Exemple #1
0
 def training_step(self, batch, optimizer_idx):
     if optimizer_idx == 0:
         (z, ) = batch
         g_out = self._generator(z, trainable=True, const_init=True)
         g_logits = self._discriminator(g_out,
                                        trainable=False,
                                        const_init=True)
         g_loss = flow.nn.sigmoid_cross_entropy_with_logits(
             flow.ones_like(g_logits),
             g_logits,
             name="Gloss_sigmoid_cross_entropy_with_logits",
         )
         return (g_loss, g_out)
     elif optimizer_idx == 1:
         (z, images) = batch
         g_out = self._generator(z, trainable=False, const_init=True)
         g_logits = self._discriminator(g_out,
                                        trainable=True,
                                        const_init=True)
         d_loss_fake = flow.nn.sigmoid_cross_entropy_with_logits(
             flow.zeros_like(g_logits),
             g_logits,
             name="Dloss_fake_sigmoid_cross_entropy_with_logits",
         )
         d_logits = self._discriminator(images,
                                        trainable=True,
                                        reuse=True,
                                        const_init=True)
         d_loss_real = flow.nn.sigmoid_cross_entropy_with_logits(
             flow.ones_like(d_logits),
             d_logits,
             name="Dloss_real_sigmoid_cross_entropy_with_logits",
         )
         d_loss = d_loss_fake + d_loss_real
         return d_loss
Exemple #2
0
 def test_discriminator(
         z: oft.Numpy.Placeholder((self.batch_size, 100)),
         images: oft.Numpy.Placeholder((self.batch_size, 1, 28, 28)),
         label1: oft.Numpy.Placeholder((self.batch_size, 1)),
         label0: oft.Numpy.Placeholder((self.batch_size, 1)),
 ):
     g_out = self.generator(z, trainable=False, const_init=True)
     g_logits = self.discriminator(g_out,
                                   trainable=True,
                                   const_init=True)
     d_loss_fake = flow.nn.sigmoid_cross_entropy_with_logits(
         flow.zeros_like(g_logits),
         g_logits,
         name="Dloss_fake_sigmoid_cross_entropy_with_logits",
     )
     d_logits = self.discriminator(images,
                                   trainable=True,
                                   reuse=True,
                                   const_init=True)
     d_loss_real = flow.nn.sigmoid_cross_entropy_with_logits(
         flow.ones_like(d_logits),
         d_logits,
         name="Dloss_real_sigmoid_cross_entropy_with_logits",
     )
     d_loss = d_loss_fake + d_loss_real
     flow.optimizer.SGD(flow.optimizer.PiecewiseConstantScheduler(
         [], [self.lr]),
                        momentum=0).minimize(d_loss)
     return d_loss
 def train_generator(
     z=flow.FixedTensorDef((self.batch_size, self.z_dim)),
 ):
     g_out = self.generator(z, trainable=True)
     g_logits = self.discriminator(g_out, trainable=False)
     g_loss = flow.nn.sigmoid_cross_entropy_with_logits(
         flow.ones_like(g_logits), g_logits, name="Gloss_sigmoid_cross_entropy_with_logits"
     )
     flow.losses.add_loss(g_loss)
     return g_loss, g_out
Exemple #4
0
 def test_generator(
         z: oft.Numpy.Placeholder((self.batch_size, self.z_dim)),
         label1: oft.Numpy.Placeholder((self.batch_size, 1)),
 ):
     g_out = self.generator(z, trainable=True, const_init=True)
     g_logits = self.discriminator(g_out,
                                   trainable=False,
                                   const_init=True)
     g_loss = flow.nn.sigmoid_cross_entropy_with_logits(
         flow.ones_like(g_logits),
         g_logits,
         name="Gloss_sigmoid_cross_entropy_with_logits",
     )
     flow.optimizer.SGD(flow.optimizer.PiecewiseConstantScheduler(
         [], [self.lr]),
                        momentum=0).minimize(g_loss)
     return g_loss
        def train_discriminator(
            z=flow.FixedTensorDef((self.batch_size, 100)),
            images=flow.FixedTensorDef((self.batch_size, 1, 28, 28)),
        ):
            g_out = self.generator(z, trainable=False)
            g_logits = self.discriminator(g_out, trainable=True)
            d_loss_fake = flow.nn.sigmoid_cross_entropy_with_logits(
                flow.zeros_like(g_logits), g_logits, name="Dloss_fake_sigmoid_cross_entropy_with_logits"
            )

            d_logits = self.discriminator(images, trainable=True, reuse=True)
            d_loss_real = flow.nn.sigmoid_cross_entropy_with_logits(
                flow.ones_like(d_logits), d_logits, name="Dloss_real_sigmoid_cross_entropy_with_logits"
            )
            d_loss = d_loss_fake + d_loss_real
            flow.losses.add_loss(d_loss)

            return d_loss, d_loss_fake, d_loss_real