options.J_mask_index #Default is not conditioning on J identity
    skip_empty=True # skip empty lines
    if options.infile_name is None: #No infile specified -- args should be the input seqs
        print('ERROR: specify input file.')
        return -1
    else:
        seqs = []
        V_usage_masks = []
        J_usage_masks = []
        print('Read input file.')
        infile = open(infile_name, 'r')

        for i, line in enumerate(tqdm(infile)):
            if comment_delimiter is not None: #Default case -- no comments/header delimiter
                if line.startswith(comment_delimiter): #allow comments
                    continue
            if i < lines_to_skip:
                continue

            if delimiter is None: #Default delimiter is any whitespace
                split_line = line.split('\n')[0].split()
            else:
                split_line = line.split('\n')[0].split(delimiter)
            #Find the seq
            try:
                seq = split_line[seq_in_index].strip()
                if len(seq.strip()) == 0:
                    if skip_empty:
                        continue
                    else:
                        seqs.append(seq) #keep the blank seq as a placeholder
                        #seq_types.append('aaseq')
                else:
                    seqs.append(seq)
                    #seq_types.append(determine_seq_type(seq, aa_alphabet))
            except IndexError: #no index match for seq
                if skip_empty and len(line.strip()) == 0:
                    continue
                print('seq_in_index is out of range')
                print('Exiting...')
                infile.close()
                return -1

            #Find and format V_usage_mask
            if V_mask_index is None:
                V_usage_masks.append(None) #default mask
            else:
                try:
                    V_usage_mask = split_line[V_mask_index].strip().split(gene_mask_delimiter)
                    #check that all V gene/allele names are recognized
                    if all([gene_to_num_str(v, 'V') in pgen_model.V_mask_mapping for v in V_usage_mask]):
                        V_usage_masks.append(V_usage_mask)
                    else:
                        print(str(V_usage_mask) + " is not a usable V_usage_mask composed exclusively of recognized V gene/allele names")
                        print('Unrecognized V gene/allele names: ' + ', '.join([v for v in V_usage_mask if gene_to_num_str(v, 'V') not in pgen_model.V_mask_mapping.keys()]))
                        print('Continuing but inference might be biased...')
                        V_usage_masks.append(V_usage_mask)
                        #infile.close()
                        #return -1
                except IndexError: #no index match for V_mask_index
                    print('V_mask_index is out of range, check the delimeter.')
                    print('Exiting...')
                    infile.close()
                    return -1

            #Find and format J_usage_mask
            if J_mask_index is None:
                J_usage_masks.append(None) #default mask
            else:
                try:
                    J_usage_mask = split_line[J_mask_index].strip().split(gene_mask_delimiter)
                    #check that all V gene/allele names are recognized
                    if all([gene_to_num_str(j, 'J') in pgen_model.J_mask_mapping for j in J_usage_mask]):
                        J_usage_masks.append(J_usage_mask)
                    else:
                        print(str(J_usage_mask) + " is not a usable J_usage_mask composed exclusively of recognized J gene/allele names")
                        print('Unrecognized J gene/allele names: ' + ', '.join([j for j in J_usage_mask if gene_to_num_str(j, 'J') not in pgen_model.J_mask_mapping.keys()]))
                        print('Continuing but inference might be biased...')
                        J_usage_masks.append(J_usage_mask)

                        #infile.close()
                        #return -1
                except IndexError: #no index match for J_mask_index
                    print('J_mask_index is out of range, check the delimeter.')
                    print('Exiting...')
                    infile.close()
                    return -1

            if max_number_of_seqs is not None:
                if len(seqs) >= max_number_of_seqs:
                    break

        data_seqs=[[seqs[i],V_usage_masks[i][0],J_usage_masks[i][0]] for i in range(len(seqs))]
        #define number of gen_seqs:
        gen_seqs=[]
        n_gen_seqs=options.n_gen_seqs
        generate_sequences=False
        if options.infile_gen is None:
            generate_sequences=True
            if n_gen_seqs is 0: n_gen_seqs=np.max([int(3e5),3*len(data_seqs)])
        else:
            seqs = []
            V_usage_masks = []
            J_usage_masks = []
            print('Read file of generated seqs.')
            infile = open(options.infile_gen, 'r')

            for i, line in enumerate(tqdm(infile)):
                if comment_delimiter is not None: #Default case -- no comments/header delimiter
                    if line.startswith(comment_delimiter): #allow comments
                        continue
                if i < lines_to_skip:
                    continue

                if delimiter is None: #Default delimiter is any whitespace
                    split_line = line.split('\n')[0].split()
                else:
                    split_line = line.split('\n')[0].split(delimiter)
                #Find the seq
                try:
                    seq = split_line[seq_in_index].strip()
                    if len(seq.strip()) == 0:
                        if skip_empty:
                            continue
                        else:
                            seqs.append(seq) #keep the blank seq as a placeholder
                            #seq_types.append('aaseq')
                    else:
                        seqs.append(seq)
                        #seq_types.append(determine_seq_type(seq, aa_alphabet))
                except IndexError: #no index match for seq
                    if skip_empty and len(line.strip()) == 0:
                        continue
                    print('seq_in_index is out of range')
                    print('Exiting...')
                    infile.close()
                    return -1

                #Find and format V_usage_mask
                if V_mask_index is None:
                    V_usage_masks.append(None) #default mask
                else:
                    try:
                        V_usage_mask = split_line[V_mask_index].strip().split(gene_mask_delimiter)
                        #check that all V gene/allele names are recognized
                        if all([gene_to_num_str(v, 'V') in pgen_model.V_mask_mapping for v in V_usage_mask]):
                            V_usage_masks.append(V_usage_mask)
                        else:
                            print(str(V_usage_mask) + " is not a usable V_usage_mask composed exclusively of recognized V gene/allele names")
                            print('Unrecognized V gene/allele names: ' + ', '.join([v for v in V_usage_mask if gene_to_num_str(v, 'V') not in pgen_model.V_mask_mapping.keys()]))
                            print('Continuing but inference might be biased...')
                            V_usage_masks.append(V_usage_mask)
                            #infile.close()
                            #return -1
                    except IndexError: #no index match for V_mask_index
                        print('V_mask_index is out of range, check the delimeter.')
                        print('Exiting...')
                        infile.close()
                        return -1

                #Find and format J_usage_mask
                if J_mask_index is None:
                    J_usage_masks.append(None) #default mask
                else:
                    try:
                        J_usage_mask = split_line[J_mask_index].strip().split(gene_mask_delimiter)
                        #check that all V gene/allele names are recognized
                        if all([gene_to_num_str(j, 'J') in pgen_model.J_mask_mapping for j in J_usage_mask]):
                            J_usage_masks.append(J_usage_mask)
                        else:
                            print(str(J_usage_mask) + " is not a usable J_usage_mask composed exclusively of recognized J gene/allele names")
                            print('Unrecognized J gene/allele names: ' + ', '.join([j for j in J_usage_mask if gene_to_num_str(j, 'J') not in pgen_model.J_mask_mapping.keys()]))
                            print('Continuing but inference might be biased...')
                            J_usage_masks.append(J_usage_mask)

                            #infile.close()
                            #return -1
                    except IndexError: #no index match for J_mask_index
                        print('J_mask_index is out of range, check the delimeter.')
                        print('Exiting...')
                        infile.close()
                        return -1

            gen_seqs=[[seqs[i],V_usage_masks[i][0],J_usage_masks[i][0]] for i in range(len(seqs))]
        # combine sequences.
        print('Initialise Model.')

        # choose sonia model type
        if options.model_type=='leftright': 
            sonia_model=SoniaLeftposRightpos(data_seqs=data_seqs,
                                             gen_seqs=gen_seqs,
                                             custom_pgen_model=model_folder,
                                             vj=recomb_type == 'VJ',
                                             include_joint_genes=joint_genes,
                                             include_indep_genes=independent_genes,
                                             min_energy_clip=min_energy_clip,
                                             max_energy_clip=max_energy_clip
                                            )
        elif options.model_type=='lengthpos':
            sonia_model=SoniaLengthPos(data_seqs=data_seqs,
                                       gen_seqs=gen_seqs,
                                       custom_pgen_model=model_folder,
                                       vj=recomb_type == 'VJ',
                                       include_joint_genes=joint_genes,
                                       include_indep_genes=independent_genes,
                                       min_energy_clip=min_energy_clip,
                                       max_energy_clip=max_energy_clip
                                      )
        else:
            print('ERROR: choose a model between leftright or lengthpos')

        if generate_sequences: sonia_model.add_generated_seqs(n_gen_seqs,custom_model_folder=model_folder) 

        if recompute_productive_norm: sonia_model.norm_productive=pgen_model.compute_regex_CDR3_template_pgen('CX{0,}')
        
        print('Model initialised. Start inference')
        sonia_model.infer_selection(epochs=options.epochs,verbose=1,batch_size=options.batch_size,validation_split=options.validation_split)
        print('Save Model')
        if options.outfile_name is not None: #OUTFILE SPECIFIED
            sonia_model.save_model(options.outfile_name)
            if options.plot_report:
                from sonia.plotting import Plotter
                pl=Plotter(sonia_model)
                pl.plot_model_learning(os.path.join(options.outfile_name, 'model_learning.png'))
                pl.plot_vjl(os.path.join(options.outfile_name, 'marginals.png'))
                pl.plot_logQ(os.path.join(options.outfile_name, 'log_Q.png'))
                pl.plot_ratioQ(os.path.join(options.outfile_name, 'Q_ratio.png'))

        else: #print to stdout
            sonia_model.save_model('sonia_model')
            if options.plot_report:
                from sonia.plotting import Plotter
                pl=Plotter(sonia_model)
                pl.plot_model_learning(os.path.join('sonia_model', 'model_learning.png'))
                pl.plot_vjl(os.path.join('sonia_model', 'marginals.png'))
                pl.plot_logQ(os.path.join('sonia_model', 'log_Q.png'))
                pl.plot_ratioQ(os.path.join('sonia_model', 'Q_ratio.png'))
Exemple #7
0
def main():
    """Compute Pgens from a file and output to another file."""

    parser = OptionParser(conflict_handler="resolve")

    parser.add_option('--humanTRA', '--human_T_alpha', action='store_true', dest='humanTRA', default=False, help='use default human TRA model (T cell alpha chain)')
    parser.add_option('--humanTRB', '--human_T_beta', action='store_true', dest='humanTRB', default=False, help='use default human TRB model (T cell beta chain)')
    parser.add_option('--mouseTRB', '--mouse_T_beta', action='store_true', dest='mouseTRB', default=False, help='use default mouse TRB model (T cell beta chain)')
    parser.add_option('--humanIGH', '--human_B_heavy', action='store_true', dest='humanIGH', default=False, help='use default human IGH model (B cell heavy chain)')
    parser.add_option('--set_custom_model_VDJ', dest='vdj_model_folder', metavar='PATH/TO/FOLDER/', help='specify PATH/TO/FOLDER/ for a custom VDJ generative model')
    parser.add_option('--set_custom_model_VJ', dest='vj_model_folder', metavar='PATH/TO/FOLDER/', help='specify PATH/TO/FOLDER/ for a custom VJ generative model')

    parser.add_option('-i', '--infile', dest = 'infile_name',metavar='PATH/TO/FILE', help='read in CDR3 sequences (and optionally V/J masks) from PATH/TO/FILE')
    parser.add_option('-o', '--outfile', dest = 'outfile_name', metavar='PATH/TO/FILE', help='write CDR3 sequences and pgens to PATH/TO/FILE')
    parser.add_option('--seq_in', '--seq_index', type='int', metavar='INDEX', dest='seq_in_index', default = 0, help='specifies sequences to be read in are in column INDEX. Default is index 0 (the first column).')

    parser.add_option('--v_in', '--v_mask_index', type='int', metavar='INDEX', dest='V_mask_index', help='specifies V_masks are found in column INDEX in the input file. Default is no V mask.')
    parser.add_option('--j_in', '--j_mask_index', type='int', metavar='INDEX', dest='J_mask_index', help='specifies J_masks are found in column INDEX in the input file. Default is no J mask.')

    parser.add_option('--v_mask', type='string', dest='V_mask', help='specify V usage to condition Pgen on for seqs read in as arguments.')
    parser.add_option('--j_mask', type='string', dest='J_mask', help='specify J usage to condition Pgen on for seqs read in as arguments.')

    parser.add_option('-m', '--max_number_of_seqs', type='int',metavar='N', dest='max_number_of_seqs', help='compute Pgens for at most N sequences.')
    parser.add_option('--lines_to_skip', type='int',metavar='N', dest='lines_to_skip', default = 0, help='skip the first N lines of the file. Default is 0.')
    parser.add_option('-a', '--alphabet_filename', dest='alphabet_filename', metavar='PATH/TO/FILE', help="specify PATH/TO/FILE defining a custom 'amino acid' alphabet. Default is no custom alphabet.")
    parser.add_option('--seq_type_out', type='choice',metavar='SEQ_TYPE', dest='seq_type_out',  choices=['all', 'ntseq', 'nucleotide', 'aaseq', 'amino_acid'], help="if read in sequences are ntseqs, declare what type of sequence to compute pgen for. Default is all. Choices: 'all', 'ntseq', 'nucleotide', 'aaseq', 'amino_acid'")
    parser.add_option('--skip_off','--skip_empty_off', action='store_true', dest = 'skip_empty', default=True, help='stop skipping empty or blank sequences/lines (if for example you want to keep line index fidelity between the infile and outfile).')

    parser.add_option('--display_off', action='store_false', dest='display_seqs', default=True, help='turn the sequence display off (only applies in write-to-file mode). Default is on.')
    parser.add_option('--num_lines_for_display', type='int', metavar='N', default = 50, dest='num_lines_for_display', help='N lines of the output file are displayed when sequence display is on. Also used to determine the number of sequences to average over for speed and time estimates.')
    parser.add_option('--time_updates_off', action='store_false', dest='time_updates', default=True, help='turn time updates off (only applies when sequence display is disabled).')
    parser.add_option('--seqs_per_time_update', type='float', metavar='N', default = 100, dest='seqs_per_time_update', help='specify the number of sequences between time updates. Default is 1e5.')

    parser.add_option('-d', '--delimiter', type='choice', dest='delimiter',  choices=['tab', 'space', ',', ';', ':'], help="declare infile delimiter. Default is tab for .tsv input files, comma for .csv files, and any whitespace for all others. Choices: 'tab', 'space', ',', ';', ':'")
    parser.add_option('--raw_delimiter', type='str', dest='delimiter', help="declare infile delimiter as a raw string.")
    parser.add_option('--delimiter_out', type='choice', dest='delimiter_out',  choices=['tab', 'space', ',', ';', ':'], help="declare outfile delimiter. Default is tab for .tsv output files, comma for .csv files, and the infile delimiter for all others. Choices: 'tab', 'space', ',', ';', ':'")
    parser.add_option('--raw_delimiter_out', type='str', dest='delimiter_out', help="declare for the delimiter outfile as a raw string.")
    parser.add_option('--gene_mask_delimiter', type='choice', dest='gene_mask_delimiter',  choices=['tab', 'space', ',', ';', ':'], help="declare gene mask delimiter. Default comma unless infile delimiter is comma, then default is a semicolon. Choices: 'tab', 'space', ',', ';', ':'")
    parser.add_option('--raw_gene_mask_delimiter', type='str', dest='gene_mask_delimiter', help="declare delimiter of gene masks as a raw string.")
    parser.add_option('--comment_delimiter', type='str', dest='comment_delimiter', help="character or string to indicate comment or header lines to skip.")


    (options, args) = parser.parse_args()

    #Check that the model is specified properly
    main_folder = os.path.dirname(__file__)

    default_models = {}
    default_models['humanTRA'] = [os.path.join(main_folder, 'default_models', 'human_T_alpha'),  'VJ']
    default_models['humanTRB'] = [os.path.join(main_folder, 'default_models', 'human_T_beta'), 'VDJ']
    default_models['mouseTRB'] = [os.path.join(main_folder, 'default_models', 'mouse_T_beta'), 'VDJ']
    default_models['humanIGH'] = [os.path.join(main_folder, 'default_models', 'human_B_heavy'), 'VDJ']

    num_models_specified = sum([1 for x in default_models.keys() + ['vj_model_folder', 'vdj_model_folder'] if getattr(options, x)])

    if num_models_specified == 1: #exactly one model specified
        try:
            d_model = [x for x in default_models.keys() if getattr(options, x)][0]
            model_folder = default_models[d_model][0]
            recomb_type = default_models[d_model][1]
        except IndexError:
            if options.vdj_model_folder: #custom VDJ model specified
                model_folder = options.vdj_model_folder
                recomb_type = 'VDJ'
            elif options.vj_model_folder: #custom VJ model specified
                model_folder = options.vj_model_folder
                recomb_type = 'VJ'
    elif num_models_specified == 0:
        print 'Need to indicate generative model.'
        print 'Exiting...'
        return -1
    elif num_models_specified > 1:
        print 'Only specify one model'
        print 'Exiting...'
        return -1

    #Check that all model and genomic files exist in the indicated model folder
    if not os.path.isdir(model_folder):
        print 'Check pathing... cannot find the model folder: ' + model_folder
        print 'Exiting...'
        return -1

    params_file_name = os.path.join(model_folder,'model_params.txt')
    marginals_file_name = os.path.join(model_folder,'model_marginals.txt')
    V_anchor_pos_file = os.path.join(model_folder,'V_gene_CDR3_anchors.csv')
    J_anchor_pos_file = os.path.join(model_folder,'J_gene_CDR3_anchors.csv')

    for x in [params_file_name, marginals_file_name, V_anchor_pos_file, J_anchor_pos_file]:
        if not os.path.isfile(x):
            print 'Cannot find: ' + x
            print 'Please check the files (and naming conventions) in the model folder ' + model_folder
            print 'Exiting...'
            return -1

    alphabet_filename = options.alphabet_filename #used if a custom alphabet is to be specified
    if alphabet_filename is not None:
        if not os.path.isfile(alphabet_filename):
            print 'Cannot find custom alphabet file: ' + infile_name
            print 'Exiting...'
            return -1

    #Load up model based on recomb_type
    #VDJ recomb case --- used for TCRB and IGH
    if recomb_type == 'VDJ':
        genomic_data = load_model.GenomicDataVDJ()
        genomic_data.load_igor_genomic_data(params_file_name, V_anchor_pos_file, J_anchor_pos_file)
        generative_model = load_model.GenerativeModelVDJ()
        generative_model.load_and_process_igor_model(marginals_file_name)
        pgen_model = generation_probability.GenerationProbabilityVDJ(generative_model, genomic_data, alphabet_filename)
    #VJ recomb case --- used for TCRA and light chain
    elif recomb_type == 'VJ':
        genomic_data = load_model.GenomicDataVJ()
        genomic_data.load_igor_genomic_data(params_file_name, V_anchor_pos_file, J_anchor_pos_file)
        generative_model = load_model.GenerativeModelVJ()
        generative_model.load_and_process_igor_model(marginals_file_name)
        pgen_model = generation_probability.GenerationProbabilityVJ(generative_model, genomic_data, alphabet_filename)

    aa_alphabet = ''.join(pgen_model.codons_dict.keys())

    if options.infile_name is not None:
        infile_name = options.infile_name

        if not os.path.isfile(infile_name):
            print 'Cannot find input file: ' + infile_name
            print 'Exiting...'
            return -1

    if options.outfile_name is not None:
        outfile_name = options.outfile_name
        if os.path.isfile(outfile_name):
            if not raw_input(outfile_name + ' already exists. Overwrite (y/n)? ').strip().lower() in ['y', 'yes']:
                print 'Exiting...'
                return -1

    #Parse delimiter
    delimiter = options.delimiter
    if delimiter is None: #Default case
        if options.infile_name is None:
            delimiter = '\t'
        elif infile_name.endswith('.tsv'): #parse TAB separated value file
            delimiter = '\t'
        elif infile_name.endswith('.csv'): #parse COMMA separated value file
            delimiter = ','
    else:
        try:
            delimiter = {'tab': '\t', 'space': ' ', ',': ',', ';': ';', ':': ':'}[delimiter]
        except KeyError:
            pass #Other string passed as the delimiter.

    #Parse delimiter_out
    delimiter_out = options.delimiter_out
    if delimiter_out is None: #Default case
        if delimiter is None:
            delimiter_out = '\t'
        else:
            delimiter_out = delimiter
        if options.outfile_name is None:
            pass
        elif outfile_name.endswith('.tsv'): #output TAB separated value file
            delimiter_out = '\t'
        elif outfile_name.endswith('.csv'): #output COMMA separated value file
            delimiter_out = ','
    else:
        try:
            delimiter_out = {'tab': '\t', 'space': ' ', ',': ',', ';': ';', ':': ':'}[delimiter_out]
        except KeyError:
            pass #Other string passed as the delimiter.

    #Parse gene_delimiter
    gene_mask_delimiter = options.gene_mask_delimiter
    if gene_mask_delimiter is None: #Default case
        gene_mask_delimiter = ','
        if delimiter == ',':
            gene_mask_delimiter = ';'
    else:
        try:
            gene_mask_delimiter = {'tab': '\t', 'space': ' ', ',': ',', ';': ';', ':': ':'}[gene_mask_delimiter]
        except KeyError:
            pass #Other string passed as the delimiter.


    #More options
    time_updates = options.time_updates
    display_seqs = options.display_seqs
    num_lines_for_display = options.num_lines_for_display
    seq_in_index = options.seq_in_index #where in the line the sequence is after line.split(delimiter)
    lines_to_skip = options.lines_to_skip #one method of skipping header
    comment_delimiter = options.comment_delimiter #another method of skipping header
    seqs_per_time_update = options.seqs_per_time_update
    max_number_of_seqs = options.max_number_of_seqs
    V_mask_index = options.V_mask_index #Default is not conditioning on V identity
    J_mask_index = options.J_mask_index #Default is not conditioning on J identity
    skip_empty = options.skip_empty

    seq_type_out = options.seq_type_out #type of pgens to be computed. Can be ntseq, aaseq, or both
    if seq_type_out is not None:
        seq_type_out = {'all': None, 'ntseq': 'ntseq', 'nucleotide': 'ntseq', 'aaseq': 'aaseq', 'amino_acid': 'aaseq'}[seq_type_out]

    if options.infile_name is None: #No infile specified -- args should be the input seqs
        print_warnings = True
        seqs = args
        seq_types = [determine_seq_type(seq, aa_alphabet) for seq in seqs]
        unrecognized_seqs = [seq for i, seq in enumerate(seqs) if seq_types[i] is None]
        if len(unrecognized_seqs) > 0 and print_warnings:
            print 'The following sequences/arguments were not recognized: ' + ', '.join(unrecognized_seqs)
        seqs = [seq for i, seq in enumerate(seqs) if seq_types[i] is not None]
        seq_types = [seq_type for seq_type in seq_types if seq_type is not None]


        #Format V and J masks -- uniform for all argument input sequences
        try:
            V_mask = options.V_mask.split(',')
            unrecognized_v_genes = [v for v in V_mask if v not in pgen_model.V_mask_mapping.keys()]
            V_mask = [v for v in V_mask if v in pgen_model.V_mask_mapping.keys()]
            if len(unrecognized_v_genes) > 0:
                print 'These V genes/alleles are not recognized: ' + ', '.join(unrecognized_v_genes)
            if len(V_mask) == 0:
                print 'No recognized V genes/alleles in the provided V_mask. Continuing without conditioning on V usage.'
                V_mask = None
        except AttributeError:
            V_mask = options.V_mask #Default is None, i.e. not conditioning on V identity

        try:
            J_mask = options.J_mask.split(',')
            unrecognized_j_genes = [j for j in J_mask if j not in pgen_model.J_mask_mapping.keys()]
            J_mask = [j for j in J_mask if j in pgen_model.J_mask_mapping.keys()]
            if len(unrecognized_j_genes) > 0:
                print 'These J genes/alleles are not recognized: ' + ', '.join(unrecognized_j_genes)
            if len(J_mask) == 0:
                print 'No recognized J genes/alleles in the provided J_mask. Continuing without conditioning on J usage.'
                J_mask = None
        except AttributeError:
            J_mask = options.J_mask #Default is None, i.e. not conditioning on J identity

        print ''
        start_time = time.time()
        for seq, seq_type in zip(seqs, seq_types):
            if seq_type == 'aaseq':
                c_pgen = pgen_model.compute_aa_CDR3_pgen(seq, V_mask, J_mask, print_warnings)
                print 'Pgen of the amino acid sequence ' + seq + ': ' + str(c_pgen)
                print ''
            elif seq_type == 'regex':
                c_pgen = pgen_model.compute_regex_CDR3_template_pgen(seq, V_mask, J_mask, print_warnings)
                print 'Pgen of the regular expression sequence ' + seq + ': ' + str(c_pgen)
                print ''
            elif seq_type == 'ntseq':
                if seq_type_out is None or seq_type_out == 'ntseq':
                    c_pgen_nt = pgen_model.compute_nt_CDR3_pgen(seq, V_mask, J_mask, print_warnings)
                    print 'Pgen of the nucleotide sequence ' + seq + ': ' + str(c_pgen_nt)
                if seq_type_out is None or seq_type_out == 'aaseq':
                    c_pgen_aa = pgen_model.compute_aa_CDR3_pgen(nt2aa(seq), V_mask, J_mask, print_warnings)
                    print 'Pgen of the amino acid sequence nt2aa(' + seq + ') = ' + nt2aa(seq) + ': ' + str(c_pgen_aa)
                print ''

        c_time = time.time() - start_time
        if c_time > 86400: #more than a day
            c_time_str = '%d days, %d hours, %d minutes, and %.2f seconds.'%(int(c_time)/86400, (int(c_time)/3600)%24, (int(c_time)/60)%60, c_time%60)
        elif c_time > 3600: #more than an hr
            c_time_str = '%d hours, %d minutes, and %.2f seconds.'%((int(c_time)/3600)%24, (int(c_time)/60)%60, c_time%60)
        elif c_time > 60: #more than a min
            c_time_str = '%d minutes and %.2f seconds.'%((int(c_time)/60)%60, c_time%60)
        else:
            c_time_str = '%.2f seconds.'%(c_time)

        print 'Completed pgen computation in: ' + c_time_str

    else: #Read sequences in from file
        print_warnings = False #Most cases of reading in from file should have warnings disabled
        seqs = []
        seq_types = []
        V_usage_masks = []
        J_usage_masks = []

        infile = open(infile_name, 'r')

        for i, line in enumerate(infile):
            if comment_delimiter is not None: #Default case -- no comments/header delimiter
                if line.startswith(comment_delimiter): #allow comments
                    continue
            if i < lines_to_skip:
                continue

            if delimiter is None: #Default delimiter is any whitespace
                split_line = line.split()
            else:
                split_line = line.split(delimiter)

            #Find the seq
            try:
                seq = split_line[seq_in_index].strip()
                if len(seq.strip()) == 0:
                    if skip_empty:
                        continue
                    else:
                        seqs.append(seq) #keep the blank seq as a placeholder
                        seq_types.append('aaseq')
                else:
                    seqs.append(seq)
                    seq_types.append(determine_seq_type(seq, aa_alphabet))
            except IndexError: #no index match for seq
                if skip_empty and len(line.strip()) == 0:
                    continue
                print 'seq_in_index is out of range'
                print 'Exiting...'
                infile.close()
                return -1

            #Find and format V_usage_mask
            if V_mask_index is None:
                V_usage_masks.append(None) #default mask
            else:
                try:
                    V_usage_mask = split_line[V_mask_index].strip().split(gene_mask_delimiter)
                    #check that all V gene/allele names are recognized
                    if all([v in pgen_model.V_mask_mapping for v in V_usage_mask]):
                        V_usage_masks.append(V_usage_mask)
                    else:
                        print str(V_usage_mask) + " is not a usable V_usage_mask composed exclusively of recognized V gene/allele names"
                        print 'Unrecognized V gene/allele names: ' + ', '.join([v for v in V_usage_mask if not v in pgen_model.V_mask_mapping.keys()])
                        print 'Exiting...'
                        infile.close()
                        return -1
                except IndexError: #no index match for V_mask_index
                    print 'V_mask_index is out of range'
                    print 'Exiting...'
                    infile.close()
                    return -1

            #Find and format J_usage_mask
            if J_mask_index is None:
                J_usage_masks.append(None) #default mask
            else:
                try:
                    J_usage_mask = split_line[J_mask_index].strip().split(gene_mask_delimiter)
                    #check that all V gene/allele names are recognized
                    if all([j in pgen_model.J_mask_mapping for j in J_usage_mask]):
                        J_usage_masks.append(J_usage_mask)
                    else:
                        print str(J_usage_mask) + " is not a usable J_usage_mask composed exclusively of recognized J gene/allele names"
                        print 'Unrecognized J gene/allele names: ' + ', '.join([j for j in J_usage_mask if not j in pgen_model.J_mask_mapping.keys()])
                        print 'Exiting...'
                        infile.close()
                        return -1
                except IndexError: #no index match for J_mask_index
                    print 'J_mask_index is out of range'
                    print 'Exiting...'
                    infile.close()
                    return -1

            if max_number_of_seqs is not None:
                if len(seqs) >= max_number_of_seqs:
                    break


        unrecognized_seqs = [seq for i, seq in enumerate(seqs) if seq_types[i] is None]
        if len(unrecognized_seqs) > 0 and len(unrecognized_seqs) < len(seqs):
            if print_warnings or options.outfile_name is not None:
                print 'Some strings read in were not parsed as sequences -- they will be omitted.'
                print 'Examples of improperly read strings: '
                for unrecognized_seq in unrecognized_seqs[:10]:
                    print unrecognized_seq
            seqs = [seq for i, seq in enumerate(seqs) if seq_types[i] is not None]
            V_usage_masks = [V_usage_mask for i, V_usage_mask in enumerate(V_usage_masks) if seq_types[i] is not None]
            seq_types = [seq_type for seq_type in seq_types if seq_type is not None]
        elif len(unrecognized_seqs) > 0 and len(unrecognized_seqs) == len(seqs):
            print 'None of the read in strings were parsed as sequences. Check input file.'
            print 'Examples of improperly read strings:'
            for unrecognized_seq in unrecognized_seqs[:10]:
                print unrecognized_seq
            print 'Exiting...'
            return -1

        infile.close()


        if options.outfile_name is not None: #OUTFILE SPECIFIED, allow printed info/display

            print 'Successfully read in and formatted ' + str(len(seqs)) + ' sequences and any V or J usages.'
            if display_seqs:
                sys.stdout.write('\r'+'Continuing to Pgen computation in 3... ')
                sys.stdout.flush()
                time.sleep(0.4)
                sys.stdout.write('\r'+'Continuing to Pgen computation in 2... ')
                sys.stdout.flush()
                time.sleep(0.4)
                sys.stdout.write('\r'+'Continuing to Pgen computation in 1... ')
                sys.stdout.flush()
                time.sleep(0.4)
            else:
                print 'Continuing to Pgen computation.'
                print_warnings = True #Display is off, can print warnings

            if display_seqs:
                lines_for_display = []
                times_for_speed_calc = [time.time()]

            outfile = open(outfile_name, 'w')
            start_time = time.time()
            for i, seq in enumerate(seqs):
                if seq_types[i] == 'aaseq':
                    #Compute Pgen and print out
                    c_pgen_line = seq + delimiter_out + str(pgen_model.compute_aa_CDR3_pgen(seq, V_usage_masks[i], J_usage_masks[i], print_warnings))
                if seq_types[i] == 'regex':
                    #Compute Pgen and print out
                    c_pgen_line = seq + delimiter_out + str(pgen_model.compute_regex_CDR3_template_pgen(seq, V_usage_masks[i], J_usage_masks[i], print_warnings))
                elif seq_types[i] == 'ntseq':
                    ntseq = seq
                    if len(ntseq) % 3 == 0: #inframe sequence
                        aaseq = nt2aa(ntseq)
                        #Compute Pgen and print out based on recomb_type and seq_type_out
                        if seq_type_out is None:
                            c_pgen_line = ntseq + delimiter_out + str(pgen_model.compute_nt_CDR3_pgen(ntseq, V_usage_masks[i], J_usage_masks[i], print_warnings)) + delimiter_out + aaseq + delimiter_out +  str(pgen_model.compute_aa_CDR3_pgen(aaseq, V_usage_masks[i], J_usage_masks[i], print_warnings))
                        elif seq_type_out == 'ntseq':
                            c_pgen_line = ntseq + delimiter_out + str(pgen_model.compute_nt_CDR3_pgen(ntseq, V_usage_masks[i], J_usage_masks[i], print_warnings))
                        elif seq_type_out == 'aaseq':
                            c_pgen_line = aaseq + delimiter_out + str(pgen_model.compute_aa_CDR3_pgen(aaseq, V_usage_masks[i], J_usage_masks[i], print_warnings))
                    else: #out of frame sequence -- Pgens are 0 and use 'out_of_frame' for aaseq
                        if seq_type_out is None:
                            c_pgen_line = ntseq + delimiter_out + '0' + delimiter_out + 'out_of_frame' + delimiter_out + '0'
                        elif seq_type_out == 'ntseq':
                            c_pgen_line = ntseq + delimiter_out + '0'
                        elif seq_type_out == 'aaseq':
                            c_pgen_line = 'out_of_frame' + delimiter_out + '0'

                outfile.write(c_pgen_line + '\n')

                #Print time update
                if display_seqs:
                    cc_time = time.time()
                    c_time = cc_time - start_time
                    times_for_speed_calc = [cc_time] + times_for_speed_calc[:num_lines_for_display]
                    c_avg_speed = (len(times_for_speed_calc)-1)/float(times_for_speed_calc[0] - times_for_speed_calc[-1])

                    #eta = ((len(seqs) - (i+1))/float(i+1))*c_time

                    eta = (len(seqs) - (i+1))/c_avg_speed

                    lines_for_display = [c_pgen_line] + lines_for_display[:num_lines_for_display]


                    c_time_str = '%s hours, %s minutes, and %s seconds.'%(repr(int(c_time)/3600).rjust(3), repr((int(c_time)/60)%60).rjust(2), repr(int(c_time)%60).rjust(2))
                    eta_str = '%s hours, %s minutes, and %s seconds.'%(repr(int(eta)/3600).rjust(3), repr((int(eta)/60)%60).rjust(2), repr(int(eta)%60).rjust(2))
                    time_str = 'Time to compute Pgen on %s seqs: %s \nEst. time for remaining %s seqs: %s'%(repr(i+1).rjust(9), c_time_str, repr(len(seqs) - (i + 1)).rjust(9), eta_str)
                    speed_str = 'Current Pgen computation speed: %s seqs/min'%(repr(round((len(times_for_speed_calc)-1)*60/float(times_for_speed_calc[0] - times_for_speed_calc[-1]), 2)).rjust(8))
                    display_str = '\n'.join(lines_for_display[::-1]) + '\n' + '-'*80 + '\n' + time_str + '\n' + speed_str + '\n' + '-'*80
                    print '\033[2J' + display_str
                elif (i+1)%seqs_per_time_update == 0 and time_updates:
                    c_time = time.time() - start_time
                    eta = ((len(seqs) - (i+1))/float(i+1))*c_time
                    if c_time > 86400: #more than a day
                        c_time_str = '%d days, %d hours, %d minutes, and %.2f seconds.'%(int(c_time)/86400, (int(c_time)/3600)%24, (int(c_time)/60)%60, c_time%60)
                    elif c_time > 3600: #more than an hr
                        c_time_str = '%d hours, %d minutes, and %.2f seconds.'%((int(c_time)/3600)%24, (int(c_time)/60)%60, c_time%60)
                    elif c_time > 60: #more than a min
                        c_time_str = '%d minutes and %.2f seconds.'%((int(c_time)/60)%60, c_time%60)
                    else:
                        c_time_str = '%.2f seconds.'%(c_time)

                    if eta > 86400: #more than a day
                        eta_str = '%d days, %d hours, %d minutes, and %.2f seconds.'%(int(eta)/86400, (int(eta)/3600)%24, (int(eta)/60)%60, eta%60)
                    elif eta > 3600: #more than an hr
                        eta_str = '%d hours, %d minutes, and %.2f seconds.'%((int(eta)/3600)%24, (int(eta)/60)%60, eta%60)
                    elif eta > 60: #more than a min
                        eta_str = '%d minutes and %.2f seconds.'%((int(eta)/60)%60, eta%60)
                    else:
                        eta_str = '%.2f seconds.'%(eta)

                    print 'Pgen computed for %d sequences in: %s Estimated time remaining: %s'%(i+1, c_time_str, eta_str)

            c_time = time.time() - start_time
            if c_time > 86400: #more than a day
                c_time_str = '%d days, %d hours, %d minutes, and %.2f seconds.'%(int(c_time)/86400, (int(c_time)/3600)%24, (int(c_time)/60)%60, c_time%60)
            elif c_time > 3600: #more than an hr
                c_time_str = '%d hours, %d minutes, and %.2f seconds.'%((int(c_time)/3600)%24, (int(c_time)/60)%60, c_time%60)
            elif c_time > 60: #more than a min
                c_time_str = '%d minutes and %.2f seconds.'%((int(c_time)/60)%60, c_time%60)
            else:
                c_time_str = '%.2f seconds.'%(c_time)
            print 'Completed Pgen computation for %d sequences: in %s'%(len(seqs), c_time_str)

            outfile.close()

        else: #NO OUTFILE -- print directly to stdout
            start_time = time.time()
            for i, seq in enumerate(seqs):
                if seq_types[i] == 'aaseq':
                    #Compute Pgen and print out
                    c_pgen_line = seq + delimiter_out + str(pgen_model.compute_aa_CDR3_pgen(seq, V_usage_masks[i], J_usage_masks[i], print_warnings))
                if seq_types[i] == 'regex':
                    #Compute Pgen and print out
                    c_pgen_line = seq + delimiter_out + str(pgen_model.compute_regex_CDR3_template_pgen(seq, V_usage_masks[i], J_usage_masks[i], print_warnings))
                elif seq_types[i] == 'ntseq':
                    ntseq = seq
                    if len(ntseq) % 3 == 0: #inframe sequence
                        aaseq = nt2aa(ntseq)
                        #Compute Pgen and print out based on recomb_type and seq_type_out
                        if seq_type_out is None:
                            c_pgen_line = ntseq + delimiter_out + str(pgen_model.compute_nt_CDR3_pgen(ntseq, V_usage_masks[i], J_usage_masks[i], print_warnings)) + delimiter_out + aaseq + delimiter_out +  str(pgen_model.compute_aa_CDR3_pgen(aaseq, V_usage_masks[i], J_usage_masks[i], print_warnings))
                        elif seq_type_out == 'ntseq':
                            c_pgen_line = ntseq + delimiter_out + str(pgen_model.compute_nt_CDR3_pgen(ntseq, V_usage_masks[i], J_usage_masks[i], print_warnings))
                        elif seq_type_out == 'aaseq':
                            c_pgen_line = aaseq + delimiter_out + str(pgen_model.compute_aa_CDR3_pgen(aaseq, V_usage_masks[i], J_usage_masks[i], print_warnings))
                    else: #out of frame sequence -- Pgens are 0 and use 'out_of_frame' for aaseq
                        if seq_type_out is None:
                            c_pgen_line = ntseq + delimiter_out + '0' + delimiter_out + 'out_of_frame' + delimiter_out + '0'
                        elif seq_type_out == 'ntseq':
                            c_pgen_line = ntseq + delimiter_out + '0'
                        elif seq_type_out == 'aaseq':
                            c_pgen_line = 'out_of_frame' + delimiter_out + '0'

                print c_pgen_line
Exemple #8
0
    def evaluate(self,
                 seqs,
                 num_threads,
                 use_allele=True,
                 default_allele=None):
        """Evaluate a given nucleotide CDR3 sequences using OLGA.

        This function also checks if the given input sequence file contains the gene index columns for the V and J gene.
        If so, then the V and J gene masks in these columns are used to increase calculation accuracy of the generation
        probabality values.

        Parameters
        ----------
        seqs : pandas.DataFrame
            A pandas dataframe object containing a column with nucleotide CDR3 sequences and/or amino acid sequences.
        num_threads : int
            The number of threads to use when processing the sequences.
        use_allele : bool, optional
            If True, the allele information from the input genes is used instead of the 'default_allele' value (default: True).
        default_allele : str, optional
            A default allele value to use when spliting gene choices, and 'use_allele' option is False (default: None).

        Returns
        -------
        pandas.DataFrame
            Containing the sequence index number, the generation probability of nucleotide sequence if given and the
            generation probability of aminoacid sequence if given.

        Raises
        ------
        TypeError
            When the model type does not equal 'VDJ' or 'VJ'.

        """
        # Set the evaluation objects.
        pgen_model = None
        if self.igor_model.get_type() == "VDJ":
            pgen_model = olga_pgen.GenerationProbabilityVDJ(
                self.igor_model.get_generative_model(),
                self.igor_model.get_genomic_data())
        elif self.igor_model.get_type() == "VJ":
            pgen_model = olga_pgen.GenerationProbabilityVJ(
                self.igor_model.get_generative_model(),
                self.igor_model.get_genomic_data())
        else:
            raise TypeError(
                "OLGA could not create a GenerationProbability object since model is not of type 'VDJ' or 'VJ'"
            )

        # Insert amino acid sequence column if not existent.
        if (self.col_names['NT_COL'] in seqs.columns
                and not self.col_names['AA_COL'] in seqs.columns):
            seqs.insert(
                seqs.columns.get_loc(self.col_names['NT_COL']) + 1,
                self.col_names['AA_COL'], numpy.nan)
            seqs[self.col_names['AA_COL']] = seqs[self.col_names['NT_COL']] \
                .apply(nucleotides_to_aminoacids)

        # Use multiprocessing to evaluate the sequences in chunks and return.
        result = multiprocess_array(ary=seqs,
                                    func=self._evaluate,
                                    num_workers=num_threads,
                                    model=pgen_model,
                                    use_allele=use_allele,
                                    default_allele=default_allele)
        result = pandas.concat(result, axis=0, copy=False)
        return result