def histogram_spike_duration(file): fills = fills_from_file(file, "OML") outliers = [] durations = [] for nbr in fills: fill = Fill(nbr) start, end = fill.OML_period() d = fill.blm_ir7().x[end] - fill.blm_ir7().x[start] if d < 70 or d > 300: outliers.append(nbr) durations.append(d) draw_histogram('Spike duration for {}'.format(file), durations, 10, 'Seconds', 'Count') return outliers
def histogram_intensity_lost_during_OML(fills, beam): agg_fill = aggregate_fill(beam=beam, from_cache=True) t_agg = agg_fill.blm_ir3().x[agg_fill.OML_period()] lost_agg_period = np.empty(len(fills)) lost_fill_period = np.empty(len(fills)) total_lost_during_ramp = np.empty(len(fills)) for i, nbr in enumerate(fills): fill = Fill(nbr) a_index = fill.intensity().index_for_time(t_agg) int_agg = fill.intensity().y[a_index] lost_agg_period[i] = int_agg[0] - int_agg[1] f_index = fill.intensity().index_for_time( fill.blm_ir3().x[fill.OML_period()]) int_fill = fill.intensity().y[f_index] lost_fill_period[i] = int_fill[0] - int_fill[1] total_lost_during_ramp[i] = fill.intensity().y[0] - fill.intensity( ).y[-1] fig, ax = plt.subplots() ax.hist((lost_agg_period, lost_fill_period), label=("Aggregate OML period", "Fill OML period"), edgecolor='white') # ax.hist((lost_agg_period,), label=("Aggregate OML period",) , edgecolor='white') ax.legend(loc='upper right') ax.xaxis.set_major_formatter( FuncFormatter(lambda x, pos: "{0:.2f}".format(x * 100.0))) ax.set_xlabel("Intensity lost (%)") ax.set_ylabel("# fills") plt.title( "Intensity during off-momentum loss peak at start of ramp (beam {})". format(beam)) # ax.hist(lost_fill_period, edgecolor='white') fig2, ax2 = plt.subplots() ax2.hist(total_lost_during_ramp, edgecolor='white') ax2.xaxis.set_major_formatter( FuncFormatter(lambda x, pos: "{0:.2f}".format(x * 100.0))) ax2.set_xlabel("Intensity lost (%)") ax2.set_ylabel("# fills") plt.title("Total intensity lost during whole ramp (beam {})".format(beam)) plt.show()
def comp_blm_ir3_vs_intensity(file): fills = fills_from_file(file, "OML") intensity = [] mean_loss = [] max_loss = [] discarded = 0 for nbr in fills: fill = Fill(nbr, False) fill.fetch() smin, smax = fill.OML_period() ssubset = fill.blm_ir3().y[smin:smax] maxint = max(fill.intensity().y) if maxint < 1.8e14: discarded += 1 continue mean_loss.append(np.mean(ssubset)) max_loss.append(max(ssubset)) intensity.append(maxint) fig = plt.figure() ax1 = fig.add_subplot(121) ax2 = fig.add_subplot(122, sharey=ax1) ax1.set_xlabel("Mean momentum (IR3) TCP") ax1.set_ylabel("Intensity") ax1.scatter(mean_loss, intensity, color='b', label='mean') ax1.set_xlim([0, 1.1 * max(mean_loss)]) ax1.set_ylim([1.5e14, 1.1 * max(intensity)]) ax1.legend(loc="lower right") ax2.set_xlabel("Max momentum (IR3) TCP") ax2.set_ylabel("Intensity") ax2.scatter(max_loss, intensity, color='r', label='max') ax2.set_xlim([0, 1.1 * max(max_loss)]) ax2.legend(loc="lower right") percent_used = int( round(float(len(intensity)) / (len(intensity) + discarded) * 100)) fig.suptitle( "Intensity vs OML for {} (only intenities > 1.8e14, {}% of total)\n". format(file, percent_used)) plt.show()
def histogram_max_abort_gap_before_OML(fills): max_ag = {1: [], 2: []} for nbr in fills: for beam in (1, 2): fill = Fill(nbr, beam=beam) OML_start = fill.OML_period()[0] max_ag[beam].append(fill.abort_gap().y[:OML_start].max()) bins = np.arange(0, 2e10, 2e9) fig, ax = plt.subplots() ax.hist([max_ag[1], max_ag[2]], bins=bins, label=["Beam 1", "Beam 2"]) ax.legend(loc="upper right") ax.set_ylabel("Fill count") ax.set_xlabel("Abort gap intensity [$ 10^9 $]") ax.xaxis.set_major_formatter( FuncFormatter(lambda x, pos: "{0:.1f}".format(x / 1e9))) plt.title("Max abort gap intensity before start of ramp") plt.show()
def comp_blm_ir3_vs_abort_gap(file): fills = fills_from_file(file, "OML") abort_gap = [] average_loss = [] max_loss = [] for nbr in fills: fill = Fill(nbr, False) fill.fetch() smin, smax = fill.OML_period() # Only looking until t_co instead -- will not affect max smax = fill.crossover_point()['i'] tmax = fill.blm_ir3().x[smax] tmin = fill.blm_ir3().x[smin] # tmax = find_crossover_point(fill)['t'] ag_average = moving_average(fill.abort_gap().y, 5) agmin = fill.abort_gap().index_for_time(tmin) agmax = fill.abort_gap().index_for_time(tmax) ssubset = fill.blm_ir3().y[smin:smax] average_loss.append(np.average(ssubset)) max_loss.append(max(ssubset)) abort_gap.append(ag_average[agmin] - ag_average[agmax]) fig = plt.figure() ax1 = fig.add_subplot(121) ax2 = fig.add_subplot(122, sharey=ax1) # fig1, ax1 = plt.subplots() ax1.set_xlabel("Average BLM") ax1.set_ylabel("∆ abort gap intensity") ax1.scatter(average_loss, abort_gap, color='b', label='average') ax1.set_xlim([0, 1.1 * max(average_loss)]) ax1.set_ylim([0, 1.1 * max(abort_gap)]) xval = [0, 1] slope, intercept, r_value, p_value, std_err = stats.linregress( average_loss, abort_gap) print("Average fit") print( "\tk ={:>10.3E}\n\tm ={:>10.3E}\n\tr ={:>10.7f}\n\tp ={:>10.3E}\n\te^2={:>10.3E}" .format(slope, intercept, r_value, p_value, std_err)) yfit = [slope * x + intercept for x in xval] ax1.plot(xval, yfit, color='gray') ax1.legend(loc="lower right") # fig2, ax2 = plt.subplots() ax2.set_xlabel("Max BLM") ax2.scatter(max_loss, abort_gap, color='r', label='max') ax2.set_xlim([0, 1.1 * max(max_loss)]) ax2.legend(loc="lower right") slope, intercept, r_value, p_value, std_err = stats.linregress( max_loss, abort_gap) print("Max fit") print( "\tk ={:>10.3E}\n\tm ={:>10.3E}\n\tr ={:>10.7f}\n\tp ={:>10.3E}\n\te^2={:>10.3E}" .format(slope, intercept, r_value, p_value, std_err)) yfit = [slope * x + intercept for x in xval] ax2.plot(xval, yfit, color='gray') fig.suptitle( "Correlation between abort gap intensity and BLM signal for TCP in IR3" ) plt.show()
def comp_blm_ir3_vs_ir7(file): fills = fills_from_file(file, "OML") ok = 0 notok = 0 sdata = { 'max': [], 'mean': [], } bdata = {'max': [], 'mean': []} for nbr in fills: fill = Fill(nbr) fill.beta_coll_merge() smin, smax = fill.OML_period() tmin, tmax = fill.blm_ir3().x[[smin, smax]] bmin = fill.blm_ir7().index_for_time(tmin) bmax = fill.blm_ir7().index_for_time(tmax) bsubset = fill.blm_ir7().y[bmin:bmax] ssubset = fill.blm_ir3().y[smin:smax] sdata['max'].append(max(ssubset)) sdata['mean'].append(np.mean(ssubset)) bdata['max'].append(max(bsubset)) bdata['mean'].append(np.mean(bsubset)) fig, ax = plt.subplots() ax.set_xlabel("Synchrotron (IR3) TCP") ax.set_ylabel("Betatron (IR7) TCPs") ax.scatter(sdata['max'], bdata['max'], color='r') slope, intercept, r_value, p_value, std_err = stats.linregress( sdata['max'], bdata['max']) # print(slope, intercept, r_value, p_value, std_err) xval = [0, 1] max_yval = [slope * x + intercept for x in xval] ax.plot(xval, max_yval, color='r', label='max') ax.scatter(sdata['mean'], bdata['mean'], color='b') slope, intercept, r_value, p_value, std_err = stats.linregress( sdata['mean'], bdata['mean']) # print(slope, intercept, r_value, p_value, std_err) mean_yval = [slope * x + intercept for x in xval] ax.plot(xval, mean_yval, color='b', label='mean') ax.plot([0, 1], [0, 1], color='black', label='delimiter') for v in ['max', 'mean']: count = 0 for i, sd in enumerate(sdata[v]): if bdata[v][i] > sd: count += 1 print(v, "over: ", count, "({}%)".format(int(float(count) / len(sdata[v]) * 100))) plt.title( 'Losses due to synchrotron vs betatron oscillations\n for {}'.format( file)) ax.legend(loc='upper right') ax.set_ylim([0, 0.5]) ax.set_xlim([0, 0.5]) plt.show()