def plot_timing(data): fig = on_key.figure() ax = fig.add_subplot(1,1,1) for fct_name in data: N = data[fct_name][:,0] T = data[fct_name][:,1:] mean = np.mean(T, axis=1) std = np.std(T, axis=1) assert(len(N) == len(mean)) assert(len(N) == len(std)) ax.errorbar(N, mean, yerr=std, label=fct_name) del fct_name ax.grid(True) ax.legend(loc='best') ax.set_xlabel('N') ax.set_ylabel('Duration [s]') ax.set_xscale('log', basex=2) ax.set_yscale('log') xlims = ax.get_xlim() ax.set_xlim(xlims[0]/2, xlims[1]*2) ax.set_title('Scaling of different sorting algorithms implemented in Rust 1.2') on_key.show()
def main(): import matplotlib.pyplot as plt import on_key r = np.linspace(0.0, 10.0, 1000) css = [] css.append(0) css.append(1) css.append(2) css.append(3) css.append(4) css.append(5) css.append(6) fig = on_key.figure() axprops = dict() ax1 = fig.add_subplot(211, **axprops) axprops['sharex'] = ax1 plt.setp(ax1.get_xticklabels(), visible=False) ax2 = fig.add_subplot(212, **axprops) plt.subplots_adjust(hspace=0.0) ax1.grid(True) ax2.grid(True) for cs in css: HS_U = HS_Fitting_Function_Xe_Potential(r, cs) HS_E = HS_Fitting_Function_Xe_Field(r, cs) indices = np.where(r > HS_Xe_rmax[cs]) HS_U[indices] = -float(cs) / r[indices] HS_E[indices] = -float(cs) / (r[indices]*r[indices]) #HS_U[indices] = 0.0 #HS_E[indices] = 0.0 ax1.plot(r, HS_U, label = str(cs) + "+") ax2.plot(r, HS_E, label = str(cs) + "+") ax2.legend(loc='best') ax1.set_ylabel("Potentiel energy (Hartree)") ax2.set_ylabel("Electric field (atomic units)") ax2.set_xlabel("Distance (Bohr)") ax1.set_ylim((-5.0, 0.0)) ax2.set_ylim((-0.6, 0.0)) plt.show()
#!/usr/bin/env python2 # -*- coding: utf-8 -*- import sys, os, glob import numpy import matplotlib.pyplot as plt import on_key globber = glob.glob(os.path.join("output", "*")) globber.sort() fig = on_key.figure() colors = ["b", "r", "m", "c", "g", "y"] symbols = ["-", "--", ":", "-."] line_width = 2 fi = 0 for prng_file in globber: # Skip folders if not os.path.isfile(prng_file) or prng_file == "output/make_run.log": continue print "prng_file =", prng_file data = numpy.loadtxt(prng_file, dtype=float) plt.hist(data, bins=100, label=prng_file.replace("output/", ""), alpha=0.5)