Exemple #1
0
def plan(samplerIndex):
    # construct the state space we are planning in
    space = ob.RealVectorStateSpace(3)

    # set the bounds
    bounds = ob.RealVectorBounds(3)
    bounds.setLow(-1)
    bounds.setHigh(1)
    space.setBounds(bounds)

    # define a simple setup class
    ss = og.SimpleSetup(space)

    # set state validity checking for this space
    ss.setStateValidityChecker(ob.StateValidityCheckerFn(isStateValid))

    # create a start state
    start = ob.State(space)
    start[0] = 0
    start[1] = 0
    start[2] = 0

    # create a goal state
    goal = ob.State(space)
    goal[0] = 0
    goal[1] = 0
    goal[2] = 1

    # set the start and goal states;
    ss.setStartAndGoalStates(start, goal)

    # set sampler (optional; the default is uniform sampling)
    si = ss.getSpaceInformation()
    if samplerIndex == 1:
        # use obstacle-based sampling
        si.setValidStateSamplerAllocator(
            ob.ValidStateSamplerAllocator(allocOBValidStateSampler))
    elif samplerIndex == 2:
        # use my sampler
        si.setValidStateSamplerAllocator(
            ob.ValidStateSamplerAllocator(allocMyValidStateSampler))

    # create a planner for the defined space
    planner = og.PRM(si)
    ss.setPlanner(planner)

    # attempt to solve the problem within ten seconds of planning time
    solved = ss.solve(10.0)
    if solved:
        print("Found solution:")
        # print the path to screen
        print(ss.getSolutionPath())
    else:
        print("No solution found")
Exemple #2
0
    c = Constraint()
    ss.setStateValidityChecker(ob.StateValidityCheckerFn(c.isStateValid))

    start = ob.State(space)
    start()[0] = 0
    start()[1] = 0

    goal = ob.State(space)
    goal()[0] = 2
    goal()[1] = 1.5

    ss.setStartAndGoalStates(start, goal)

    si = ss.getSpaceInformation()
    si.setValidStateSamplerAllocator(
        ob.ValidStateSamplerAllocator(allocMyValidStateSampler))

    planner = og.RRTstar(si)
    planner = og.PRM(si)
    ss.setPlanner(planner)

    solved = ss.solve(0.05)

    c.draw()

    if solved:
        ss.simplifySolution()
        pd = ob.PlannerData(ss.getSpaceInformation())
        ss.getPlannerData(pd)
        pd.computeEdgeWeights()
    def plan(self, start_tup, goal_tup, turning_radius=10, planning_time=30.0):
        def isStateValid(state):
            y = int(state.getY())
            x = int(state.getX())
            if y < 0 or x < 0 or y >= self.map_data.shape[
                    0] or x >= self.map_data.shape[1]:
                return False
            return bool(self.map_data[y, x] == 0)

        space = ob.DubinsStateSpace(turningRadius=turning_radius)

        # Set State Space bounds
        bounds = ob.RealVectorBounds(2)
        bounds.setLow(0, 0)
        bounds.setHigh(0, self.map_data.shape[1])
        bounds.setLow(1, 0)
        bounds.setHigh(1, self.map_data.shape[0])
        space.setBounds(bounds)

        si = ob.SpaceInformation(space)
        si.setStateValidityChecker(ob.StateValidityCheckerFn(isStateValid))
        si.setStateValidityCheckingResolution(
            self.params["validity_resolution"]
        )  # Set based on thinness of walls in map
        si.setValidStateSamplerAllocator(
            ob.ValidStateSamplerAllocator(
                ob.ObstacleBasedValidStateSampler(si)))
        si.setup()

        # Set Start and Goal states
        start = ob.State(space)
        start().setX(start_tup[0])
        start().setY(start_tup[1])
        start().setYaw(start_tup[2])
        goal = ob.State(space)
        goal().setX(goal_tup[0])
        goal().setY(goal_tup[1])
        goal().setYaw(goal_tup[2])

        # Set Problem Definition
        pdef = ob.ProblemDefinition(si)
        pdef.setStartAndGoalStates(start, goal)
        optimObj = ob.PathLengthOptimizationObjective(si)
        pdef.setOptimizationObjective(optimObj)

        # Set up planner
        optimizingPlanner = og.BITstar(si)
        optimizingPlanner.setProblemDefinition(pdef)
        optimizingPlanner.setup()

        solved = optimizingPlanner.solve(planning_time)

        def solution_path_to_tup(solution_path):
            result = []
            states = solution_path.getStates()
            for state in states:
                x = state.getX()
                y = state.getY()
                yaw = state.getYaw()
                result.append((x, y, yaw))
            return result

        solutionPath = None
        if solved:
            solutionPath = pdef.getSolutionPath()
            solutionPath.interpolate(self.params['interpolation_density'])
            solutionPath = solution_path_to_tup(solutionPath)
        return bool(solved), solutionPath