Exemple #1
0
def get_best_performing_dataframe_separately_packetreceived():
    """Selects the runs corresponding to the most received packets,
    and returns them in three separate dataframes for the three configurations"""

    # filter expressions for packetReceived:count for the three configurations
    filter_expression_bmac = """type =~ scalar AND isfield =~ false AND runattr:configname =~ "StatisticBMac" AND module =~ "*.server.app[0]" AND name =~ packetReceived:count"""
    filter_expression_xmac = """type =~ scalar AND isfield =~ false AND runattr:configname =~ "StatisticXMac" AND module =~ "*.server.app[0]" AND name =~ packetReceived:count"""
    filter_expression_lmac = """type =~ scalar AND isfield =~ false AND runattr:configname =~ "StatisticLMac" AND module =~ "*.server.app[0]" AND name =~ packetReceived:count"""

    # dataframes for packetReceived:count
    df_b = results.get_scalars(filter_expression_bmac,
                               include_fields=False,
                               include_attrs=True,
                               include_runattrs=True,
                               include_itervars=True)
    df_x = results.get_scalars(filter_expression_xmac,
                               include_fields=False,
                               include_attrs=True,
                               include_runattrs=True,
                               include_itervars=True)
    df_l = results.get_scalars(filter_expression_lmac,
                               include_fields=False,
                               include_attrs=True,
                               include_runattrs=True,
                               include_itervars=True)

    # average repetitions
    df_b = df_b.groupby(
        ['name', 'configname', 'module', 'iterationvars', 'inifile'],
        as_index=False).mean()
    if debug:
        print("\ndf_b after averaging:\n-------------------", df_b)
    df_x = df_x.groupby(
        ['name', 'configname', 'module', 'iterationvars', 'inifile'],
        as_index=False).mean()
    if debug:
        print("\ndf_x after averaging:\n-------------------", df_x)
    df_l = df_l.groupby(
        ['name', 'configname', 'module', 'iterationvars', 'inifile'],
        as_index=False).mean()
    if debug:
        print("\ndf_l after averaging:\n-------------------", df_l)

    # get index of the most received packets
    df_b_max_index = df_b[['value']].idxmax()
    df_x_max_index = df_x[['value']].idxmax()
    df_l_max_index = df_l[['value']].idxmax()

    # create dataframe containing only the run with the most received packets
    df_b = df_b.iloc[df_b_max_index]
    df_x = df_x.iloc[df_x_max_index]
    df_l = df_l.iloc[df_l_max_index]

    if debug:
        print(
            "----\nget_best_performing_dataframe_separately_packetreceived()\n----"
        )
        print("returning ", df_b, "\n", df_x, "\n", df_l, "\n")

    return df_b, df_x, df_l
Exemple #2
0
def importing_5():
    df = results.get_scalars("name =~ rxBytes:sum OR name =~ txBytes:sum",
                             include_runattrs=True)

    print(chart.extract_label_columns(df))
    df = pd.pivot_table(df, columns=["name", "replication"], index=["module"])
    print(df)
    chart.plot_scalars(df)
Exemple #3
0
def get_power_for_each_module_dataframes():
    """Returns the per-module residualEnergyCapacity values for the three configurations in three separate dataframes."""

    filter_expression = """* AND name =~ residualEnergyCapacity:last"""

    filter_expression_bmac = """type =~ scalar AND isfield =~ false AND runattr:configname =~ "StatisticBMac" AND """ + filter_expression
    filter_expression_xmac = """type =~ scalar AND isfield =~ false AND runattr:configname =~ "StatisticXMac" AND """ + filter_expression
    filter_expression_lmac = """type =~ scalar AND isfield =~ false AND runattr:configname =~ "StatisticLMac" AND """ + filter_expression

    df_b = results.get_scalars(filter_expression_bmac,
                               include_fields=False,
                               include_attrs=True,
                               include_runattrs=True,
                               include_itervars=True)
    df_x = results.get_scalars(filter_expression_xmac,
                               include_fields=False,
                               include_attrs=True,
                               include_runattrs=True,
                               include_itervars=True)
    df_l = results.get_scalars(filter_expression_lmac,
                               include_fields=False,
                               include_attrs=True,
                               include_runattrs=True,
                               include_itervars=True)

    # average repetitions
    df_b = df_b.groupby(
        ['name', 'configname', 'module', 'iterationvars', 'inifile'],
        as_index=False).mean()
    # print("\ndf_b after averaging:\n-------------------",df_b)
    df_x = df_x.groupby(
        ['name', 'configname', 'module', 'iterationvars', 'inifile'],
        as_index=False).mean()
    # print("\ndf_x after averaging:\n-------------------",df_x)
    df_l = df_l.groupby(
        ['name', 'configname', 'module', 'iterationvars', 'inifile'],
        as_index=False).mean()
    # print("\ndf_l after averaging:\n-------------------",df_l)

    print("get_power_dataframes\nreturning:")
    print("df_b:\n", df_b)
    print("df_x:\n", df_x)
    print("df_l:\n", df_l)

    return df_b, df_x, df_l
Exemple #4
0
def test_scalars_with_all():
    df = results.get_scalars(r,
                             include_attrs=True,
                             include_itervars=True,
                             include_runattrs=True,
                             include_param_assignments=True,
                             include_config_entries=True)
    _assert_sequential_index(df)
    _assert(sanitize_and_compare_csv(df, "scalars_with_all.csv"),
            "content mismatch")
Exemple #5
0
def chart_function_bars():
    df = results.get_scalars("name =~ rxBytes:sum OR name =~ txBytes:sum",
                             include_runattrs=True)

    names = utils.get_names_for_title(df, dict())

    df = pd.pivot_table(df, index="name", columns="module", values='value')

    utils.preconfigure_plot(dict())
    utils.plot_bars(df, dict(), names)
    utils.postconfigure_plot(dict())
Exemple #6
0
def get_data(filter):
    sc = results.get_scalars(filter, include_attrs=True)
    iv = results.get_itervars(filter)
    ra = results.get_run_attrs(filter)
    
    df = pd.concat([sc, iv, ra])
    #print(df)
    
    df["value"] = pd.to_numeric(df["value"], errors="ignore")
    df = pd.pivot_table(df, columns="name", index="runID", dropna=False, aggfunc=aggfunc)
    #print(df)

    return df
Exemple #7
0
def get_data(filter):
    try:
        sc = results.get_scalars(filter, include_attrs=True)
        iv = results.get_itervars(filter)
        ra = results.get_runattrs(filter)
    except ValueError as e:
        raise chart.ChartScriptError("Error while querying results: " + str(e))

    df = pd.concat([sc, iv, ra])

    df["value"] = pd.to_numeric(df["value"], errors="ignore")
    df = pd.pivot_table(df, columns="name", index="runID", dropna=False, aggfunc=aggfunc)

    return df
Exemple #8
0
filter_expression = params["filter"]

groups = params["groups"]
bars = params["bars"]

if not groups:
    groups = "module,experiment"

if not bars:
    bars = "name,measurement"

# TODO: make sure no column is present in both lists

# The data is returned as a Pandas DataFrame
df = results.get_scalars(filter_expression,
                         include_attrs=True,
                         include_itervars=True,
                         include_runattrs=True)
print(df)

# You can perform any transformations on the data here
df = pd.pivot_table(df,
                    values="value",
                    index=groups.split(","),
                    columns=bars.split(","))

# You can perform any transformations on the data here

# Finally, the results are plotted
chart.plot_scalars(df)

chart.copy_properties()
Exemple #9
0
import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.cm as cm
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from omnetpp.scave import results, chart

params = chart.get_configured_properties()

if not (params["x_attr"] and params["y_attr"]):
    raise Exception("Please select axis attributes in the properties dialog!")

df = results.get_scalars(params["scalar_filter"],
                         include_attrs=True,
                         include_itervars=True,
                         include_runattrs=True)

df[params["x_attr"]] = pd.to_numeric(df[params["x_attr"]])
df[params["y_attr"]] = pd.to_numeric(df[params["y_attr"]])

#print(df)

title_col, legend_cols = chart.extract_label_columns(df)

print(legend_cols)
title = str(list(df[title_col])[0]) if title_col else None

df = pd.pivot_table(df,
                    columns=[params["x_attr"]],
                    index=params["y_attr"],
Exemple #10
0
def test_scalars_with_config_entries():
    df = results.get_scalars(r, include_config_entries=True)
    _assert_sequential_index(df)
    _assert(sanitize_and_compare_csv(df, "scalars_with_config_entries.csv"),
            "content mismatch")
Exemple #11
0
def test_scalars():
    df = results.get_scalars(r)
    _assert_sequential_index(df)
    _assert(sanitize_and_compare_csv(df, "scalars.csv"), "content mismatch")
Exemple #12
0
from omnetpp.scave import results, chart

params = chart.get_properties()

# This expression selects the results (you might be able to logically simplify it)

filter_expression = params["filter"]

# The data is returned as a Pandas DataFrame
df = results.get_scalars(filter_expression)

# You can perform any transformations on the data here

# Finally, the results are plotted
chart.plot_scalars(df)