Exemple #1
0
def _euclidean_squared_distance(input1, input2):
    """Computes euclidean squared distance.

    Args:
        input1 : 2-D feature matrix.
        input2 : 2-D feature matrix.

    Returns:
        distance matrix.
    """
    m, n = input1.shape[0], input2.shape[0]
    temp1 = math.reduce_sum(math.pow(
        input1, flow.constant_like(input1, 2, dtype=flow.float32)),
                            axis=1)
    temp2 = math.reduce_sum(math.pow(
        input2, flow.constant_like(input2, 2, dtype=flow.float32)),
                            axis=1)
    shape_tensor1 = flow.constant(value=0.0, dtype=flow.float32, shape=(m, n))
    shape_tensor2 = flow.constant(value=0.0, dtype=flow.float32, shape=(n, m))
    temp1 = flow.broadcast_like(temp1, like=shape_tensor1, broadcast_axes=[1])
    temp2 = flow.transpose(flow.broadcast_like(temp2,
                                               like=shape_tensor2,
                                               broadcast_axes=[1]),
                           perm=(1, 0))

    dismat = math.add(temp1, temp2)

    return math.add(
        dismat,
        math.multiply(-2,
                      flow.matmul(input1, flow.transpose(input2,
                                                         perm=(1, 0)))))
Exemple #2
0
    def build(self, inputs, targets):
        """
        Args:
            inputs (torch.Tensor): feature matrix with shape (batch_size, feat_dim).
            targets (torch.LongTensor): ground truth labels with shape (num_classes).
        """
        n = inputs.shape[0]
        dist = math.reduce_sum(math.pow(
            inputs, flow.constant_like(inputs, 2, dtype=flow.float32)),
                               axis=1)
        shape_tensor = flow.constant(value=0.0,
                                     dtype=flow.float32,
                                     shape=(n, n))
        dist = flow.broadcast_like(dist, like=shape_tensor, broadcast_axes=[1])
        dist = math.add(
            dist, flow.transpose(dist, perm=(1, 0),
                                 batch_axis_non_change=True))
        temp1 = math.multiply(
            -2,
            flow.matmul(
                inputs,
                flow.transpose(inputs, perm=(1, 0),
                               batch_axis_non_change=True)))
        dist = math.add(dist, temp1)
        dist = math.sqrt(flow.clamp(dist, min_value=1e-12))
        mask = math.equal(
            flow.broadcast_like(targets, like=shape_tensor,
                                broadcast_axes=[1]),
            flow.transpose(flow.broadcast_like(targets,
                                               like=shape_tensor,
                                               broadcast_axes=[1]),
                           perm=(1, 0),
                           batch_axis_non_change=True))
        mask_rev = math.not_equal(
            flow.broadcast_like(targets, like=shape_tensor,
                                broadcast_axes=[1]),
            flow.transpose(flow.broadcast_like(targets,
                                               like=shape_tensor,
                                               broadcast_axes=[1]),
                           perm=(1, 0),
                           batch_axis_non_change=True))
        dist_ap, dist_an = [], []
        for i in range(n):
            temp_dist = flow.slice_v2(dist, [(i, i + 1, 1)])
            temp_mask = flow.slice_v2(mask, [(i, i + 1, 1)])
            temp_mask_rev = flow.slice_v2(mask_rev, [(i, i + 1, 1)])
            dist_ap.append(
                math.reduce_max(
                    flow.gather_nd(temp_dist, flow.where(temp_mask))))
            dist_an.append(
                math.reduce_min(
                    flow.gather_nd(temp_dist, flow.where(temp_mask_rev))))
        dist_ap = flow.concat(dist_ap, 0)
        dist_an = flow.concat(dist_an, 0)
        y = flow.ones_like(dist_an)
        # return dist_an, dist_ap, y

        return self._MarginRankingLoss(dist_an, dist_ap, y)
Exemple #3
0
def _MarginRankingLoss(input1, input2, target, margin = 0, reduction='mean'):
    low_bound = flow.constant_like(target, 0, dtype= flow.float32)

    if reduction == 'none':
        ret = math.maximum(low_bound,
                        math.add(margin,math.multiply(target,math.multiply(-1,math.subtract(input1,input2)))))
    else:
        ret = math.reduce_mean(math.maximum(low_bound,
                        math.add(margin,math.multiply(target,math.multiply(-1,math.subtract(input1,input2))))))
    return ret
Exemple #4
0
 def _MarginRankingLoss(self, input1, input2, target, reduction='mean'):
     if reduction == 'none':
         ret = flow.clip(
             math.add(self.margin, math.multiply(target, math.multiply(-1, math.subtract(input1, input2)))),
             min_value=0)
     else:
         ret = math.reduce_mean(flow.clip(
             math.add(self.margin, math.multiply(target, math.multiply(-1, math.subtract(input1, input2)))),
             min_value=0))
     return ret
Exemple #5
0
 def forward(self, inputs, label):
     """
     Args:
         inputs (torch.Tensor): prediction matrix (before softmax) with
             shape (batch_size, num_classes).
         targets (torch.LongTensor): ground truth labels with shape (batch_size).
             Each position contains the label index.
     """
     one_hot_label = flow.one_hot(indices=flow.cast(label, flow.int32), depth=self.num_classes, axis=-1,
                                  dtype=flow.float32)
     log_probs = math.log(flow.nn.softmax(inputs, axis=1))
     targets = math.add(math.multiply((1 - self.epsilon), one_hot_label), (self.epsilon / self.num_classes))
     temp = math.multiply(log_probs, math.multiply(-1, targets))
     temp2 = math.reduce_mean(temp, axis=0)
     loss = math.reduce_sum(temp2)
     return loss